Ontology-Based Discovery of
Workflow Activity Patterns

Diogo R. Ferreira!, Susana Alves!, Lucinéia H. Thom?

1 IST - Technical University of Lisbon, Portugal
{diogo.ferreira, susana.alves}@ist.utl.pt
2 Université Joseph Fourier, France / Institute of Informatics, UFRGS, Brazil
lucineia@inf.ufrgs.br

Abstract. Workflow activity patterns represent a set of recurrent be-
haviors that can be found in a wide range of business processes. In this
paper we address the problem of determining the presence of these pat-
terns in process models. This is usually done manually by the analyst,
and it requires interpreting the process in terms of the semantics of those
patterns. We describe an ontology-based approach to perform this dis-
covery in an automated way. The approach makes use of an ontology, and
a mapping between the elements in the given process and the classes in
the ontology. A reasoner is then used to discover the patterns, and a
SPARQL query is used to retrieve them. The approach is illustrated for
a business process in a travel booking scenario.

Key words: Business Process Modeling, Workflow Activity Patterns,
Ontology Engineering, Semantic Reasoning

1 Introduction

Business processes can be seen as being composed of a number of different pat-
terns, which have already been thoroughly studied in the literature [1, 2]. There
have been also attempts at explaining business processes by means of a single
pattern, such action-workflow [3] or a basic transaction pattern [4]. In general,
these patterns fulfill a double role of facilitating the understanding of processes
on one hand, and on the other hand providing the building blocks from which
new processes can be designed. Most of the previous work has therefore focused
on identifying these building blocks and deciding which of them are most appro-
priate to capture the common structures of business processes.

Here we take a different viewpoint of assuming that these patterns have been
already defined, and instead we focus on the problem of determining whether a
given set of patterns is present in a given business process. In particular, we are
interested in recognizing the presence of patterns by making use of the semantics
of the business process, i.e. we are looking not only at the structural behavior of
business processes, but especially at the meaning of the activities contained in a
process. For example, if we know that a certain activity can be interpreted as an
approval step, then it is possible that the process contains an approval pattern,
which occurs very often in business processes.

2 D. R. Ferreira, S. Alves, L. H. Thom

We are dealing with so-called workflow activity patterns [5] which represent
business functions that typically occur in every business process, such as activity
execution, decision making, notification, approval, etc. These business functions
cannot be identified solely by looking at the structure of a process; it is neces-
sary to understand the purpose of each activity in order to decide whether it
corresponds to a known business function. In addition, we cannot say that the
process contains an approval pattern just because it has an approval step; all the
required elements of the approval pattern should be present in order to consider
that the process contains such pattern. Section 2 provides a summary of these
patterns.

Discovering workflow activity patterns in business processes is typically done
manually by the process analyst, and it is not a trivial task since the purpose
and use of any given activity can be given different interpretations. Also, if such
pattern analysis must be conducted over a large repository of process models, it
can become a tedious and error-prone task. Our goal is to provide an automated
means which can significantly accelerate the discovery of patterns in process
models and relieve the analyst from having to do an exhaustive manual search.
Since, to a large extent, such discovery is based on semantics, we turn to an
ontology- and reasoning-based approach, as described in Section 3.

Throughout the paper we use the example of a travel booking process in-
troduced in [5]. The experimental evaluation of the proposed approach in more
realistic and complicated process models faces a number of additional challenges
that we are unable to address here. However, by describing the principles and
implementation of the approach, the reader will hopefully get a sense for the
potential of using ontologies and automated reasoning to address challenging
problems in the area of Business Process Management, especially those which,
like the problem addressed here, must rely on semantics to a large extent.

2 Workflow Activity Patterns

Workflow activity patterns (WAPs) [5] are common structures that can be found
in a variety of business processes. These structures involve control-flow constructs
as well as interactions between participants and also the semantics of the activ-
ities being performed. Our starting point will be the seven WAPs as defined
in [5]. These comprise the following behaviors:

1. Approval: An object (e.g. a document) has to be approved by some orga-
nizational role. A requestor sends the approval request to a reviewer, who
performs the approval and returns a result.

2. Question-Answer: When performing a process, an actor might have a ques-
tion before working on the process or on a particular activity. This pattern
allows to formulate such question, to identify an organizational role who is
able to answer it, to send the question to the respective actor filling this role,
and to wait for response.

Ontology-Based Discovery of Workflow Activity Patterns

Requestor Reviewer Sender Receiver
Send approval Receive approval Send question Receive question
request request
Approval request Question

Receive approval
result

Perform
approval

Send approval
result

Approval result
.

Receive answer

Answer
.

Execute
Activity

Send answer

WAP1: Approval

WAP2: Question-Answer

Sender

Receiver

Sender

Receiver

Send activity
execution reques

Activity

Receive activity
‘execution request

Execute

request

Activity

Activity request

Receive activity
result

Activity result
I

Send activity Receive activity
execution reques ‘execution request

Execute
Activity

Send a ity
result

‘WAP3: Unidirecti

onal Performative

WAP4: Bidirectional Performative

Sender

Receiver

Sender

Receiver

Notify

Information
request

Receive
information

Information
.

Send information Receive
request information request

Process
information

Send
information

WAPS: Notification

WAPG: Information Request

Sender

Receiver

Send activity
execution reques

Receive activity
result

Make
Decision

Activity

Receive activity
‘execution request

request

Execute
Activity

Send activity
result

Activity result

WAPT: Decision

Fig. 1. Simplified versions of the seven WAPs defined in [5]

4 D. R. Ferreira, S. Alves, L. H. Thom

3. Unidirectional Performative: A sender requests the execution of a partic-
ular activity from a receiver (e.g., a human or a software agent) involved
in the process. The sender continues execution of his part of the process
immediately after having sent the request.

4. Bidirectional Performative: A sender requests the execution of a particular
activity from another role (e.g., a human or a software agent) involved in the
process. The sender waits until the receiver notifies him that the requested
activity has been performed.

5. Notification: The status or result of an activity execution is communicated
to one or more process participants.

6. Information Request: An actor requests certain information from a process
participant. He continues process execution after having received the desired
information.

7. Decision: During process enactment, the performance an activity is re-
quested. Depending on the result of the requested activity, the process con-
tinues execution with one or several branches. This pattern allows to in-
clude a decision activity with connectors to different subsequent execution
branches (each of them associated with a specific transition condition). Ex-
actly those branches are selected for execution whose transition condition
evaluates to true.

Figure 1 provides a summary of these workflow activity patterns in graphical
form. The patterns are composed of certain elements, namely signals (send and
receive), activities (e.g. “Perform approval”) and messages (e.g. “Approval re-
quest”). For example, WAP1 begins by a send signal with an approval request
message; then there is a receive signal for that same message; then an activity to
perform the approval; and finally the exchange of the approval result by another
pair of send and receive signals.

For simplicity, we have deliberately omitted some elements from these pat-
terns. For example, WAP2 as originally defined in [5] contains additional activi-
ties before “Send question”, namely an activity “Describe question” and another
activity “Identify role habilities”. These are elements that could be used, in ef-
fect, to distinguish WAP2 from other patterns. By omitting some elements, the
patterns become very similar in terms of structure, as can be seen in Figure 1.
However, there are some clear differences in purpose and semantics between
them, and it is precisely these semantics, rather than structure, that we will use
to discover them in business process models.

3 Ontology-Based Approach

Figure 2 shows an example of a travel booking process that has been modeled
using the same kind of elements that were used to define the seven workflow
activity patterns. However, the process makes use of its own vocabulary that is
specific to this application domain. Our goal is to understand the semantics of
each activity and to reason about these elements in order to determine which

Ontology-Based Discovery of Workflow Activity Patterns 5

SYSTEM FINANCIAL DEPARTMENT
Send request for booking ——{ F—— Receiverequest for booking

Request for Booking

WAP4 Verify if there are available
flights and book the trip

Receive notification of - i i
flight booking — — " send notification of flight booking

—’7 Activity Result
Booking Information No Available Flights

WAP7
Send notification of no 1 Receive notification of no -®
—L T
available flights TS available flights
‘ Submit booking for approval —~ } Receive booking for
approval

Booking Approval —

|
WAP1 Authorize trip |

e resul — Send notification
[of approval (M with approval result
Booking Approval
Result

Send notification :& -
trip not authorized - Receive notification
-~ nNotification
Rejected Send notification WAPS : o
trip not authorized
Notification
Send request tobuy tickets ————| | —+ Receiverequest tobuy tickets

Request for Buying l

WAP4 Buy the tickets

‘ Recelve slectronic ticket | Send notification of activity

completed
Electronic Ticket

Send electronic ticket to | WAP3 -
requestor I Receive ticket
Electronic Ticket

Fig. 2. Travel booking example (adapted from [5])

patterns are present in this process. Note that Figure 2 already includes an
indication of the patterns that were found manually by an analyst. Our goal is
to discover these patterns automatically and compare the results.

3.1 Defining the WAP Ontology

In order to reason about concrete examples such as the one depicted in Figure 2,
we need an ontology that provides a description of the patterns to be discovered,
and we need a mapping of the elements in the given process to the concepts
defined in that ontology. For example, one should understand that the shape
“Send request for booking” in Figure 2 is in effect a send signal with an activ-
ity request message as in WAP4; one should also realize that “Authorize trip”
corresponds to a “Perform approval” activity as in WAP1; and so on. In order
to do this, one needs to have an ontology that specifies these pattern elements.

6 D. R. Ferreira, S. Alves, L. H. Thom

v- @ Thing

Element

- @ Activity

ActivityExecute
ActivityMakeDecision
ActivityPerformApproval
ActivityProcessinfermation

Message
MessageActivityRequest
MessageActivityResult
MessageAnswer
MessageApprovalRequest
MessageApprovalResult
Messagelnformation
MessagelnformationRequest
MessageNotify

- MessageQuestion

» signal

signalReceive

signalSend

Pattern
PatternApproval

- & PatternBidirectionalPerformative

- © PatternDecision
PatterninformationRequest

- & PatternNotification

- & PatternQuestionAnswer
PatternUnidirectionalPerformative

Fig. 3. Class hierarchy for the WAP ontology.

Figure 3 shows the class hierarchy for the WAP ontology that has been de-
veloped in this work, as it appears in Protégé'. Basically, there are two top-level
classes, Element and Pattern, with Element being the superclass for the various pat-
tern elements, and Pattern being the superclass for the definitions of the several
workflow activity patterns. The rationale for this ontology can be summarized
as follows:

— Each Pattern is defined as containing certain elements of the classes Signal
and Activity. For this purpose we define the object property hasElement with
domain Pattern and range Element. Example: PatternApproval hasElement Activi-
tyPerformApproval.

— Each Signal has a certain kind of Message and for this purpose we define the
object property hasMessage with domain Signal and range Message. Example:
PatternApproval hasElement (SignalSend and (hasMessage MessageApprovalRequest)).

Each subclass of Pattern is defined by an equivalent class expression that specifies
all the elements that the pattern contains. The complete definition for WAP1 is
as follows:

PatternApproval = Pattern
and (hasElement some (SignalSend
and (hasMessage
some MessageApprovalRequest)))
and (hasElement some (SignalReceive
and (hasMessage
some MessageApprovalRequest)))

! Protégé is available at: http://protege.stanford.edu

Ontology-Based Discovery of Workflow Activity Patterns 7

and (hasElement some ActivityPerformApproval)
and (hasElement some (SignalSend
and (hasMessage
some MessageApprovalResult)))
and (hasElement some (SignalReceive
and (hasMessage
some MessageApprovalResult)))

In general, a process may contain many elements, with only some of them
matching a given pattern. Therefore, we make use of the keyword some, meaning
that it is necessary for a pattern/signal to have at least one element/message
of that kind, but possibly more. The definitions for the remaining patterns are
analogous, and they are omitted for brevity; those definitions are similar to the
one above, but make use of different elements. In particular, the definitions for
WAP3 and WAP5 are shorter, while WAP7 has an additional activity.

On a final note about the ontology, we should mention that this is not the
first time that an ontology for workflow activity patterns has been defined. In [6]
the authors make use of a WAP ontology for the purpose of supporting process
modeling; in this case the ontology describes the patterns and the relationships
between them in order to produce recommendations about the possible use of
other patterns in the same model; ultimately, it is the user who decides whether
a given pattern should be inserted in the model. Here, we have built a different
WAP ontology for the specific purpose of being able to infer which patterns are
present in a given process model; we have therefore focused more on specifying
the building blocks (elements) of these patterns, and on how these patterns are
defined in terms of the elements they contain.

3.2 Mapping of Model Elements to Ontology Classes

While the ontology above defines the classes, the process model contains the
elements that will be mapped as individuals of those classes. For example, the
first shape “Send request for booking” in Figure 2 corresponds to two elements:
a signal and a message. The signal is an individual of SignalSend and the message
is an individual of MessageActivityRequest. We have therefore:

Elementl : SignalSend
Element2 : MessageActivityRequest
Elementl hasMessage Element2

As another example, the shape “Authorize trip” is an individual of Activi-
tyPerformApproval, so we could have:

Element3 : ActivityPerformApproval

Now, the whole process is represented as an individual of Pattern so that from
the above we would have:

8 D. R. Ferreira, S. Alves, L. H. Thom

Processl : Pattern
Processl hasElement Elementl
Processl hasElement Element3

Note that there is no need to assert Processl hasElement Element2 since Element2
is a message and it is associated with Elementl via the hasElement property.

Once the mapping between the shapes in the model and the classes in the
ontology is known, creating these individuals is straightforward and can be done
automatically. Then a reasoner can be invoked to infer the patterns that the
process contains.

However, the critical point is precisely in creating the mapping, e.g. knowing
that “Send request for booking” corresponds to two classes (SignalSend and Mes-
sageActivityRequest) and “Authorize trip” corresponds to ActivityPerformApproval.
This mapping must be done manually by the analyst, and it is equivalent to an-
notating the model shapes with classes from the ontology. This can be achieved
in a similar way to other approaches that involve semantic annotation of busi-
ness processes [7, 8, 9]. Still, creating such mapping is made difficult by the fact
that the shapes in a process model use a domain-specific vocabulary and are
often labeled in different ways. To facilitate this task, it would be desirable to
have the shapes in a process model labeled in a consistent way, such as using
verb-object style as proposed in [10].

For the process in Figure 2 we have the following mapping;:

Send request for booking :: SignalSend MessageActivityRequest

Receive request for booking :: SignalReceive MessageActivityRequest
Verify if there are available flights and book the trip :: ActivityExecute
Send notification of flight booking :: SignalSend MessageActivityResult
Receive notification of flight booking :: SignalReceive MessageActivityResult
Send notification of no available flights :: SignalSend MessageNotify
Receive notification of no available flights :: SignalReceive MessageNotify
Submit booking for approval :: SignalSend MessageApprovalRequest
Receive booking for approval :: SignalReceive MessageApprovalRequest
Authorize trip :: ActivityPerformApproval

Send notification with approval result :: SignalSend MessageApprovalResult
Receive result of approval :: SignalReceive MessageApprovalResult

Send notification trip not authorized :: SignalSend MessageNotify

Receive notification :: SignalReceive MessageNotify

Send request to buy tickets :: SignalSend MessageActivityRequest

Receive request to buy tickets :: SignalReceive MessageActivityRequest
Buy the tickets :: ActivityExecute

Send notification of activity completed :: SignalSend MessageActivityResult
Receive electronic ticket :: SignalReceive MessageActivityResult

Send electronic ticket to requestor :: SignalSend MessageNotify

Receive ticket :: SignalReceive MessageNotify

Provided with this mapping, the individuals and their properties are gener-
ated automatically. For each class in the mapping, a new individual is created

Ontology-Based Discovery of Workflow Activity Patterns 9

from that class. If the first class is a Signal and the second class is a Message,
we add the property hasMessage which relates those two individuals. Finally, we
create an individual of Pattern to represent the whole process, and we associate
all signals and activities to the process via the property hasElement.

3.3 Pattern Discovery through Reasoning

Through the use of reasoning, it is possible to obtain additional statements that
can be inferred from the available classes and individuals. The type of inference
we will be most interested in is class membership. As explained above, each WAP
is defined by an equivalent class expression that specifies the elements that the
pattern contains. If a process has all the elements that satisfy a given pattern
expression, then the process will become a member of that class (a subclass of
Pattern). In general, a process may end up as a member of several classes, meaning
that one can find in the process all the elements required by those patterns.

As an example, let us consider the following excerpt of the travel booking
process:

Submit booking for approval :: SignalSend MessageApprovalRequest
Receive booking for approval :: SignalReceive MessageApprovalRequest
Authorize trip :: ActivityPerformApproval

Send notification with approval result :: SignalSend MessageApprovalResult
Receive result of approval :: SignalReceive MessageApprovalResult

These will result in the following individuals being created:

Elementl : SignalSend

Element2 : MessageApprovalRequest
Elementl hasMessage Element2
Element3 : SignalReceive

Element4 : MessageApprovalRequest
Element3 hasMessage Element4
Element5 : ActivityPerformApproval
Element6 : SignalSend

Element7 : MessageApprovalResult
Element6 hasMessage Element7
Element8 : SignalReceive

Element9 : MessageApprovalResult
Element8 hasMessage Element9
Processl : Pattern

Processl hasElement Elementl
Processl hasElement Element3
Processl hasElement Element5
Processl hasElement Element6
Processl hasElement Element8

A semantic reasoner is then able to infer the following statements:

10 D. R. Ferreira, S. Alves, L. H. Thom

Processl rdf:type Thing
Process] rdf:type PatternApproval

The process is a member of Thing since it is a Pattern and a Pattern is a
subclass of Thing. The reasoner is also able to infer that the process is a member
of PatternApproval since, by the elements it contains, it satisfies the expression
for that class.

It should be noted that even before the individuals are created, invoking a
reasoner on the WAP ontology produces the following statements:

PatternBidirectionalPerformative rdfs:subClassOf PatternUnidirectionalPerformative
PatternDecision rdfs:subClassOf PatternBidirectionalPerformative

This can be easily understood by inspection of Figure 1. In fact, WAP4 con-
tains all the elements of WAP3 and therefore WAP4 satisfies the definition of
WAP3. The same happens with WAP7 and WAP4; WAP7 extends WAP4 and
therefore it fits the definition of WAP4. This means that any process that con-
tains WAP4 will also be listed as containing WAP3, and any process containing
WAP7 will contain WAP4, and therefore WAP3 as well.

3.4 Retrieving the Patterns with SPARQL

From the WAP ontology and the individuals created from a given process, the
reasoner is able to produce a large number of statements. Not all of these state-
ments will be equally interesting. For example, knowing that a process is a Thing
is trivial; also, if a process contains both WAP3 and WAP4, the most interest-
ing statement is that it contains WAP4, since we know that any process that
contains WAP4 also contains WAP3. In general, we are interested in class mem-
berships that are closer to the leafs of the class hierarchy, as this represents more
specific knowledge about the process and the patterns it contains.

In order to retrieve the patterns that a process contains, we use the following
SPARQL query:

1: PREFIX wap: ...
2: PREFIX rdf: ...
3: PREFIX rdfs: ...
4: SELECT ?pattern WHERE { wap:Processl rdf:type ?pattern .
: ?pattern rdfs:subClassOf wap:Pattern .
FILTER (?pattern != wap:Pattern) .
OPTIONAL { ?pattern2 rdfs:subClassOf ?pattern .
wap:Processl rdf:type ?pattern2 }
FILTER (!bound(?pattern2)) }

© oo

The query determines all class memberships of Processl (line 4) where the
class must be a subclass of Pattern (line 5). According to the OWL standard, a
class is by definition a subclass of itself, so Pattern will also appear in the results;

Ontology-Based Discovery of Workflow Activity Patterns 11

we exclude this case with the filter expression in line 6. In lines 7-9 we exclude
the case when the result indicates that the process contains both a pattern and
a subclass of that pattern (as in WAP3 and WAP4). Lines 7-8 check if there is a
subclass (e.g. WAP4) of the pattern (e.g. WAP3) that the process also contains.
If so, then we are interested in the subclass (WAP4) rather than in the original
class (WAP3). Line 9 excludes the result when there is such case.

Running this query on the travel booking example produces the following re-
sults: PatternApproval, PatternBidirectionalPerformative, and PatternNotification. Note
that PatternUnidirectionalPerformative is excluded by lines 7-9 since PatternBidirec-
tionalPerformative is a subclass of PatternUnidirectionalPerformative.

These results indicate that the process contains enough elements to satisfy
the definition of three different patterns: WAP1, WAP4 and WAPS5. However,
when comparing these results with Figure 2, we note the absence of WAP7 and
WAP3. This can be explained as follows:

— With regard to WAP7, this pattern is not detected since the process does not
include an ActivityMakeDecision. The analyst considered that such activity is
implicit in the diamond shape, but the element is absent from the mapping.

— With regard to WAP3, that part of the process is inferred as an instance of
WAPS5 rather than WAP3. This is because the message has been classified as
MessageNotify in the mapping. However, it appears that the analyst originally
thought that it was a MessageActivityRequest.

3.5 Implementation

The WAP ontology was developed and tested in Protégé 4.1 together with the
Pellet Reasoner Plug-in?. We load the ontology and create the individuals in
Java with the Jena framework? version 2.6.3. The Pellet reasoner® version 2.2.2
is invoked through Jena to perform reasoning over the ontology together with
the individuals. The SPARQL query is also executed through Jena.

Basically, using Jena we load the ontology file created with Protégé into an
ontology model (OntModel). Then we read a text file containing the mapping. For
each class in the mapping we retrieve a class reference (OntClass) from the model,
and then create an individual from that class using OntClass.createlndividual().
If the element is a signal then we also create and associate a message individual
via the hasMessage property. Using the Pellet reasoner, we create an inference
model (InfModel) and then run the SPARQL query over this new model. Iterating
through the results provides the subclasses of Pattern contained in the process.

4 Conclusion

In this paper we have described an approach to automate the discovery of work-
flow activity patterns in process models by means of reasoning over an ontology.

2 http://clarkparsia.com/pellet/protege/
3 http://jena.sourceforge.net/
4 http://clarkparsia.com/pellet/

12 D. R. Ferreira, S. Alves, L. H. Thom

In this ontology, the classes define the elements that each pattern contains, and
the individuals represent the elements of a given process. Once the mapping
between the process elements and the ontology elements is established, it is pos-
sible to invoke a semantic reasoner to determine which patterns are present in
the process. This is done mainly by checking whether the process contains the
necessary elements to fulfill the definition of each pattern.

In future work, we intend to develop the approach further in order to check
that the elements are not only present, but that they also comply with the
sequential behavior of workflow activity patterns. Meanwhile, we believe that
the current approach can be useful to show the potential of using ontologies and
automated reasoning to address challenging problems in the area of Business
Process Management, especially those which, like the problem addressed here,
rely on semantics to a large extent.

References

1. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(1) (July 2003) 5-51
2. ter Hofstede, A., Dietz, J.: Generic recurrent patterns in business processes. In
Weske, M., ed.: Business Process Management. Volume 2678 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2003) 1018-1018
3. Medina-Mora, R., Winograd, T., Flores, R., Flores, F.: The action workflow ap-
proach to workflow management technology. In: Proceedings of the 1992 ACM
conference on Computer-supported cooperative work. CSCW 92, ACM (1992)
281-288
4. Dietz, J.L.: The deep structure of business processes. Communications of the ACM
49 (May 2006) 58-64
5. Thom, L.H., Reichert, M., Iochpe, C.: Activity patterns in process-aware infor-
mation systems: basic concepts and empirical evidence. International Journal of
Business Process Integration and Management 4(2) (2009) 93-110
6. Thom, L.H., Reichert, M., Chiao, C., Iochpe, C., Hess, G.: Inventing less, reusing
more, and adding intelligence to business process modeling. In: Database and
Expert Systems Applications. Volume 5181 of Lecture Notes in Computer Science.
Springer (2008) 837850
7. Born, M., Dérr, F., Weber, 1.: User-friendly semantic annotation in business process
modeling. In: Web Information Systems Engineering WISE 2007 Workshops.
Volume 4832 of Lecture Notes in Computer Science. Springer (2007) 260271
8. Zouggar, N., Vallespir, B., Chen, D.: Semantic enrichment of enterprise models by
ontologies-based semantic annotations. In: Proceedings of the 12th International
EDOC Conference Workshops, IEEE Computer Society (2008) 216-223
9. Filipowska, A., Kaczmarek, M., Stein, S.: Semantically annotated EPC within
semantic business process management. In: Business Process Management Work-
shops. Volume 17 of LNBIP. Springer (2009) 486-497
10. Mendling, J., Reijers, H., Recker, J.: Activity labeling in process modeling: Em-
pirical insights and recommendations. Information Systems 35(4) (2010) 467-482

