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Abstract

The use of real-time tomography at JET opens up new possibilities for monitoring the plasma radiation profile and for taking
preventive or mitigating actions against impending disruptions. By monitoring the radiated power in different plasma regions, such
as core, edge and divertor, it is possible to set up multiple alarms for the radiative phenomena that usually precede major disruptions.
The approach is based on the signals provided by the bolometer diagnostic. Reconstructing the plasma radiation profile from these
signals is a computationally intensive task, which is typically performed during post-pulse analysis. To reconstruct the radiation
profile in real-time, we use machine learning to train a surrogate model that performs matrix multiplication over the bolometer
signals. The model is trained on a large number of sample reconstructions, and is able to compute the plasma radiation profile
within a few milliseconds in real-time. The implementation has been further optimized by computing the radiated power only in
the regions of interest. Experimental results show that, during uncontrolled termination, there is an impurity accumulation at the
plasma core, which eventually leads to a disruption. A threshold-based alarm on core radiation, among other options, is able to
anticipate a significant fraction of such disruptions.
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1. Introduction

The JET bolometer system [1] is a diagnostic that measures
the radiated power through an array of sensors, called bolome-
ters, where each bolometer measures the line-integrated radi-
ation along a specific line of sight. The system includes two
cameras – a horizontal camera and a vertical camera – with
24 bolometers each. Using these two cameras, it is possible
to reconstruct the plasma radiation profile on a poloidal cross-
section of the device. The two cameras and their lines of sight
are illustrated in Figure 1. Essentially, the geometry is such
that, for each camera, 16 lines of sight cover the entire plasma
region, and 8 lines of sight provide a more fine-grained resolu-
tion of the divertor region at the bottom of the vessel.

From the bolometer measurements, there are several tomog-
raphy techniques that can be applied to reconstruct the plasma
radiation profile [2]. The method that is used at JET uses an
iterative constrained optimization algorithm that minimizes the
error with respect to the measurements, while requiring the so-
lution to be non-negative [3]. This iterative procedure takes a
significant amount of time, typically on the order of minutes to
produce a single reconstruction. More recently, it was shown
that it is possible to produce essentially the same results with a
deep neural network, at the cost of a small amount of error, but
several orders of magnitude faster [4].
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Figure 1: Lines of sight for the bolometer system at JET.

Similarly, there has been a recent surge of interest in us-
ing machine learning to develop surrogate models, especially
in the form of neural networks [5], to accelerate the processing
of diagnostics data. However, such models can hardly run on
a resource-constrained environment such as the real-time net-
work at JET. For example, deep learning models [6] often re-
quire specialized hardware such as Graphics Processing Units
(GPUs) to be trained and run, but there are no such facilities in
the real-time environment at JET. Therefore, any approach that
aims at reconstructing the plasma radiation profile in real-time
must be based on a significantly simpler model.
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In this work, we use machine learning to train a simple
model for plasma tomography based on matrix multiplication.
Although the model is trained on GPU, once it is trained it can
run on CPU, and even on a limited CPU, since it requires only
a single matrix multiplication step, which can be implemented
in a variety of programming languages, and can be performed
sufficiently fast (on the order of milliseconds) even on limited
hardware. This approach is especially convenient for imple-
mentation in the real-time environment at JET, which is based
on the MARTe framework [7], and allows new features to be
configured flexibly on top of the RTCC system [8].

The availability of the plasma radiation profile in real-time
opens new possibilities to monitor the plasma behavior, espe-
cially the radiative phenomena that often precede plasma dis-
ruptions. An example is impurity accumulation, which leads to
a pattern where most of the radiated power emanates from the
plasma core. As we will illustrate below, this pattern is clearly
visible in the plasma profile. In extreme cases, core radiation
may exceed the input power and cause a disruption by radia-
tive collapse [9], so monitoring the radiated power in the core
region is one of the possible uses of real-time tomography, and
this is the application that we describe here. We also discuss
the results that can be achieved by setting up an alarm on core
radiation in the real-time control system at JET.

2. Tomography by matrix multiplication

As described in the previous section, the bolometer system
at JET has two cameras with 24 lines of sight each. On the other
hand, the plasma profiles that are routinely produced at JET
have a resolution of 196×115 pixels. This means that there are
22540 unknowns to be computed from only 48 measurements,
which illustrates the ill-posed nature of the problem.

Since each bolometer measures the line-integrated radiation
along its line of sight, and the plasma radiation profile has a
discrete representation (in the form of a rectangular grid that
can be flattened into a column vector), then this setup can be
represented as a linear system in the form y = Ax, where y
are the bolometer measurements and x is the radiation profile
to be reconstructed. This system is typically under-determined
because the number of measurements in y is much less than the
number of (unknown) power density values in x. Therefore, the
system cannot be inverted simply as x=A−1y.

However, given some sample measurements ỹ and a sample
reconstruction x̃ that has been obtained from those measure-
ments using some existing tomography technique, it might be
possible to train a model M by minimizing an error measure
such as ||x̃ −M(ỹ)||. In previous work [4], M was a deep
neural network with several layers, which can be regarded as a
nonlinear function applied over the bolometer data y to produce
the plasma profile x. In the present work, M is just a matrix,
and M(ỹ)=Mỹ becomes a simple matrix multiplication step.
Once trained, the matrix M can be used to compute the radia-
tion profile from bolometer data as x∼=My.

This approach extends naturally to batches of training data
X̃ and Ỹ. In this case, both X̃ and Ỹ are matrices where each
column corresponds to a different training sample. Then M is

trained by minimizing ||X̃ −M ·Ỹ||, and can also be used to
compute a batch of reconstructions via X∼=M·Y.

More precisely:

• Y = {Yjk} is a 48×N matrix representing a batch of
bolometer data, where 48 is the number of lines of sight
and N is an arbitrary batch size.

• M={Mij} is a 22540×48 matrix representing the model
parameters, where 22540 is the total number of pixels in
the plasma profile.

• X = {Xik} with Xik =
∑48

j=1 MijYjk is a 22540×N
matrix representing a batch of N plasma profiles recon-
structed from bolometer data.

Given a batch of training data (X̃, Ỹ) = ({X̃ik}, {Ỹjk}),
the model is trained by gradient descent to minimize the mean
absolute error:

L(M) =
1

22540×N

22540∑
i=1

N∑
k=1

|X̃ik −
48∑
j=1

Mij Ỹjk| (1)

In summary, the model has 22540×48 parameters, where
each of its 22540 outputs is generated by a weighted sum of its
48 inputs, and the weights are learned by minimizing the loss
function in Eq. (1).

For the present work, we collected a training dataset com-
prising about 10 000 of the most recent reconstructions that are
routinely produced at JET. These are reconstructions across a
wide range of pulses (75000–97000) and at specific points of
interest for the analysis and modeling tasks at JET. The focus
on the most recently produced reconstructions is justified by
the fact that, since 2017, all reconstructions have been double-
checked to fix problems in the bolometer data and to avoid pro-
files with noticeable artifacts. This ensures that the training pro-
files are of the highest possible quality.

Using a 32-bit floating point representation (4 bytes), the
training data takes 10000×48×4 + 10000×22540×4 ∼= 904
MB, which can fit the memory of a single GPU. Therefore,
we loaded the training data into GPU memory and trained the
model by running each epoch over the full dataset rather than
using mini-batching. With the dataset pre-loaded into GPU
memory, this allows the model to be trained efficiently for a
large number of epochs and/or with a small learning rate, with-
out any data transfers between CPU and GPU.

We separated the data into 90% for training and 10% for
validation, while making sure that there were no sample recon-
structions from the same pulse in the training set and in the
validation set. The model was trained by gradient descent im-
plemented directly with TensorFlow, and using the Adam opti-
mizer [10] with a learning rate of 10−4. As illustrated in Fig-
ure 2, the mean absolute error in the validation set converged to
a value of about 0.0355 MW/m3 after 13300 epochs.

For comparison, a deep neural network, which is a much
more sophisticated model, achieved a mean absolute error of
0.0128 MW/m3 [11]. Although the training/validation dataset
is not the same for both models, this provides a sense of how
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Figure 2: Evolution of loss and validation loss during training.

much error we incur by reducing the tomographic reconstruc-
tion process to a single matrix multiplication step. As an exam-
ple, Figure 3 shows an average case where the mean absolute
error between the original reconstruction and the reconstruction
produced by the model is exactly 0.0355 MW/m3.

Figure 3: Sample reconstruction from validation set (left) compared to the re-
construction produced by the model (right).

Figure 4 shows the average error per pixel computed using
the validation set. We can see that the model tends to slightly
overestimate the radiated power on certain regions, and under-
estimate it others. The most troublesome region seems to be the
divertor, where the model overestimates the radiation above the
X-point, and underestimates it below that point. Some of the
underestimation in the divertor region appears to be related to a
slight overestimation in the core region, since there are vertical
lines of sight traversing both regions.

For real-time deployment, matrix M is exported as an array
and written to a file that can be imported by other programs,
written in different programming languages. Nowadays, many
languages include standard libraries with matrix multiplication
routines, but even if that is not the case, matrix multiplication
can be implemented using low-level instructions or, in some
cases, even vectorized operations that take advantage of the par-
allel instructions available in modern processors.

Figure 4: Average error per pixel in the validation set.

3. Tomography in real-time

Figure 5 shows a sequence of frames illustrating the real-
time reconstructions produced by the model for a sample pulse.
Despite the model simplicity, all the usual features that often
appear in the radiation profile are clearly recognizable. In this
example, it is possible to observe the development of a radiation
blob at the outboard edge, followed by the development of a
radiation blob at the plasma core, which eventually leads to a
disruption at t = 53.7s. The two radiation blobs are possibly
(but not necessarily) related by impurity transport from edge to
core, since at around t=52.0s the outboard radiation decreases,
followed by a sudden increase in core radiation.

The main advantage of real-time tomography is that it al-
lows monitoring the radiated power in different regions of in-
terest, namely at the edge, at the core, and at the divertor. In
particular, core radiation turns out to be an important precursor
of plasma disruptions [12], so one of the main features to be
monitored is the radiated power in that region.

When the purpose is to monitor a specific region, a possible
approach is to apply a mask over the radiation profile in order
to consider only the points that lie inside that region. Figure 6
shows the masks that have been defined for the core, edge and
divertor regions. Another approach is to reconstruct only the
region of interest, while avoiding to compute the entire radia-
tion profile. This is the approach that has been implemented at
JET to monitor the radiated power in the core region.

Figure 7 illustrates the signals that correspond to the total
radiated power and to the radiated power in the core, outboard
edge, and divertor regions. Again, it is possible to observe that
at some point around t = 52.0s the edge radiation decreases,
followed by a sharp increase in core radiation. The tomographic
reconstruction on the right-hand side of Figure 7 illustrates the
buildup of core radiation at that point.

From these signals, it becomes apparent that when core ra-
diation exceeds a certain threshold, this corresponds to the for-
mation of a radiation blob in the plasma core. If this blob is
allowed to stay there, then the radiation losses will lead to a de-
crease of the core temperature and the development of a hollow
temperature profile. In turn, this will cause changes to the resis-
tivity, to the current profile and to the q-profile, setting the stage
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Figure 5: Plasma radiation profiles for pulse 92213 from t=48.0s to t=53.9s with a time step of 0.1s and a dynamic range of 1 MW m−3.

Figure 6: Masks for core, outboard edge and divertor regions.

for MHD (magnetohydrodynamic) instabilities to appear. One
way to counteract these effects is to apply auxiliary heating,
namely ICRH (ion cyclotron resonance heating), to re-heat the
core and recover from a hollow temperature profile, creating the
conditions for a safe termination [13]. On other devices, differ-
ent means of auxiliary heating may be employed to achieve the
same purpose; for example, on ASDEX Upgrade it is possible
to counteract impurity accumulation through the use of ECRH
(electron cyclotron resonance heating) [14].

In any case, our main purpose is to be able to detect the on-
set of such conditions, and for this purpose we used the PETRA
(Plasma Event TRiggering and Alarms) system to configure an
alarm on core radiation, such that the alarm is triggered when
core radiation exceeds a threshold of 3 MW. In the example of
Figure 7, such threshold is exceeded at t = 52.29s, which is
about 1.4s before the disruption, giving ample time for disrup-
tion avoidance or mitigating actions.

4. Core radiation threshold

The threshold of 3 MW on core radiation has been chosen
by analyzing the baseline pulses from two recent campaigns at
JET, which amounts to about 400 pulses in the last 5 years. The
aim of the JET baseline scenario [15] is to develop a recipe for
achieving high fusion performance and sustained fusion power
with a view towards D-T (Deuterium-Tritium) operation. How-
ever, as the plasma current and heating power are being in-
creased, a higher rate of pulse disruptivity is also being ob-
served (about 40%). This makes it especially important to ad-
dress disruptivity in this operational scenario.

In this context, the core radiation threshold can be regarded
as playing a similar role to a disruption predictor. For disrup-
tive pulses, if core radiation exceeds the threshold before the
disruption, we have a successful prediction (true positive); on
the other hand, if core radiation exceeds the threshold too late
or does not exceed the threshold at all, we have a missed alarm
(false negative). For non-disruptive pulses, if core radiation ex-
ceeds the threshold at any point in time, we have a false alarm
(false positive); if core radiation does not exceed the threshold,
we have a correct prediction (true negative).

With this interpretation, it is possible to assess the effective-
ness of the core radiation threshold in terms of binary classifi-
cation metrics such as precision, recall, etc. However, for our
purposes, an analysis based on true positives, true negatives,
false positives and false negatives will suffice.

Figure 8 illustrates the effectiveness of the core radiation
threshold to anticipate disruptions in the JET baseline scenario.
Each dot in the chart represents a baseline pulse. The dot is po-
sitioned vertically according to whether the pulse is disruptive
or not, and horizontally according to the maximum core radi-
ation achieved during that pulse (and before the disruption, if
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Figure 7: Radiated power in different regions of interest (left) and a tomographic reconstruction of the plasma profile at t=52.3s showing a peak in core radiation
(right) for JET pulse 92213.

Figure 8: Classification accuracy when using a threshold on core radiation as a disruption predictor.

disruptive). We can observe that most non-disruptive pulses are
concentrated towards the left on the horizontal axis (low core
radiation), while disruptive pulses are distributed over a much
wider range (low to high core radiation).

The analysis shows that, with a threshold of 3 MW on core
radiation, it is possible to anticipate 50% of disruptive pulses,
at the expense of a false alarm rate of only 5%. The remaining
50% of disruptions must be attributed to factors other than core
radiation, and should be further investigated.

Regarding the false alarms (false positives), some of these
are genuine cases of pulses with high core radiation that even-
tually recover, but there also cases of pulses that have been mis-
classified as non-disruptive, or where high core radiation is due
to spurious measurements.

Regarding the true positives, the average warning time is 0.8
seconds, so the example in Figure 7 is an especially favorable
one, where core radiation appears relatively early. For other
pulses, core radiation may show up closer to the disruption, typ-
ically 200 to 600 ms before the disruption time.

5. Conclusion

The buildup of core radiation, which is attributed to impu-
rity accumulation in that region, was found to be responsible
for about 50% of disruptions in the JET baseline scenario. Such
core radiation shows up in the plasma radiation profile as a dis-
tinct pattern with a radiation blob centered at the plasma core.
To monitor the development of this and other patterns in the
plasma radiation profile, we developed an approach to bolome-
ter tomography based on a single matrix multiplication step,
which was implemented in real-time, within the computational
constraints of the real-time environment at JET.

Real-time tomography allows monitoring the radiated power
in specific regions of interest, and provides the possibility of
setting up custom alarms depending on the physics that are most
relevant for a given operational scenario. In the present work,
we focused on the JET baseline scenario, and on setting up an
alarm on core radiation. A similar kind of alarm may become
useful in other operational scenarios, or even in other devices.
We plan to investigate this in future work.
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