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Abstract. Diagnostic Trouble Codes (DTCs) allow monitoring a wide
range of fault conditions in heavy trucks. Ideally, a perfectly healthy ve-
hicle should run without any active DTCs; in practice, vehicles often run
with some active DTCs even though this does not pose a threat to their
normal operation. When a DTC becomes active, it is therefore unclear
whether it should be ignored or considered as a serious issue. Recent ap-
proaches in machine learning, such as training Variational Autoencoders
(VAEs) for anomaly detection, do not help in this respect, for a number
of reasons that we discuss based on actual experiments. In particular, a
VAE tends to learn that a frequently active DTC is of no importance,
when in fact it should not be dismissed completely; instead, such DTC
should be assigned a relative weight that is smaller but still non-negligible
when compared to other, more serious DTCs. In this work, we present an
approach to measure the relative weights of active DTCs in a way that
allows the analyst to prioritize them and focus on the most important
ones. The approach is based on the concept of binary cross-entropy, and
finds application not only in the analysis of DTCs from a single vehicle,
but also in monitoring active DTCs across an entire fleet.
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1 Introduction

In the automotive industry, Diagnostic Trouble Codes (DTCs) [1] are a standard
way to monitor the health of a vehicle. This applies not only to automobiles that
people use routinely for their transportation needs, but also to other classes of
road vehicles, namely heavy-duty trucks.

Basically, a DTC is an alarm that is activated under certain operating con-
ditions. For example, in a diesel engine it is important to maintain a certain
fuel pressure. Since the fuel goes through several filters, pumps and injectors, a
low fuel pressure may cause damage to these components and ultimately to the
engine itself. Therefore, if the fuel pressure drops below a certain threshold, a
special DTC for that purpose will become active.
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However, the fact that a DTC is active does not indicate, by itself, whether
the issue is serious or not. For example, the fuel pressure may be momentarily
low due to the ambient temperature, such as a cold start in an early morning
with freezing temperatures. On the other hand, it could be caused by a fuel leak,
and this would be much more serious, requiring repair.

An assumption that is often made in practice is that the importance of an
issue correlates inversely with its frequency. For a vehicle that starts every morn-
ing in cold temperatures, the low fuel pressure DTC may be frequently active
without representing a serious issue, whereas for another vehicle a single, unusual
activation of the same DTC may require immediate attention.

This makes it possible to train machine learning models – such as Variational
Autoencoders (VAEs) [2] – for anomaly detection based on data from a single
vehicle, but it is difficult to generalize the results to other vehicles. In particular,
training a model on a vehicle and then applying it to detect anomalies on another
vehicle will not yield good results.

This problem is further exacerbated by the fact that companies have fleets
comprising heterogeneous vehicles (e.g. trucks from different brands, different
models, different years, etc.). When monitoring such a fleet, it becomes very
difficult to determine which DTCs should be the focus of attention.

In this work, we apply anomaly detection to prioritize DTCs according to
their importance, where this importance must be learned from data. The method
should be able to determine the importance of each DTC not only in the context
of a single vehicle, but also across multiple vehicles in order to assist the analyst
in identifying which vehicles and issues should be at the top of the list when it
comes to potential anomalies. An initial attempt at achieving this with a VAE
eventually leads us to define a proper metric for importance weighting of DTCs.

2 Analysis of a sample vehicle

Fig. 1 shows the DTCs for one particular vehicle in a fleet comprising about 40
trucks. The DTCs are being plotted over the period of one year, with a 60-second
resolution. This particular vehicle had a relatively large number of DTCs that
were active at least once during that period.

In Fig. 1 there are several different kinds of behaviors, from DTCs that
appear to be randomly triggered on and off in quick succession, to DTCs that
are active only once for a very brief period of time (short spikes). However, the
most interesting DTCs are those that, being usually inactive, become active and
stay that way for an extended period of time, such as several weeks or even a
few months. This is what happens around May 2019, when the vehicle starts
accumulating DTCs that were otherwise inactive and which, when considered
altogether, point to one or more serious issues.

The repair history for this particular vehicle shows that it had a breakdown
due to “overheating” (no further info provided) in mid-May. In Fig. 1, the fact
that several active DTCs are being turned off (or reset) simultaneously in mid-
May is consistent with a repair at that point in time.
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Fig. 1. DTCs for a sample vehicle over a period of one year.

An anomaly detection model trained on the first half of this one-year period
should be able to pick up this anomaly in the second half. However, in the
absence of labeled data, it might be that this anomalous behavior ends up in
the training data for the model, which will then learn it as usual behavior and
fail to recognize it as an anomaly in the future. The following section illustrates
this point by means of an actual experiment.

3 Anomaly detection with VAEs

Variational Autoencoders (VAEs) have been extensively used for anomaly de-
tection, usually in combination with other methods, such as recurrent neural
networks, to capture the evolution of time series data, e.g. [3–7]. In its basic
form, anomaly detection relies on the ability of a VAE to reconstruct a given
input signal [8]. When the VAE struggles to reproduce the input signal, this
is an indication that it has not seen such behavior before, and therefore such
behavior is classified as an anomaly.

While any neural network that produces an output of the same type and
shape as its input can considered to be an autoencoder, the variational autoen-
coder has the distinctive feature of encoding the input as a probability distri-
bution, and then generating the output by sampling from such distribution. As
a result, the output is a stochastic approximation of the input, but such ap-
proximation should be sufficiently good for the training data that the model has
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already seen; it is only for data that the model has not seen before that the
reconstruction error will be large.

Fig. 2 shows the general structure of a VAE, illustrating the fact that the
encoder learns the parameters of a latent distribution (µ and σ of a bivariate
normal distribution, in this case), while the decoder produces the output based
on samples drawn from that distribution.

µ 

σ 

sample

encoder decoderlatent distribution

prior

input output

Fig. 2. General structure of a variational autoencoder.

Furthermore, the parameters of the latent distribution are not to be learned
freely, as this could possibly lead to overfitting to the training data. Instead, a
prior distribution is usually imposed (a standard bivariate normal, in this case),
which provides some (tunable) degree of regularization.

The VAE is trained by minimizing both the reconstruction error and the Kull-
back–Leibler divergence of the latent distribution with respect to the prior, which
is equivalent to maximizing the well-know evidence lower bound (ELBO) [9].

3.1 Formal background

Let x be the input that the VAE is trying to reconstruct, and let z be the latent
representation of that input, which the encoder is trying to learn by adjusting its
network weights θ. In effect, what the encoder is learning is to approximate the
posterior distribution p(z|x) with a variational approximation qθ(z|x), where θ
are the variational parameters of such approximation.

On the other hand, the decoder is learning to generate x from the latent
representation z by adjusting its network weights φ. In other words, the de-
coder is learning the likelihood distribution of data p(x|z) with a parametrized
approximation that is usually denoted by pφ(x|z).
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With some mathematical manipulations, it is possible to show that:

log p(x) =

∫
qθ(z|x) log

p(x, z)

qθ(z|x)
dz︸ ︷︷ ︸

ELBO

+

∫
qθ(z|x) log

qθ(z|x)

p(z|x)
dz︸ ︷︷ ︸

DKL(qθ(z|x)‖p(z|x))

(1)

Since log p(x) is constant w.r.t. qθ(z|x), and since the Kullback–Leibler di-
vergence in the second term is non-negative, the first term on the right-hand side
is effectively a lower bound for the log-evidence log p(x). Hence the designation
of evidence lower bound (ELBO) for this term.

Furthermore, since log p(x) is constant, maximizing the ELBO is equivalent
to minimizing the Kullback–Leibler divergence between the variational approx-
imation qθ(z|x) and the posterior distribution p(z|x), which is exactly what we
would like to achieve when training the VAE.

With some further manipulations, it can be shown that:

ELBO =

∫
qθ(z|x) log p(x|z)dz︸ ︷︷ ︸
Eqθ(z|x)[log p(x|z)]

−
∫
qθ(z|x) log

qθ(z|x)

p(z)
dz︸ ︷︷ ︸

DKL(qθ(z|x)‖p(z))

(2)

Therefore, maximizing the ELBO can be achieved by maximizing the first
term and minimizing the second one. The first term is maximized by training
the decoder to learn p(x|z) in order to reconstruct x from z as good as possible,
while the second term is minimized by training the encoder to keep the latent
distribution as close as possible to a given prior p(z).

In this context, the second term in Eq. (2) can be viewed as a regularization
term that precludes the latent distribution from overfitting the training data.
A simple choice for the prior distribution p(z) is, for example, a multivariate
standard normal with an identity covariance matrix.

3.2 Implementation

To detect anomalies in DTC data, we implemented a VAE to be applied to
DTC signals such as those depicted in Fig. 1. For this sample vehicle, we found
62 DTCs that were active at least once over that one-year period. Therefore,
we designed a VAE with layer dimensions that were commensurate with the
dimensionality of the input data. A sequence of dense layers encodes the input
data into a 4-dimensional latent distribution, and another sequence of dense
layers decodes the output from a sample of that distribution.

An implementation model for the VAE is shown in Fig. 3, and it uses
both deterministic and probabilistic layers. The deterministic layers (e.g. Dense)
come from the base TensorFlow library,3 while the probabilistic layers (such as
MultivariateNormalTriL) come from TensorFlow Probability.4 Both kinds of
layers can be used seamlessly in the same model.

3 https://github.com/tensorflow/tensorflow
4 https://github.com/tensorflow/probability
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Fig. 3. Implementation of a VAE with deterministic and probabilistic layers.

In particular, MultivariateNormalTriL represents a multivariate normal
distribution that is parametrized by a mean vector and the lower triangular
part of the covariance matrix (since the matrix is symmetric, there is no need
to specify the upper part). For an n-dimensional normal distribution, the total
number of parameters is n+n(n+1)/2=14 for n=4.

An interesting feature of MultivariateNormalTriL (and this applies to other
layers representing probability distributions) is that it receives as input a tensor
with the distribution parameters and produces as ouput a sample drawn from a
distribution with those parameters.

The same principle applies to the very last layer in Fig. 3, where we use
IndependentBernoulli to generate a binary random variable for each DTC.
Rather than outputting the probability of a DTC being active, we sample from
a Bernoulli distribution in order to produce an actual value (0 or 1). However, the
main advantage of using a probabilistic layer here is that we can train the VAE
by maximizing the log probability of its output (or by minimizing the negative
of such log probability, which is the same).

A third probabilistic layer, KLDivergenceAddLoss, is a pass-through layer
that adds a Kullback–Leibler divergence penalty to the loss function. This penalty
represents the second term in Eq. (2) and is computed with respect to a prior
distribution which, in our case, is a 4-dimensional independent normal.

The remaining layers in Fig. 3 are deterministic dense layers to implement
the compression done by the encoder (top row, from 62 to 14 units) and the de-
compression by the decoder (bottom row, from 4 back to 62 units). The question
mark (?) is a placeholder for the batch size to be used during training.

3.3 Anomaly detection

To test the VAE in an anomaly detection setting, we split the data (Fig. 1) in
two halves, where one half is used for training and the other is used for testing.
In a first experiment, we train on Jul-Dec 2018 and test on Jan-Jun 2019. In a
second experiment, we do the opposite by swapping the train and test sets.

To provide a single measure for anomaly detection, we use the binary cross-
entropy (BCE) to assess the accuracy of the VAE in reconstructing the DTC
signals at each point in time. Specifically, the BCE is given by:

BCE = − 1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)] (3)
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where N is the number of DTCs, yi is the actual value of a DTC (0 or 1), and
pi is the probability of such DTC being active (0 < pi < 1) as predicted by the
VAE. Since the last layer of the VAE is an independent Bernoulli distribution
for each DTC, pi is simply the parameter of that distribution.

Fig. 4 shows the results obtained in the two experiments, where we plot the
BCE across both the training set and the test set. In the first plot, we see that the
VAE has learned to reproduce the training data almost perfectly, regardless of
what it contains. As for the test data, the VAE clearly recognizes the anomalous
behavior around May 2019 (cf. Fig. 1).
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Fig. 4. Binary cross-entropy across train and test sets in two experiments.

In the second plot, where the training set is Jan-Jun 2019, again the VAE
learns to reproduce the training data almost perfectly, regardless of the anoma-
lous behavior that it contains. It is then in Jul-Dec 2018 that the VAE recognizes
some unusual behavior, especially at the beginning of that period.

This points to a fundamental issue with this approach. Since the VAE learns
to reproduce whatever training data it is given, any anomalous behavior must
be labeled in order to split the training and test data in a way that the training
set does not contain the kind of anomalies that need to be detected.

Furthermore, an analysis of multiple vehicles reveals that a model trained on
one vehicle is not directly transferable to other vehicles, as they often display
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significantly different behavior in terms of active DTCs, even for vehicles with
the same specifications (e.g. same brand, model and year). This makes it difficult
to apply anomaly detection across a heterogeneous fleet of vehicles.

4 Importance weighting of DTCs

In the previous section, we used binary cross-entropy (BCE) as an anomaly score,
and with this scoring function we showed that a VAE can learn to reproduce
whatever training data it is provided, even if the training data contains actual
anomalies. In this section, we leave the VAE aside, but the concept of BCE is
still useful to come up with an anomaly score that can be applied directly to
DTC data, even without training a model.

According to Eq. (3), the BCE will be low either when yi=1 and pi→1 (the
second term under the summation will be zero) or when yi = 0 and pi→ 0 (the
first term will be zero). Conversely, the BCE will be high either when yi=1 and
pi→0, or when yi=0 and pi→1. In other words, the BCE will be low whenever
yi and pi agree, and it will be high whenever yi and pi disagree.

However, when applied to DTC data, the two situations yi = 0 and yi = 1
should be treated differently. It is correct to say that when yi = 0 (DTC is off)
and pi→ 0, the anomaly score should be low; as it is correct to say that when
yi = 1 (DTC is on) and pi→ 0, the score should be high, because the DTC is
active and this could point to an anomaly, regardless of the value of pi.

Now, the BCE specifies that when yi=1 and pi→1 the anomaly score is low,
which should not happen, because an active DTC always points to a potential
issue. Similarly, when yi=0 and pi→1 the anomaly score is high, when it should
not be, because the DTC is inactive, regardless of the value of pi.

If a DTC is active (yi = 1) this should always point to an anomaly, albeit a
small anomaly if pi→1, and a large anomaly if pi→0. On the other hand, if a
DTC is inactive (yi=0) this should indicate no anomaly, regardless of pi.

Therefore, we introduce a different anomaly score, which is obtained by re-
moving the second term in Eq. (3), and which we denote by loss L:

L = − 1

N

N∑
i=1

yi log pi (4)

According to this formula, if a DTC is inactive (yi=0) then the corresponding
term is zero, and the DTC does not contribute to the anomaly score. On the
other hand, if a DTC is active (yi=1) then the corresponding term is non-zero,
and the DTC contributes with a weight of (− log pi) to the anomaly score.

If pi→0 then the weight of the DTC can become very large, but in practice
this does not occur, for two main reasons. First, in the extreme case when pi=0
the weight of a DTC would become infinite, but such DTC will never turn on,
so yi=0. Second, a DTC that is active for only one minute in an entire year has

a weight of
(
− log 1

365×24×60

)
≈ 13.2, which is of the same order of magnitude

as the maximum values observed in the first plot of Fig. 4.
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To avoid training a model, we take the probability pi to be the fraction of
time that a DTC was active during a certain period of time. For example, from
the data in Fig. 1 it is possible to compute pi for each DTC over the period
of one year. We then plug these pi values together with the actual data yi into
Eq. (4) to compute the anomaly score across the same time span.

Fig. 5 shows the results, where the anomaly score is plotted at the top with
the DTC signals right below, for comparison.

Fig. 5. Importance weights of DTCs at three points in time (a), (b) and (c).

In addition, by means of colored horizontal bars, Fig. 5 illustrates the con-
tribution of each DTC to the anomaly score at three points in time: point (a)
represents a brief spike in a few DTCs; point (b) represents the beginning of a
long period of anomalous behavior; and point (c) represents the flat top where
the anomaly score reaches its peak.
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The weight (− log pi) can therefore be regarded as a measure of the relative
importance of each active DTC with respect to the remaining DTCs. In the
midst of several active DTCs, the ones with a larger weight will point to more
unusual events, as the examples in Fig. 5 illustrate.

This importance measure can be used not only across DTCs of a single vehi-
cle, but also across DTCs from multiple vehicles simultaneously, provided that
the pi values for all DTCs are evaluated based the same period of time for all
vehicles. This makes it possible to prioritize DTCs across an entire fleet and
identify vehicles that possibly require immediate attention.

Being able to quickly identify vehicles with issues or issues within vehicles
can significantly reduce the amount of data that an analyst must go through in
order to find or confirm those issues. The approach can also be used as a first
step towards building labeled datasets for training other models.

5 Related work

The analysis of DTC data is central to many anomaly detection approaches in
the automotive industry. For example, in [10] the authors propose a framework
where DTC data plays two different roles. First, they focus on the detection
of anomalous repairs by training a model to learn the appropriate repairs for
given issues, where issues are characterized by DTC data. This requires the
availability of both repair data and DTC data for training purposes. Second,
they use decision trees to infer the operating conditions under which DTCs are
activated; this can be used to check if a DTC is being activated according to the
correct preconditions.

In more recent works, the focus has been shifting towards the use of machine
learning for predictive maintenance. For example, in [11] the authors use random
forests to predict which components are about to fail based on DTC data. Again,
not only the DTC data but also the repair data are needed in order to build
a labeled dataset for training. An interesting aspect of this work is that the
authors extract features from DTC data instead of working with DTCs directly.
Most of the extracted features are based on aggregated counts within a certain
observation window. The authors then go into a detailed study of how the size
of this window affects the prediction results.

The use of unsupervised learning techniques (with at least part of the data
being unlabeled) has also been gaining ground. For example, in [12] the author
focuses on DTC activations which occur in rare operating conditions (called
operating modes). Using a clustering algorithm (DBSCAN) and also with the
aid of domain experts, the author identifies clusters of operating modes where
the DTC activations predominantly occur. The outliers to those clusters are
labeled as anomalies. Then, using classifiers based on support vector machines
(SVMs), it becomes possible to determine whether a new DTC activation takes
place under a typical or atypical operating mode. The underlying assumption is
that if the DTC was activated in a rare operating mode, this may point to an
uncommon fault which could take longer or be more expensive to repair.
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A more fully unsupervised approach is adopted in [13], where the authors
use different kinds of models, including autoencoders, for fault detection across
a fleet of city buses. A separate autoencoder is used to reconstruct the raw
signals from each vehicle. Also, the autoencoder is trained on a chunk of data
(e.g. on a daily basis) so there are several trained models for the same vehicle at
different points in time. All of these models from each and every vehicle are then
compared by assessing their performance on a reference dataset which, ideally,
should contain only typical behavior. The models that deviate the most, not only
from the reference dataset but also from a “consensus” that is obtained from all
vehicles, point to potential faults. In their experiments, the authors have shown
that these deviations correlate well with the repair history.

The relation of this brief survey of selected works to the present paper can
be described as follows:

– When using supervised learning for anomaly detection, as in [10], this re-
quires the availability of labeled data, for example repair data that can be
used to label the anomalies in DTC data. In some cases, such as [13], the
repair history is available but is not used for training; rather, it is used for
validating the results. This is the same approach that we adopted here.

– While it is possible to apply feature extraction over the training data, as
in [11], deep learning models such as convolutional networks and autoen-
coders should be able to perform feature extraction themselves, and this
was one of the reasons for using autoencoders alongside with linear models
in [13]. This was also our motivation for experimenting with VAEs.

– Anomaly detection can be performed at different levels of abstraction, either
from raw signals [13], or from DTC data [10], or from feature engineering
over DTC data [11]. Here we have found DTC data to be a good compromise
between overly detailed raw data and overly simplistic features, with the
additional benefit of being able to work with binary distributions.

– Eventually, we introduced a simple anomaly score loosely inspired by the
concept of binary cross-entropy, which provided similar results to a VAE
but without having to train such model. This could be the first stage in a
multi-step approach towards obtaining labeled data for training classifiers
in a subsequent stage. Such multi-step approach would be somewhat similar
to [12], where our anomaly score could be used to label the outliers.

6 Conclusion

In the automotive industry, there are large amounts of data that can be used
to train different kinds of models. One of the major challenges is making use
of unlabeled data for anomaly detection. While a VAE is certainly capable of
capturing normal behavior and signaling anomalies, some care must be taken to
avoid including anomalies in the training data. In practice, this is harder than
it seems because even healthy vehicles often run with some issues.

In addition, the problem of performing anomaly detection across a hetero-
geneous fleet does not have a one-fits-all solution, since each vehicle requires a
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separately trained model. In this work, we proposed an anomaly score that was
based on our previous experiments with VAEs. As is often the case, a simpler
solution turns out to be the more effective in practice. The anomaly score and
importance weighting of DTCs are being implemented in a monitoring platform
that allows an operator to prioritize issues across their fleet.
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