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Abstract. Many process mining tools and techniques produce output
models based on the counting of transitions between tasks or users in
an event log. Although this counting can be performed in a forward
pass through the event log, when analyzing large event logs according
to different perspectives it may become impractical or time-consuming
to perform multiple such passes. In this work, we show how transition
counting can be parallelized by taking advantage of CPU multi-threading
and GPU-accelerated computing. We describe the parallelization strate-
gies, together with a set of experiments to illustrate the performance
gains that can be expected with such parallelizations.

1 Introduction

Transition counting is the basis of many process mining techniques. For example,
the α-algorithm [1] uses a>W b to denote the transition between two consecutive
tasks in a trace, and the HeuristicsMiner [2] uses the count of such transitions
|a>W b| to derive a dependency graph from the event log. Popular process mining
tools, such as Disco [3], also display the discovered model as a graph where the
arcs between activities are labeled with transition counts. Transition counting is
therefore an essential task in several control-flow algorithms.

Also in the organizational perspective, transition counting plays a central role
in extracting sociograms based on metrics such as handover of work and working
together [4, 5]. The handover of work metric requires counting the transitions
between successive users who participate a case. The working together metric
(also known as joint cases) counts the number of cases in which a given pair of
users have worked together (not necessarily in direct succession). This too can
be regarded as a problem of transition counting, where both direct and indirect
transitions between users in a case are considered.

Parallel computing [6] offers tremendous possibilities to improve the perfor-
mance of process mining techniques, especially when event logs become increas-
ingly large. The BPI Challenge 20161 is the first in its series (since its inception
in 2011) where the event logs to be analyzed exceed 1 GB in size. But as early as
2009, we were already experiencing some difficulties in processing a set of event
logs that amounted to 13 GB in total size [7]. Clearly, for such large event logs,
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it becomes impractical to explore and analyze them by running multiple passes
over the entire event log in a single-threaded fashion.

The availability of multi-core CPUs and the trend towards powerful GPUs
(Graphics Processing Units) that can be used for general-purpose computing
create the opportunity to leverage those technologies to accelerate the processing
of large event logs. There are certainly many techniques that can potentially
benefit from such parallelization, but in this work we focus on the essential
task of counting transitions. Although the problem might appear to be simple,
we will see that its parallelization involves some challenges and trade-offs. In
particular, the parallelization on the GPU is fundamentally different from that
on a multi-core CPU. We present a viable strategy to perform both.

It should be noted that we are not the first to attempt such parallelization.
In the BPI Workshop 2015, there was a work on the parallelization of the α-
algorithm [8]. However, such work was based on a single, high-level construct
provided by MATLAB (specifically, the parallel for-loop). Here, we go much
deeper into the parallelization by controlling the execution of threads at the
lowest level of detail. On the CPU, we use POSIX threads [9], and on the GPU
we use NVIDIA’s CUDA technology and programming model [10].

Section 2 introduces a sample process and event log. Section 3 describes the
algorithms that are to be parallelized. Section 4 describes the parallelization in
the CPU, and Section 5 describes the parallelization on the GPU; both sections
include experiments and results. Finally, Section 6 concludes the paper.

2 An example process

As a running example, and in order to generate variable-size event logs for testing
purposes, we use the purchase process from [11]. This process is illustrated in
Figure 1. Basically, there are two main branches: if the purchase request is not
approved, it is archived and the process ends; if the purchase request is approved,
the product is ordered from the supplier, the warehouse receives the product,
and the accounting department takes care of payment.
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Fig. 1. A simple purchase process
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In the lower branch, some activities are performed in parallel, meaning that
their execution order is non-deterministic. In addition, each activity is performed
by one of two users, depending on who is first available to pick the task at run-
time. There are eight users involved in this process, and they are shared by
multiple activities, as indicated in Figure 1.

Table 1 shows a sample event log that has been generated from a simulation
of this process. In this small example there are only three cases, but for testing
purposes we will use many more (up to 107 cases). Our analysis will be focusing
on the case id, task and user columns.

case id task user timestamp

1 a u1 2016-04-09 17:36:47
1 b u3 2016-04-11 09:11:13
1 d u6 2016-04-12 10:00:12
1 e u7 2016-04-12 18:21:32
1 f u8 2016-04-13 13:27:41
1 g u6 2016-04-18 19:14:14
1 h u2 2016-04-19 16:48:16

2 a u2 2016-04-14 08:56:09
2 b u3 2016-04-14 09:36:02
2 d u5 2016-04-15 10:16:40
2 g u6 2016-04-19 15:39:15
2 e u7 2016-04-20 14:39:45
2 f u8 2016-04-22 09:16:16
2 h u1 2016-04-26 12:19:46

3 a u2 2016-04-25 08:39:24
3 b u4 2016-04-29 10:56:14
3 c u1 2016-04-30 15:41:22

Table 1. Sample event log

In this example, the events have been sorted by case id and timestamp, as
required by the algorithms to be described below. We assume that this sorting
has already been done, or can be done as a one-time preprocessing step. When
using a common log format such as MXML [12] or XES [13], such sorting step
is unnecessary because the events are already grouped by case id.

3 Algorithms

In this work we consider two basic algorithms that are useful in the control-flow
perspective and in the organizational perspective of process mining. The first
algorithm counts direct transitions between tasks (the basis for a control-flow
model), and the second algorithm counts joint cases between users (the basis for
the working together metric [5]). Both are explained in more detail below.
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The first algorithm can also be used to count direct transitions between
users, which is the basis for the handover of work metric [4]. We will describe
this variant only briefly since the algorithm is essentially the same.

3.1 The flow algorithm

The purpose of the flow algorithm is to count the transitions between consecutive
tasks within each case. For example, if we look at the three cases in the event
log of Table 1, we find that there are three occurrences of (a, b), two occurrences
of (b, d), one occurrence of (b, c), two occurrences of (e, f), etc.

Let T = {a1, a2, ..., a|T |} be the set of distinct tasks that appear in the
event log, and let (ai, aj) denote a transition between two tasks that appear
consecutively in the same case id. A transition counting is defined as a function
f : T ×T → N0 which gives the number of times that each transition has been
observed in the event log. The flow algorithm finds all the values for this function.

For convenience, these values can be stored in a matrix F of size |T |2, which is
initialized with zeros. Every possible transition in the form (ai, aj) has a value in
this matrix, which can be found at row i and column j. Algorithm 1 goes through
the event log, and every time a transition (ai, aj) is observed, it increments the
value at position (i, j) in the matrix.

Algorithm 1 Flow

1: Let F be a matrix of size |T |2
2: Initialize Fij←0 for every i, j
3: for each case id in the event log do
4: for each transition (ai, aj) in the case id do
5: Fij ← Fij+1

3.2 The handover algorithm

Let U = {u1, u2, ..., u|U |} be the set of distinct users that appear in the event
log, and let (ui, uj) denote a transition between two users that appear consecu-
tively in the same case id. Then substituting T by U and (ai, aj) by (ui, uj) in
Algorithm 1 yields the handover of work matrix H.

3.3 The together algorithm

Working together is a metric to extract a social network from an event log. The
goal is to find, for each pair of users, how many cases those users have worked
together in. For example, in Table 1 it is possible to see that u1 and u2 have
worked together in all three cases, u1 and u3 have worked together in two cases,
u1 and u4 have worked together only once, etc. The together algorithm calculates
this count for every pair of users in the event log.
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As in the previous algorithms, this count can be stored in a matrix W of size
|U |2, which is initialized with zeros. The values in this matrix are incremented as
the algorithm goes through the event log. However, these increments require a
little bit more work than in the previous algorithms. Specifically, the algorithm
needs to collect the set of users who participate in a case id, and then increment
the edge count for every pair of users in that set.

Algorithm 2 shows how this can be done. Each pair of users can be denoted
as (ui, uj). Since (ui, uj) and (uj , ui) refer to the same pair, the algorithm needs
to consider only those pairs in the form (ui, uj) with j > i. As a result, W will
be a triangular matrix.

Algorithm 2 Together

1: Let W be a matrix of size |U |2
2: Initialize Wij←0 for every i, j
3: for each case id in the event log do
4: Let S be a set of users, initialize S←∅
5: for each user ui in the case id do
6: S ← S ∪ {ui}
7: for each user ui∈S do
8: for each user uj ∈S such that j>i do
9: Wij ←Wij+1

4 Parallelization on the CPU

The parallelization on a multi-core CPU is based on the idea of dividing work
across a number of threads. According to the description of Algorithms 1 and 2
above, the most natural division of work is by case id, where each thread receives
a subset of case ids for processing.

For this processing to be as much independent as possible between threads,
each thread will have a local matrix to count the transitions observed in its
own subset of case ids. Then, at the end of each thread, it will be necessary to
bring these local counts together into a common, global matrix, which stores the
combined results of all threads, as illustrated in Figure 2.

Since all threads will be updating the global matrix concurrently, it is neces-
sary to employ thread synchronization to avoid race conditions. In this work, we
use a mutex lock on the global matrix to ensure that it is updated by one thread
at a time. This effectively reduces parallelism in that section of the code. How-
ever, if a thread has a lot of case ids to process, in principle the impact should be
reduced, because the time spent on updating the global matrix becomes much
shorter than the time spent on processing the case ids.

Figure 2 illustrates the parallelization of the flow algorithm in particular.
The parallelization of the together algorithm follows the same approach, with
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Fig. 2. Multi-threaded parallelization of the flow algorithm on the CPU

the difference being that it works on users rather than tasks, and the calculation
of the transition counts is slightly different (see Algorithm 2 vs. Algorithm 1).
In any case, at the end of each thread it is necessary to update the global matrix
with the transition counts stored in the local matrix.

4.1 Increasing the number of threads

For illustration purposes, Figure 2 shows only four threads but, naturally, this
can be extended to an arbitrary number of threads. Increasing the number of
threads brings more parallelism, but also more concurrent updates to the global
matrix. Since these updates are controlled via a mutex lock, having too many
threads may lead to a longer waiting time for the mutex to be released and,
eventually, to a decrease in overall performance.

To investigate how far the number of threads can be increased, we carried
out an experiment on a machine with two Intel Xeon E5-2630v3 CPUs @ 2.4
GHz with 8 physical cores each, for a total of 16 physical cores. Hyper-threading
was enabled [14], so the operating system (Ubuntu) saw 32 virtual cores.

Figure 3 shows the results obtained when running the three algorithms on
an event log with 106 cases. The dashed line indicates the run-time of the single-
threaded version, and the solid line the run-time of the multi-threaded version,
as the number of threads is increased. All run-times were averaged over 100 runs
of the same algorithm with the same number of threads.

The results in this and other similar experiments indicate that, for the flow
and handover algorithms, the ideal number of threads is close to (or even a bit
less than) the number of physical cores available in the machine. Any increase
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Fig. 3. Run-times of the multi-threaded versions with increasing number of threads

beyond this point results in a decrease in performance. On the other hand, for
the together algorithm, there seems to be a benefit in overloading the CPU with
a lot of threads. In this algorithm, there is more work to be done for each case
id, so the impact of thread synchronization is lower, and the number of threads
is allowed to increase up to several times the number of cores.

4.2 Increasing the log size

In another experiment, we increased the log size to investigate its impact on
the performance of the multi-threaded versions. For this purpose, the number
of cases in the event log was increased in powers of 10, from 101 to 107 cases
(resulting in a log file of 1.8 GB). The number of threads was kept at 10 for the
flow and handover algorithms, and at 250 for the together algorithm.

Figure 4 shows a plot of the resulting run-times. Again, the dashed line
indicates the run-time of the single-threaded version, and the solid line the run-
time of the multi-threaded version, as the number of cases is increased.

The single-threaded versions of the flow and handover algorithms have the
same run-times (the two dashed lines are coincident), but in their multi-threaded
versions the flow algorithm is slightly faster, because the flow matrix is sparser
than the handover matrix.

As for the together algorithm, its run-time drops significantly in the multi-
threaded version. For 107 cases, the performance gain was 4.0× and it was still
growing as the number of cases was being increased. For comparison, the flow
and handover algorithms achieved a maximum performance gain of 2.3× and
1.7×, respectively, when compared to their single-threaded versions.
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5 Parallelization on the GPU

The parallelization on the GPU requires a completely different approach, because
it must match the hardware architecture of modern GPUs. Currently, GPUs
have hundreds or even thousands of cores that operate in a thread-synchronous
way, with every core executing the same instruction at the same time, but on
a different piece of data. This paradigm is usually referred to in the literature
as single instruction, multiple data (SIMD) [6]. Despite having, in general, a
lower clock speed than CPUs, GPUs have so many cores that they can largely
outperform the CPU in certain parallelizable tasks.

The Compute Unified Device Architecture (CUDA) [10] is a technology in-
troduced by NVIDIA to make the parallel computing capabilities of GPUs ac-
cessible for general-purpose programming. In CUDA, each thread takes care of
a single piece of data, and it finishes as soon as that work is done. The idea is to
have as many short-lived threads as possible in order to distribute them across
the large number of cores available in the GPU.

The work to be done by each thread is programmed into a special function
called a kernel [15]. The kernel executes on the GPU and is replicated into as
many threads as necessary in order to handle all the data that is to be processed.
The data must be stored in GPU memory as input and output arrays. Typically,
each thread works on a different element (or elements) of these arrays. Complex
processing can be done with multiple kernels, where the output array of one
kernel becomes an input array to the next, as we will see below.
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5.1 Parallelization of the flow algorithm

The GPU parallelization of the flow algorithm is based on the idea of having
each thread analyzing a single transition between two consecutive tasks. All
transitions will be collected in parallel and at once for the whole event log. In this
scenario, each thread must check if the two consecutive tasks being considered
actually belong to the same case id. If this is not the case, then the thread writes
a special value to the output array, meaning “no transition”.

Figure 5 illustrates this step and also what happens afterwards. Once the
transitions have been collected, they are sorted and then counted. Both the
sorting and the counting are performed on the GPU, with the help of the Thrust
library [16]. The sort() routine of the Thrust library makes an efficient use of the
GPU to sort large arrays in GPU memory.
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Fig. 5. Parallelization of the flow algorithm on the GPU

After sorting, the counting of transitions can be achieved through a parallel
reduction algorithm [10], namely the reduce by key() routine available in the
Thrust library. For this purpose, it is necessary to have an array with input keys,
and another array with input values. Basically, the reduce by key() routine sums
the values that correspond to the same key. Since the keys are the transitions
and the values are all 1, the sum by key yields the transition counts.

Parallelization of the handover algorithm follows the same strategy, with the
difference being that threads analyze the transitions between users rather than
tasks. The sorting and counting are performed in exactly the same way.

5.2 Parallelization of the together algorithm

The together algorithm is more challenging to parallelize on the GPU because
of the need to find the set of distinct users for each case id, and also the need to
consider all possible pairs of those users, in the form (ui, uj) with j > i. We do
this in two separated stages, with two different kernels.

As illustrated in Figure 6, the first kernel marks the participants of each case
in an output array. For each case id, there is a user mask (corresponding to the
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set of all users U) that is initialized with zeros. The first kernel is launched with
one thread per event, to analyze the case id and user of each event. If the thread
sees a case id k and a user ui, it writes 1 at the position k|U |+i in the output
array, to mark that ui participates in case id k.

If the same user appears multiple times in a case id, there will be multiple
threads writing 1 at the same position in the output array. However, this does
not pose a problem since the operation is idempotent (multiple writes of 1 do
not change the result). Also, in Figure 6 we assume that there are only four users
(i.e. |U |=4) to keep the figure under a manageable size.

The second kernel has a thread for each pair of users in the form (ui, uj) with
j > i. There are |U |(|U |−1)/2 such pairs for each case id. If the mask is 1 for
both users, then the thread writes the pair uiuj to an output array. This pair is
written to the position k|U |(|U |−1)/2 + i|U |+j in the output array.

After this, the pairs are sorted and counted as before.

5.3 Results and performance gains

To assess the performance of these GPU parallelizations, we carried out an ex-
periment with a GeForce GTX Titan X with 3072 cores @ 1.08 GHz. Again, we
increased the number of cases in powers of 10, from 101 to 107 cases. Table 2
shows the results, and compares them to the results obtained earlier with the
CPU parallelizations in the experiment of Section 4.2.

In Table 2, tCPU, tCPU* and tGPU denote the run-times of the single-threaded
CPU version, multi-threaded CPU version, and GPU version, respectively.

From these results, it becomes apparent that the parallelizations provide a
performance gain for events logs with 105 cases (around 6×105 events) or more.
Also, the performance gain of the GPU version is noticeably higher than the
multi-threaded CPU version, especially for the flow and handover algorithms.

These measurements were made assuming that all data are already in GPU
memory, as is common in practice. If memory transfers between CPU and GPU
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No. cases Algorithm tCPU tCPU* tCPU/tCPU* tGPU tCPU/tGPU

10 flow 0.000001 0.000359 0.003× 0.000437 0.002×
10 handover 0.000001 0.000312 0.003× 0.000439 0.002×
10 together 0.000008 0.000330 0.024× 0.000443 0.018×

100 flow 0.000005 0.000280 0.018× 0.000440 0.011×
100 handover 0.000007 0.000307 0.023× 0.000442 0.016×
100 together 0.000022 0.003294 0.007× 0.000457 0.048×

1000 flow 0.000070 0.000308 0.227× 0.000357 0.196×
1000 handover 0.000058 0.000306 0.190× 0.000364 0.159×
1000 together 0.000190 0.010535 0.018× 0.000516 0.368×

10 000 flow 0.000439 0.000491 0.894× 0.000671 0.654×
10 000 handover 0.000431 0.000647 0.666× 0.000676 0.638×
10 000 together 0.001430 0.011355 0.126× 0.000757 1.889×

100 000 flow 0.003819 0.001957 1.951× 0.000942 4.054×
100 000 handover 0.003827 0.003446 1.111× 0.000948 4.037×
100 000 together 0.011601 0.014514 0.799× 0.002455 4.725×

1 000 000 flow 0.031203 0.014213 2.195× 0.004015 7.772×
1 000 000 handover 0.030080 0.018111 1.661× 0.004028 7.468×
1 000 000 together 0.102830 0.040930 2.512× 0.020586 4.995×

10 000 000 flow 0.287948 0.124074 2.321× 0.034346 8.384×
10 000 000 handover 0.287560 0.173223 1.660× 0.034632 8.303×
10 000 000 together 1.028615 0.254814 4.037× 0.198020 5.195×
Table 2. Run-times and performance gains of CPU and GPU parallelizations2

are considered, then the performance gain of the GPU version drops down to
roughly the same level as the multi-threaded version.

5.4 BPI Challenge 2016 event logs

The largest event log in the BPI Challenge 2016 – the click-data for non-logged
in customers3 – has about 9.3×106 events. For testing purposes, we used the
SessionID as case id, and the PAGE NAME both as task and as user. It should
be noted that there are 1381 distinct page names (|T | = |U | = 1381), so the
transition matrix is much larger than in our previous experiments.

When running the flow algorithm, the multi-threaded CPU version provides
little or no gain over the single-threaded version because the transition matrix
is very large and takes a long time to be updated by each thread. However, the
GPU version provides a consistent performance gain of 7.4×.

When running the together algorithm, the tables are turned. Here, the multi-
threaded CPU version provides a performance gain of 5.3×, while the GPU
version runs out of memory due to the size of the intermediate arrays.

2
The data and source code used to generate these results are available at:
http://web.tecnico.ulisboa.pt/diogo.ferreira/bpi2016/

3
https://data.3tu.nl/repository/uuid:9b99a146-51b5-48df-aa70-288a76c82ec4
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6 Conclusion

Process mining relies on transition counting procedures which can be accelerated
through parallel computing. Parallelization on the CPU provides limited gains
due to the need for thread synchronization and merging at some point. Paral-
lelization on the GPU follows a different strategy which avoids thread synchro-
nization and provides higher performance gains, but is limited by GPU memory
and memory transfers between CPU and GPU. In any case, both CPU and GPU
parallelization provide a promising avenue for accelerating some of the essential
tasks that are common to several process mining techniques.
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