

Regularization extraction for real-time plasma tomography at JET

D. R. Ferreira¹, <u>D. D. Carvalho¹, P. J. Carvalho¹, H. Fernandes¹ and JET Contributors^{*}</u>

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

^IInstituto de Plasmas e Fusão Nuclear (IPFN), Instituto Superior Técnico (IST), Universidade de Lisboa, Portugal

*See the author list of X. Litaudon et al., Nucl. Fusion 57, 10, 102001 (2017)

Bolometry

- Bolometer system with 56 lines of sight (KB5)
- Current reconstruction method:TOMO5 [1]
 - Smoothing along magnetic flux surfaces
 - Non-negativity constraints
 - Iterative process, several minutes to converge
- Tomograms with 196×115 resolution (22540 pixels)

Regularization patterns

• Each column j of M indicates how detector j contributes to the reconstruction

• Regularization patterns resemble smoothing along magnetic flux surfaces

Tomography

• Measuring the line-integrated radiation is a forward problem

Quality of the reconstructions

- Dataset of 800 reconstructions, carefully chosen to avoid artifacts and malfunctioning detectors
- Data divided into 90% for training and 10% for validation, with validation loss of 0.007 MW/m³ after 10⁶ iterations

T_{ij} : how much each pixel j contributes to each detector measurement i (56×22540)

• Reconstructing the plasma radiation profile is an *inverse* problem

Data fitting

- Given a set of reconstructions $\{g_1, g_2, ..., g_n\}$ together with their corresponding measurements $\{f_1, f_2, ..., f_n\}$
- It is possible to fit ${\bf M}$ by minimizing the the mean absolute error

- Quality metrics on the validation set: SSIM = 0.948, PSNR = 38.2 (dB), NRMSE = 0.0435
- The quality of the reconstructions is similar to that obtained with more complex models, namely
 deep neural networks [3], but error is slightly larger

Full-pulse reconstruction

- Calculating $g = M \cdot f$ takes < 0.4 ms on standard quad-core CPU
- Since KB5 sampling rate is 5 KHz (0.2 ms), real-time tomography becomes possible

- Using gradient descent with learning rate $\boldsymbol{\eta}$

 $\mathbf{M} \leftarrow \mathbf{M} - \eta \cdot \nabla L$

- Can be accelerated with momentum [2]
- Implemented with a machine learning framework (Theano) running on an Nvidia Titan X GPU
- Reaches a loss $L = 0.006 \text{ MW/m}^3$ after 10⁶ iterations (53 min)

[1] L. Ingesson et al., Nucl. Fusion 38, 11, 1675 (1998)
[2] I. Sutskever et al., ICML'13 (2013)
[3] D. R. Ferreira et al., arXiv:1802.02242 (2018)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. IPFN activities also received financial support from Fundação para a Ciência e Tecnologia through project UID/FIS/50010/2013. The Titan X GPU used in this work was donated by NVIDIA Corporation.