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Abstract. Existing process mining techniques are able to discover pro-
cess models from event logs where each event is known to have been
produced by a given process instance. In this paper we remove this re-
striction and address the problem of discovering the process model when
the event log is provided as an unlabelled stream of events. Using a
probabilistic approach, it is possible to estimate the model by means
of an iterative Expectaction–Maximization procedure. The same proce-
dure can be used to find the case id in unlabelled event logs. A series of
experiments show how the proposed technique performs under varying
conditions and in the presence of certain workflow patterns. Results are
presented for a running example based on a technical support process.

1 Introduction

One of the fundamental principles of workflow and BPM systems is the ability
to execute multiple instances of a business process where the behaviour of those
instances is governed by a predefined process model [1, 2]. The goal of process
mining [3] is to rediscover the process model from the run-time behaviour of
process instances, assuming that it is possible, namely: to record events as tasks
are performed, and to identify the process instance that produced each event.

These requirements are usually met when the run-time behaviour is recorded
in an event log containing a sequence of entries in the form <case id, task id>
where case id identifies the process instance and task id specifies the task that
has been performed [3]. Such event logs can be obtained from workflow and
case-handling systems, but in applications where there is limited support from
process-aware systems it may become difficult to retrieve log data in that form.

In general, it may be possible to record a vast array of events without being
able to correlate them to specific process instances. In this scenario, the case id
attribute is absent and the event log becomes an unlabelled stream of events.
Within this stream of events it becomes uncertain whether two events are related
or not, as consecutive events may come from different process instances. Also,
the number of process instances is unknown.

Our goal is to investigate whether it is possible to discover the process models
from such unlabelled event logs. Clearly, the problem of finding the process
model in these circumstances is under-defined. However, business processes have
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distinctive sequential patterns [4] and process instances essentially repeat these
patterns over and over again. Based on these premises, it is possible to estimate
a probabilistic model that is likely to explain the observed behaviour. In this
paper we develop a probabilistic framework for that purpose (section 3).

Similar approaches are not common. In [4] the authors describe two experi-
ments where they had to deal with events without an associated case id. In both
experiments they resorted to application-specific techniques such as context and
data attributes to establish the connection between events. In [5] the authors
propose an iterative workflow mining approach that could be regarded as being
related to the expectation–maximization approach we describe here, but it is
used for a different purpose, which is to associate low-level events with high-
level tasks. In this work we focus on the specific problem of finding the case id
in unlabelled event logs (section 4). Section 5 discusses the working assumptions
and section 6 concludes the paper.

2 Running example

Fig. 1 illustrates the technical support process for a software product, adapted
from a real case study [6]. Basically, the customer calls the vendor to report
a problem, the call-center checks if there is an existing contract and records
the complaint to be analyzed by the technical support team. The support en-
gineer that is handling the case may either provide a solution or request the
development team to fix some bugs. Should the latter become necessary, the
development team will have to schedule the release of the bug fix in one of the
forthcoming product versions.

Fig. 1. Technical support process
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Whenever the call-center receives a call, a new instance of this process is
created. For easier reference, the activities have been labelled with symbol letters
from A to H. Let us assume that these activities are recorded in such a way
that whenever an activity is completed, the corresponding symbol is recorded
in an event log. According to the process model depicted in fig. 1, there are
four kinds of possible behaviour: AB, ACDF , ACDEF and ACDEGH. Each
process instance will generate one of these sequences, and the sequences from
several process instances may become interleaved since, at any point in time,
there may be a number of cases running concurrently.

Fig. 2 shows the events recorded during the execution of 20 process instances.
A total of 86 symbols have been recorded, as shown in the first two lines. The
complete sequence – called the symbol sequence – is shown in the third line, and
again below the 20 separate instances. The last three lines display two distinct
features: the two lines before the last contain the instance number for each
recorded event – this is called the source sequence – and it refers to the same
set of numbers as printed in the leftmost column of the figure. The very last line
displays a count of the total number of instances running concurrently at the
time when each event was recorded. In this example it can be seen that there
were at most 5 instances running concurrently at different points in time.

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890123456
ACDAEACCDDAEFFAFCCDFABAADACCCDDAFEDGABEGFCADEHBHACAGHACDEDECDAFAFAFCACDCDEAFCDFCGHDDFF

1 ACD.E..........F......................................................................
2 ...A...CD...F.........................................................................
3 .....AC..D.E.F........................................................................
4 ..........A.....C.DF..................................................................
5 ..............A..C......D.............EG.......H......................................
6 ....................AB................................................................
7 ......................A.....C.D..E.G.........H........................................
8 .......................A..C..D..F.....................................................
9 .........................A.C......D.....F.............................................
10 ...............................A.....B................................................
11 ....................................A....C.DE......GH.................................
12 ..........................................A...B.......................................
13 ................................................AC.....DE.....F.......................
14 ..................................................A........CD.....F...................
15 .....................................................AC..DE.....F.....................
16 .............................................................A.....C..D....F..........
17 ...............................................................A.....C..DE......GH....
18 .................................................................A.....C.....DF.......
19 ....................................................................A.......C.....D.F.
20 ..........................................................................A....C...D.F

ACDAEACCDDAEFFAFCCDFABAADACCCDDAFEDGABEGFCADEHBHACAGHACDEDECDAFAFAFCACDCDEAFCDFCGHDDFF
1 11 1111 1 11111111111111111111111111211112111212

11121332234323514544667859897870879710559121172533411553355446375846976877069880779090
11122333334443332222222334444445544455444344443222333333333334444443444444554443332221

Fig. 2. Events recorded for 20 instances of the technical support process

If both the symbol sequence and the source sequence are known then we have
the equivalent of an event log with task id and case id, respectively, and it is
possible to discover the process model using existing process mining techniques.
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What we want to investigate is whether it is possible to discover the process
model when only the symbol sequence is known.

The source sequence may be unknown for a number of reasons, including the
fact that the business process may lack an appropriate support system – this is
especially true for organizations with a fragmented IT infrastructure comprising
several disparate tools and applications. The source sequence may also have to be
removed from the event log for privacy reasons, for example to avoid identifying
customers, citizens or medical patients. Finally, it could be the case that the
event log is captured by systems that forward tasks without being aware of the
process logic. In these scenarios it becomes useful to have a technique that is
able to discover the hidden logic behind an unlabelled stream of events.

3 Probabilistic approach

Let K be the number of sources3 that produce symbols according to the same
underlying process model. The output of all sources is recorded in a common
event log, where symbols produced by any source may become interleaved with
symbols produced by other sources. Let x = {x1, x2, . . . , xN} be the symbol
sequence of length N where each symbol xn comes from one of the available K
sources. Let s = {s1, s2, . . . , sN} be the unknown source sequence where each
element sn says which source produced the symbol xn.

For the purpose of estimating the process model from the symbol sequence x
alone, we will use a probabilistic approach based on a first-order Markov chain
augmented with special start (◦) and stop (•) states. Fig. 3 shows one possible
representation for the technical support process shown earlier. The transition
matrix M specifies the conditional probabilities for the transition between any
two symbols; for example, the probability of producing symbol E after symbol
D is given by p(E|D) = M(D,E) = 0.47. The conditional probabilities in each
row add up to 1.0 except in the last row that represents the stop state.

M = ◦ A B C D E F G H •
◦ − 1.0 − − − − − − − −
A − − 0.15 0.85 − − − − − −
B − − − − − − − − − 1.0
C − − − − 1.0 − − − − −
D − − − − − 0.47 0.53 − − −
E − − − − − − 0.5 0.5 − −
F − − − − − − − − − 1.0
G − − − − − − − − 1.0 −
H − − − − − − − − − 1.0
• − − − − − − − − − −

Fig. 3. Transition matrix for the technical support process

3 From this point onwards, we will refer to process instances as sources.
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The special start and stop states do not produce symbols; instead, they
are used solely for the purpose of representing the probability of the process
beginning or ending with certain symbols. Note that p(◦|...) = p(...|•) = p(•|◦) ,
0, i.e., there are no transitions to the start state, no transitions from the stop
state, and no direct transitions from the start to the stop state, respectively.

The following sections describe how to estimate the transition matrix M
and the source sequence s from a given symbol sequence x. Since the estimation
involves several steps, we proceed incrementally by first explaining how to com-
pute M from both x and s (section 3.1), then how to estimate s from x and M
(section 3.2) and finally how to use the two previous steps to iteratively estimate
both M and s from x alone (section 3.3). Note that when only x is given, there
must be some way to initialize M in order to get the procedure running. This
leads to the concept of M+ in section 3.3.

3.1 Estimating M given x and s

If both the symbol sequence x and the source sequence s are given, it becomes
straightforward to estimate the transition matrix shown in Fig. 3. With both
x and s it is possible to separate x into the symbol sequences produced by
each source. We define y(k) = {y(k)

1 , y
(k)
2 , . . . , y

(k)
mk} of length mk as the symbol

sequence produced by source k alone, where y
(k)
1 = ◦ and y

(k)
mk = •. Each sequence

y(k) can be easily compiled by picking up the symbols xn for which sn = k and
adding the special start and stop states.

In its simplest form, the joint probability of x and s can be expressed as:

p(x; s) =
K∏

k=1

mk−1∏

i=1

M(y(k)
i , y

(k)
i+1) (1)

For any given pair of symbols a and b, it can be shown that the estimator
M̂(a, b) that maximizes p(x; s) is given by4:

M̂(a, b) =
∑

k η(a,b)(y(k))∑
k

∑
b′ η(a,b′)(y(k))

(2)

where a and b are symbols and η(a,b)(y(k)) is the number of times that the
transition from a to b occurs in sequence y(k).

From the event log in Fig. 2 we have:

y(1) = y(3) = y(13) = y(15) = ◦ACDEF •
y(2) = y(4) = y(8) = y(9) = y(14) = y(16) = y(18) = y(19) = y(20) = ◦ACDF •
4 For this purpose it is convenient to use the log-likelihood L(M) , log p(x; s | M) =∑

k

∑
i log M(y

(k)
i , y

(k)
i+1). Maximizing this expression in terms of M(a, b) requires

the use of a Lagrange multiplier to find the solution of ∂L/∂M(a, b) = 0 subject to
the constraint

∑
b′ M(a, b′) = 1. The solution is the maximum likelihood estimator

(MLE) shown in equation (2).
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y(5) = y(7) = y(11) = y(17) = ◦ACDEGH •
y(6) = y(10) = y(12) = ◦AB•

and therefore M̂(D, E) = 4×1+9×0+4×1+3×0
4×1+9×1+4×1+3×0 ' 0.47 as before.

3.2 Estimating s given x and M

If M would be known, then it would be possible to estimate the source sequence
s for a given symbol sequence x. In principle we would be interested in finding
the optimal source sequence ŝ = arg maxs{p(x; s)} that maximizes the joint
probability of x and s. Unfortunately, finding ŝ is a combinatorial optimization
problem where one would have to test all possible source sequences in order to
find the set of sequences y(k) that maximize p(x; s) according to equation (1).

In practice, it is possible to obtain an approximation of ŝ, denoted by s̃, by
following a greedy procedure to pick the most likely source for each symbol in
x. This procedure is based on the idea that if we know the previous symbol εk

for every source k, then symbol xn should be assigned to the source k that is
able to produce xn with the highest transition probability. That is, we choose
to make s̃n ← arg maxk{M(εk, xn)}.

After assigning symbol xn to source k, the previous symbol εk for source k
is updated to xn (i.e. εk ← xn) and we move on to the next symbol xn+1. We
find source s̃n+1 by the same procedure, i.e. s̃n+1 ← arg maxk{M(εk, xn+1)},
and so on, until all symbols in x have been assigned to some source.

Whenever symbol xn is such that M(◦, xn) is higher than M(εk, xn) for ev-
ery source k, then a new source is activated and xn is assigned to that newly cre-
ated source. On the other hand, whenever symbol xn is such that the transition
probability to the stop state M(xn, •) is higher than the transition probability
to any other symbol, then source sn is deactivated and removed from the set of
active sources.

The following examples are based on the event log shown in Fig. 2 and the
transition matrix in Fig. 3:

– At position 40 there are four active sources whose previous symbols are
ε5 = E, ε7 = G, ε9 = D and ε11 = A. The present symbol is x40 = G and the
probabilities of each active source producing this symbol are M(E, G) = 0.5,
M(G, G) = 0, M(D,G) = 0 and M(A,G) = 0, respectively. Hence, symbol
x40 gets assigned to source 5, which sets s̃40 ← 5 and ε5 ← G. Note that
M(◦, G) = 0, so activating a new source is not an option at this point.

– At position 41 the present symbol is x41 = F and the best candidate is source
9 with M(D, F ) = 0.53, which sets s̃41 ← 9 and ε9 ← F . After this, source
9 gets deactivated because M(F, •) = 1 and therefore it cannot produce any
additional symbols.

– At position 42 there are only 3 active sources with previous symbols ε5 = G,
ε7 = G and ε11 = A. Symbol x42 = C gets assigned to source 11 which has
the highest transition probability M(A,C) = 0.85. We have s̃42 ← 11 and
ε11 ← C.
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– At position 43 the present symbol is x43 = A and the transition probability
from the previous symbol to symbol A is zero for all active sources: sources
5 and 7 have ε5 = ε7 = G and M(G,A) = 0; source 11 has ε11 = C
and M(C, A) = 0. However, M(◦, A) = 1 and therefore a new source with
number 12 is created, setting s̃43 ← 12 and ε12 ← A.

More formally, this procedure can be described as shown in Algorithm 1. Note
that at line 4 the set of candidate sources becomes the set of all active sources
except those that have previously produced a symbol equal to xn. In other words,
we are assuming that each source does not produce the same symbol more than
once (this assumption will be discussed ahead in section 5).

Algorithm 1 Greedy algorithm to compute s̃ = {s̃1, s̃2, . . . , s̃N}
Input: symbol sequence x and transition matrix M

Let Ψ be the set of currently active sources
Let ψ be the set of candidate sources (ψ ⊆ Ψ)
Let K be the total number of sources used
Let Ω be the set of distinct symbols in x

1: Ψ ← ∅
2: K ← 0
3: for n = 1 to N do
4: ψ ← Ψ\{k : xn ∈ y(k)}
5: if (ψ = ∅) ∨ (∀k∈ψ : M(◦, xn) > M(εk, xn)) then
6: K ← K + 1
7: Ψ ← Ψ ∪ {K} // activate a source
8: y(K) ← {◦}
9: s̃n ← K

10: else
11: s̃n ← arg maxk∈ψ{M(εk, xn)}
12: end if
13: εs̃n ← xn

14: y(s̃n) ← y(s̃n) ∪ {xn}
15: if (∀b∈Ω : M(xn, •) > M(xn, b)) then
16: Ψ ← Ψ\{s̃n} // deactivate a source
17: y(s̃n) ← y(s̃n) ∪ {•}
18: end if
19: end for
Output: source sequence s̃ and separate source sequences y(1...K)

3.3 Estimating M and s from x alone

Equipped with equation (2) and Algorithm 1 it is possible to devise an iterative
procedure to estimate both M and s when only the symbol sequence x is known.
Provided with an initial estimate for M we use Algorithm 1 to obtain s̃; then
we use s̃ to separate x into y(k) and by equation (2) we compute M̂ ; these two
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steps complete one iteration. By repeating these steps, we continuously improve
M̂ and s̃ until finally none of them changes anymore; at this point a solution
has been found. This procedure is described in Algorithm 2.

Algorithm 2 Expectation–Maximization procedure to estimate M̂ and s̃

Input: symbol sequence x
1: initialize M̂ ← M+

2: repeat
3: (E-step) use M̂ in Algorithm 1 to obtain s̃ and y(1...K)

4: (M-step) use y(1...K) in equation (2) to update M̂
5: until (M̂ does not change)

Output: transition matrix M̂ and source sequence s̃

Algorithm 2 is essentially an Expectaction–Maximization technique [7] to
estimate the model parameters M from the incomplete data x, where s is the
missing data. The question now is how to initialize M̂ in order to get the pro-
cedure running. The simplest way to do this is to randomize M̂ subject to the
stochastic constraints

∑
b′ M(a, b′) = 1. However, this random initialization will,

in general, lead to a sub-optimal solution as there are many local maxima of the
likelihood function where Algorithm 2 will converge. Instead, we need a better
way to initialize M̂ in order to have a starting point that is actually closer to
an optimal solution.

Let

M+(a, b) ,
η(a,b)(x)∑
b′ η(a,b′)(x)

(3)

be the global model where η(a,b)(x) is the number of times that transition a
to b occurs in sequence x (i.e. where a and b are consecutive symbols). This
global model captures the transition probabilities as if the symbol sequence x
had been produced by a single source. Even if x is the result of interleaving
a number of sources, their underlying behaviour will be present in M+ since
consistent behaviour will stand out with stronger transition probabilities than
the spurious effects of random interleaving. Therefore, M+ is a good initial
guess for the estimation of M .

3.4 Example

From the process shown in Fig. 1, an event log of 300 sources was generated,
having at most 5 overlapping sources. The event log was generated via simu-
lation, using the same ratios as in Fig. 2, i.e. about 9/20 = 45% of ACDF ,
4/20 = 20% of ACDEF , 4/20 = 20% of ACDEGH, and 3/20 = 15% of AB.
After running Algorithm 2 on the symbol sequence, the transition matrix in
Fig. 4 was obtained5.
5 Source code for the algorithms and instructions for running examples similar to this

one can be found at: http://web.tagus.ist.utl.pt/~diogo.ferreira/mimcode/
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M̂ = ◦ A B C D E F G H •
◦ − 0.97 − − − 0.03 − − − −
A − − 0.16 0.84 − − − − − −
B − − − − − − − − − 1.0
C − − − − 1.0 − − − − −
D − − − − − 0.41 0.59 − − −
E − − − − − − 0.38 0.55 − 0.07
F − − − − − − − − − 1.0
G − − − − − − − − 1.0 −
H − − − − − − − − − 1.0
• − − − − − − − − − −

Fig. 4. Estimated transition from an unlabelled a symbol sequence.

Also, from y(1...K) the algorithm estimates that 48.1% of sources produce
ACDF , 19.8% produce ACDEGH, 15.9% produce AB, 13.6% produce ACDEF ,
and there is a small fraction (2.6%) of a single-step sequence E. This last case
has some effects on M̂ , where M̂(◦, E) = 0.03 and M̂(E, •) = 0.07; also, this is
the reason why the number of sources K = 308 was found to be slightly higher
than 300.

The transition matrix M̂ is shown in graphical form on Fig. 5, where the
width of each arc is made proportional to the transition probability. Except for
the arcs labeled 0.03 and 0.07 that involve symbol E, the graph depicts the same
behaviour as the process model in Fig. 1.

Fig. 5. Estimated model for the technical support process

4 Finding the case id in unlabelled event logs

Up to this point we have focused on M as the main outcome of Algorithm 2.
However, it is clear that the separate source sequences y(1...K) represent, on
their own, a complete event log with both case id and task id. This suggests
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that Algorithm 2 can be used as a means to find the case id for the activities
recorded in an unlabelled event log.

Let Z be the set of distinct sequences in y(1...K). We associate the proba-
bility q(z) of a sequence z ∈ Z with the number of times z occurs in y(1...K).
Basically, q(z) is the percentage of sequences equal to z in y(1...K). For exam-
ple, from the results in the example of section 3.4 we have: q(ACDF ) = 0.481,
q(ACDEGH) = 0.198, q(AB) = 0.159, q(ACDEF ) = 0.136 and q(E) = 0.026.

Let p(z) denote the actual distribution one would get if both x and the true
source sequence s were known. Then the following metric based on the geometric
mean of both distributions can be used to determine how good Algorithm 2 is
as a labelling mechanism:

G(p ‖ q) ,
∑

z∈Z

√
p(z) · q(z) (4)

From the example in section 3.4 we have: G(p ‖ q) =
√

0.45× 0.481 +√
0.2× 0.198 +

√
0.15× 0.159 +

√
0.2× 0.136 +

√
0× 0.026 ∼= 0.98, i.e. in this

example the algorithm was able to achieve about 98% accuracy in labelling the
symbol sequence x with the estimated source sequence s̃.

Once the log is labelled, then it becomes possible to apply process min-
ing techniques such as the α-algorithm [8], the heuristics miner [9], the genetic
miner [10], the fuzzy miner [11], or other techniques available in the ProM frame-
work [12]. In general, all these techniques require a labelled event log. If only an
unlabelled log is available, then Algorithm 2 can be used as a first pre-processing
stage. Also, Algorithm 2 is able to produce a model M̂ in the form of a transition
matrix but once the log is labelled other process mining techniques can be used
to extract other kinds of models such as Petri nets, heuristic nets, etc.

4.1 Accuracy and performance

The metric G(p ‖ q) provides a scoring measure which evaluates the degree
of similarity between a complete event log, where both x and s are known,
and an incomplete event log x that has been labelled by the estimated source
sequence s̃. We will call this metric the G-score; it is a measure of the accuracy of
Algorithm 2 as a labelling mechanism for incomplete event logs. In general, this
accuracy will depend on the total number of sources in the event log, and on the
number of overlapping sources. In principle, the higher the number of sources,
the easier it becomes to discover consistent behaviour in the event log. On the
other hand, the higher the number of overlapping sources, the more difficult it
is to separate the events belonging to different sources.

Fig. 6 shows the results of running Algorithm 2 over symbol sequences with
varying number of sources, all having at most 5 overlapping sources. From
Fig. 6(a) it is clear that accuracy tends asymptotically to 1.0 as the number of
sources (and hence the length of sequence x) increases. Fig. 6(b) suggests that
execution time evolves quadratically with sequence length; however, it should be
noted that the average time per run is below 1 sec. in all experiments.
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Fig. 6. Average G-score (a) and average runtime (b) for input event logs with varying
number of sources and having at most 5 overlapping sources. Each point has been
obtained by averaging over 1000 synthetically-generated logs.

Fig. 7 shows the results of running Algorithm 2 over symbol sequences of
300 sources with varying number of overlapping sources. From Fig. 7(a) it is
apparent that accuracy is exceedingly good when there is little or no overlap at
all; it drops dramatically as the number of overlapping sources approaches the
length of the sequences produced by each source; but it remains fairly constant
and above 0.5 no matter how much the overlap is further increased. Fig. 7(b)
suggests that execution time is rather independent of the amount of overlap.

4.2 Parallelism, loops and non-local dependencies

There are a number of workflow patterns [13] that business processes often con-
tain and that may be difficult to capture using process mining techniques. In
[14] the authors address the problem of discovering parallel behaviour; in [15] the
authors address the problem of mining short loops of length one and two; and
in [10] the authors present the drivers license example where there are non-local
dependencies between log events, i.e. where the current symbol depends on a
past symbol that has been produced before the immediately previous one.

These and other workflow patterns can become quite challenging to discover
since first-order Markov models capture behaviour in terms of the previous state
alone. However, experiments suggest that Algorithm 2 can still provide useful in-
sight into the behaviour of processes that contain such patterns. Table 1 presents
the results on simple experiments with these patterns.

In models with parallelism it is possible to capture the behaviour by a set
of independent sequences. As shown in the last column of Table 1, the top
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Fig. 7. Average G-score (a) and average runtime (b) for input event logs with 300
sources and varying number of overlapping sources. Each point has been obtained by
averaging over 1000 synthetically-generated logs.

three sequences match the original behaviour in p(z). There is, however, some
amount of mislabelling in the remaining sequences. In particular, the algorithm
finds it difficult to establish a relationship between symbol E and the remaining
symbols. This explains why ABCDF becomes the fourth strongest sequence and
why there are so many sequence variations involving symbol E.

Models with loops pose special problems, as they involve a repetition of sym-
bols. Since Algorithm 1 does not assign repeating symbols to the same source,
the solution provided by Algorithm 2 tends to isolate loop behaviour into sep-
arate sources, i.e. each loop iteration is assigned to a different source. This is
apparent in the loop experiments reported in Table 1, where the second strongest
source corresponds to the loop body: BCD for the loop of length 3, CD for the
loop of length 2, and C for the loop of length 1.

As for the strongest source, this corresponds to the linear sequence without
looping. There is, however, a mismatch between this sequence and the first se-
quence in the original model: the sequence seems to have been shifted-left with
respect to the original behaviour. This can be explained by the fact that the
looping behaviour increases the probability of the start symbol being the first
symbol in the loop, hence all sequences tend to be shifted to that symbol.

By looking at p(z) and q(z) in the loop experiments, it becomes appar-
ent that G(p ‖ q) is zero, since there are no common sequences between both
distributions. To be able to determine the best solution in these experiments,
we relax G(p ‖ q) in order to include the shifting of sequences in q(z). For
example, in order to match the sequences of both distributions in the loop-3 ex-
periment, we consider a new entity q∗(z) where q∗(BCDEA) = q∗(ABCDE) =
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Pattern p(z)
No. symbol Average Best

Best q(z)
sequences G∗-score G∗-score

Parallelism
ABCEDF : 0.5
ABECDF : 0.3
ABCDEF : 0.2

1000 0.716 0.854

ABCEDF : 0.398
ABCDEF : 0.180
ABECDF : 0.158
ABCDF : 0.062
ABCDE : 0.037
ABEDF : 0.034
ECDF : 0.031
ABCE : 0.028
ABCEF : 0.025
EDF : 0.019
ABEF : 0.009
CDF : 0.006
EF : 0.003
CEDF : 0.003
E : 0.003
CDEF : 0.003

Loop-3

ABCDE : 0.5
ABCDBCDE : 0.25
ABCDBCDBCDE : 0.125
ABCDBCDBCDBCDE : 0.125

1000 0.503 0.539

BCDEA : 0.581
BCD : 0.400
A : 0.010
BCDE : 0.010

Loop-2

ABCDE : 0.5
ABCDCDE : 0.25
ABCDCDCDE : 0.125
ABCDCDCDCDE : 0.125

1000 0.500 0.538

CDEAB : 0.578
CD : 0.402
CDE : 0.010
CDAB : 0.006
AB : 0.004

Loop-1

ABCE : 0.5
ABCCDE : 0.25
ABCCCDE : 0.125
ABCCCCDE : 0.125

1000 0.498 0.537

CDEAB : 0.578
C : 0.401
CDE : 0.010
CAB : 0.006
AB : 0.002
EAB : 0.002
CDAB : 0.002

Non-local
dependency

ABCDE : 0.6
AFCGE : 0.4

1000 0.840 0.909

ABCDE : 0.507
AFCGE : 0.320
AFCDE : 0.087
ABCGE : 0.087

Table 1. Estimation results on different patterns. In all experiments, symbol sequences
have been generated using 300 sources and at most 5 overlapping sources.

q∗(EABCD) = q∗(DEABC) = q∗(CDEAB) = 0.581. This leads to the defini-
tion of the G∗-score as

∑
z

√
p(z) · q∗(z) whose results are reported in Table 1.

For the parallelism and non-local dependency experiments, the G∗-score results
are equal to the G-score values.

For non-local dependencies, the algorithm is able to capture the most re-
curring sequences with relative ease, with only a small percentage of incorrect
sequences.

5 Working assumptions

While choosing the source s̃n for each symbol xn Algorithm 1 considers all
active sources except those that have already produced symbol xn earlier on.
This means that no source is allowed to produce the same symbol more than
once, and therefore the solutions found by Algorithm 2 will have this same
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characteristic. This restriction is intended to reduce the search space for the
source sequence s̃. Without this assumption, every active source remains as a
possible candidate for any given symbol, so it becomes more difficult to assign
the correct source to each symbol. Also, without this restriction there would be
much more local maxima of the likelihood function, making it extremely difficult
for Algorithm 2 to find to the optimal solution.

Nevertheless, the algorithm can still capture behaviour in the presence of
repeating symbols, although it will forcefully disconnect a sequence when a re-
peated symbol occurs. Examples appear in the loop experiments in Table 1,
where loop iterations are captured as a separate source, contributing to the
overall probability of the second strongest sequence in all three experiments.

The same behaviour is due to happen in the presence of duplicate tasks [16],
i.e. when two different activities are represented by the same symbol. Table 2
shows the results of an experiment using an event log (L3) taken from [16]. Some
sequences in the original log have duplicate tasks. Algorithm 2 is able to capture
some recurring patterns such as BDE, CHF , and BHF but the remaining
sequences are broken due to the presence of repeating symbol A.

Pattern p(z)
No. symbol Average Best

Best q(z)
sequences G-score G-score

Duplicate
tasks

BDE : 24 / 61 ' 0.393
AABHF : 7 / 61 ' 0.115
CHF : 15 / 61 ' 0.246
ADBE : 6 / 61 ' 0.098
ACBGDFAA : 1 / 61 ' 0.016
ABEDA : 8 / 61 ' 0.131

1000 0.196 0.591

BDE : 0.381
A : 0.355
CHF : 0.169
BHF : 0.056
BD : 0.010
B : 0.009
F : 0.009
G : 0.009
DE : 0.002
BE : 0.001

Table 2. Estimation results in an experiment involving log L3 of [16]. Symbol sequences
have been generated using 1000 sources and at most 20 overlapping sources.

A second working assumption is that the symbol sequence x contains the
complete sequences, from the first to the last symbol, produced by each source.
In practice this assumption may not hold, since the symbol sequence x may be
an excerpt of recorded behaviour during a period of time. It could be that at the
beginning of sequence x some sources were already active, so the first symbols
from these sources are missing; at the end of sequence x, the last symbols from
some of the active sources could also be missing.

To account for this possibility, we consider that x may be truncated at both
ends by a certain amount of symbols. Fig. 8 shows the results of running Algo-
rithm 2 on truncated symbol sequences. As the first symbols are truncated, the
average G-score drops sharply and then stabilizes around 0.18 when the tran-
sient behaviour has been removed and x is left with steady-state behaviour. On
the other hand, Fig. 8(b) shows that the best G-score attained remains fairly
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constant no matter how many symbols are truncated. This means that truncat-
ing x makes it more difficult, on average, to find the source for each event, but
it does not diminish the ability of the algorithm to find the optimal solution.
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Fig. 8. Average G-score (a) and best G-score (b) for input event logs generated from
the technical support process with 300 sources, 5 overlapping sources, and varying
number of symbols truncated at both ends.

6 Conclusion

In this paper we described an Expectation–Maximization approach to estimate
the transition matrix M that represents the process model extracted from an
unlabelled event log where the case id is missing. The probabilistic framework
used for this purpose comprises a set of sources that are instances of M and
that produce events which become randomly interleaved in the output symbol
sequence x. Finding the source for each event is a prerequisite for estimating
M , so the proposed approach can also be used as a labelling mechanism to find
the case id in unlabelled event logs.

Since M is a first-order Markov model it may be unable to represent certain
workflow patterns, but once the log is labelled it is possible to leverage the
use of existing process mining techniques to obtain other kinds of models. The
experiments reported in this paper show that the proposed approach is capable
of labelling log events even in the presence of workflow patterns that M is unable
to explicitly represent. This means that the proposed technique can become a
valuable aid in the discovery of process models when log data is available as an
unlabelled stream of events.
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