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The ability to describe business processes as executable models has always been one
of the fundamental premises of workflow management. Yet, the tacit nature of human
knowledge is often an obstacle to eliciting accurate process models. On the other hand,
the result of process modeling is a static plan of action, which is difficult to adapt to
changing procedures or to different business goals. In this article we attempt to address
these problems by approaching workflow management with a combination of learning
and planning techniques. Assuming that processes cannot be fully described at build-
time, we make use of learning techniques, namely Inductive Logic Programming (ILP), in
order to discover workflow activities and to describe them as planning operators. These
operators will be subsequently fed to a partial-order planner in order to find the process
model as a planning solution. The continuous interplay between learning, planning and
execution aims at arriving at a feasible plan by successive refinement of the operators.
The approach is illustrated in two simple scenarios. Following a discussion of related
work, the paper concludes by presenting the main challenges that remain to be solved.
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1. Introduction

Business Process Management (BPM) solutions, particularly workflow management
systems, have been around since the early nineties, yet they remain especially useful
in a limited range of applications where business processes can be described with
relative ease. These applications include mainly production and administrative pro-
cesses, rather than collaborative, unstructured processes. Ultimately, this is because
workflow management defined as the ”procedural automation of a business process
by management of the sequence of work activities”1 has mostly been thought as a
one-way endeavor: first model, then execute.

The lack of a closed-loop life cycle, the requirement of having processes fully
specified a priori, and the fact that these processes become rigid plans of action
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have been the source of several challenges. For a long time, workflow management
has been facing issues such as the coordination of ad-hoc processes2, the ability
to handle exceptions3 or the need to support process adaptation and evolution4,
some of which are still topics of current research today. All of these efforts aim at
broadening the range of applicability of workflow management systems by providing
them with more flexibility5.

Improving the flexibility of workflow management is being attempted via re-
search in modeling techniques and execution mechanisms, but these techniques still
hold on to the following fundamental assumptions:

• The first major assumption is that processes can be described by an explicit and
accurate model. But in scenarios where processes are to a large extent unclear
and/or unstructured, process modeling cannot be completed prior to execution
(due to lack of domain knowledge, complexity of task combination and the diffi-
culty in transmitting domain specific knowledge). As processes are executed and
knowledge is acquired via experience, it will be necessary to go back to the process
definitions and correct them according to work practices.

• The second major assumption is that processes, after having been modeled, can
be repeatedly instantiated and executed in a predictable and controlled manner.
However, even for structured processes the combination and sequence of tasks
may vary from instance to instance (due to changes in the execution context
such as user preferences, or changes in the environment such as exceptions and
changes in business rules). In such cases, workflow processes should be adapted
accordingly (e.g. by adding, removing or generating an alternative sequence of
activities).

In this article we present a different approach towards workflow management
- one that combines learning and planning techniques in order to overcome the
challenges when the above assumptions do not hold. We will therefore assume that
processes, in general, cannot be accurately and completely modeled by human effort,
so learning techniques will be fundamental in order to capture business activities
as a set of rules that are inferred from user actions. We will also assume that
process instances routinely require modifications in order to adapt to changes in
the environment. Planning techniques will be essential in order to produce an initial
process model as a sequence of actions that comply with activity rules and achieve
the intended goal. Process adaptation will be achieved via simple re-planning.

2. Learning workflow activities

It has since long been realized the importance of tacit knowledge in human
activities6, i.e., knowledge that people employ in performing their tasks, but that
they cannot fully explain. For example, in Ref. 7 the author argues that formal
job descriptions are seldom enough to account for the actions that an employee
performs during a working day, and that much of our daily activity is governed by
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professional interests that are tacit in nature. Since much of organizational work
relies on tacit knowledge, we should not rely on the assumption that people will be
able to describe their work exactly as they do it.

If the purpose is to develop a process model then rather than relying exclusively
in interviews, it may be necessary to actually observe work practices, create a pro-
cess definition, and then check with the users to see if it is correct. Once the process
is released for execution, possible exceptions or changes in procedures will throw the
process modeler back to the starting point, requiring her to gather further feedback
from the users in order to come up with a more accurate or refined process model.
Process management then becomes a closed-loop endeavor, where process models
both guide execution and are subject to adjustments as a result of user behavior at
run-time.

The need for such a closed-loop life cycle is even more pressing in collaborative
environmentsa where processes cannot be anticipated, and thus cannot be studied
or modeled as a whole. Instead, what can be done is to identify and study a set of
individual activities, and then try to understand the ways in which these activities
can precede or follow each other. For this purpose, it is useful to describe an activity
as a single step that consumes input data and produces output data. The set of
available data before and the set of available data after performing an activity are
two different world states. In general, an activity can only be performed in a given
world state if that state satisfies the preconditions of that activity. Each activity
has also a set of effects that change the current state into a new world state.
Preconditions, effects, and world states can all be described using first-order logic.

2.1. Defining activities as operators

Let us consider that a process model Π is a partially-ordered set of activities where
each activity αi transforms a world state Si into a world state Si+1. In general,
activity αi can only be performed in a state S if and only if Pi ⊆ S (that is, if Pi

is satisfied in S) where Pi are the preconditions of the activity. Pi is expressed as a
set of propositions (predicates) and S is expressed as a set of ground unit clauses.
Each activity has also a set of effects that change the current state Si into a state
Si+1. For reasons to be explained in the next section, it is convenient to describe
the effects of αi as a set of propositions Ri that αi removes from Si, and another
set of propositions Ai that αi adds to Si so that the overall result is the new state
Si+1. Ri is called the remove-list of αi whereas Ai is called the add-list of αi. These
entities are illustrated in Figure 1.

In section 5 we describe an auto-insurance claim process that uses such kind of
operators. One of the activities in that process is repairing a damaged vehicle. This
activity can only be done if the vehicle (V ) is actually damaged and the amount of

aFor recent developments towards supporting collaborative processes, see for example Ref. 8, Ref. 9
and Ref. 10.
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Fig. 1. Anatomy of a workflow activity

damage has already been assessed for the claim (C). The effect of this activity is
that the vehicle is not damaged anymore because it has been repaired. This can be
described with the following operator:

repair vehicle(C, V ) ←
PRECOND : damaged(V ), assessed(C)
REMLIST : damaged(V )
ADDLIST : repaired(V )

The result of performing this activity is that it produces a new state by removing
the literal damaged(V ) and adding the literal repaired(V ) to the previous state.
Here we assume that the absence of the literal damaged(V ) means that the car is
not damaged, but not necessarily that it has been repaired. This condition must
be expressed by the presence of the literal repaired(V ). Choosing the predicates
that are used to describe each activity falls into the general problem of knowledge
representation. The important issue here is that these predicates must be consistent
across activities, so that the effects of one operator can match the preconditions of
another, allowing the activities to be connected into a sequence of actions.

2.2. Learning preconditions and effects

Given that much of organizational work relies on tacit knowledge, we will assume
that users won’t be able to accurately describe Pi, Ri and Ai for the activities they
perform, and our objective is to identify them. However, users will be able to say,
given a state Si, whether they can or cannot perform a certain activity. When an
action can take place in state Si the operator and the world states (both initial
state Si and final state Si+1) constitute a positive example. When an action is not
possible in state Si then the correct preconditions for that activity have not yet been
identified. In this case the operator and the initial state Si constitute a negative
example.

Provided we can collect a proper set of positive and negative examples, it is pos-
sible to infer Pi, Ri and Ai using standard machine learning techniques. Inductive
Logic Programming (ILP)11 seems especially useful for this purpose. Basically, ILP
searches through different combinations of literals until it finds the correct rule for
a given predicate (for example, repair vehicle(C, V ) can only be done if the literals
damaged(V ) and assessed(C) are both present in the current state). The search
can be performed in a top-down fashion from a general rule to a more specialized
rule by inserting additional predicates, or in a bottom-up fashion from the most
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specialized rule to a more general rule by removing predicates, as illustrated in
figure 2.

Fig. 2. Top-down vs. bottom-up search for precondition rule

There are two kinds of data that ILP requires as input: background knowledge
and training examples. Background knowledge is a set of literals that define the
predicates to be used and establish a set of basic truths, which can be regard
as statements about the current world state. Training examples comprise a set of
statements where the intended rule must give either a positive or a negative result.
The technique is applied straightforwardly in the following way:

• Pi is learned by specialization (top-down search) using all available positive and
negative examples, where Si is the background knowledge for each example.

• Ri is learned by generalization (bottom-up search) using all available positive
examples, where Si\{Si∩Si+1} is the background knowledge for each example.
{Si∩Si+1} represents the set of literals that remain unchanged when αi is per-
formed, and Si\{Si∩Si+1} represents the set of literals that were present in the
world state Si, but are not present in Si+1.

• Ai is learned by generalization (bottom-up search) using all available positive
examples, where Si+1\{Si∩Si+1} is the background knowledge for each example.
Si+1\{Si∩Si+1} represents the set of literals that are present in Si+1, but were
not present in Si.
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It should be noted that there are only positive examples available for learning
the effects of an activity (Ri and Ai) since there is no output state for an activity
that could not be executed. Therefore, Ri and Ai must be learned without the aid
of negative examples which means, according to figure 2, that bottom-up search
should be applied. Hence these rules are learned by generalization. This can be
simplified, however, if we assume that it is possible to collect a set of initial positive
examples in a closed environment, where a single user performs a single activity, so
there is no interference in the world state from other activities running at the same
time.

3. Planning workflow processes

Once every activity is described in terms of its preconditions and effects - effectively,
as a planning operator - then developing a process model is a matter of creating
a plan, i.e. a sequence of activities that transforms an initial state SI into a final
state SO called the goal state. In general, users will have to be assisted, in an initial
stage, by an ”expert modeler” who defines the predicates to be used to describe
world states. Later on, users are expected to be able to provide a rough description
of their activities using those predicates, and a set of positive and negative examples,
which will be used to improve those descriptions by learning.

Once the operator definitions have been found, then the plan for reaching a
goal state from an initial state can be created, again using standard AI techniques.
Partial-order planning (POP)12 seems particularly useful for this purpose. An obvi-
ous advantage of partial-order planning is that it generates plans with a maximum
degree of parallelism, which is essential for long-running workflow processes, as op-
posed to total-order planning, which creates linear, single-thread plans. But there
are several other reasons for choosing POP:

• it generates plans with a higher degree of flexibility13;
• the planning information is easily understood by humans and allows interactive

plan analysis and repair13,14;
• it facilitates the analysis and repair of failed plans (see for example Ref. 14);
• it facilitates the handling of domains with durative actions and temporal and

resource constraints15;
• it allows easier integration with execution, information gathering and scheduling

architectures15.

An important point about making use of planning techniques is that the process
model is generated on-demand, as soon as there is a goal to achieve. The plan is
valid only for that goal, and will be generated again when the planning algorithm
is given the same goal. On the other hand, a different goal will possibly lead to a
different plan. This is in contrast with the idea - common in workflow management -
of having a process model fully described at build-time, and launching it unchanged
several times at run-time.
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Another point worth noting is that by describing activities as planning operators
and then using those operators to generate a plan, we are actually building a process
model by chaining activities that have been studied independently, rather than
studying a process as a whole, as it is common in workflow management. This
approach allows activities to be connected in unanticipated, hopefully more efficient
ways, which is reminiscent of process re-engineering16 but without an overwhelming
analysis effort. If the operators are properly defined, then planning will provide the
best plan in terms of number of steps that are required to achieve a given goal.

4. Towards a new life cycle for workflow management

If users are not able to accurately describe the preconditions and effects of their
activities, but only a rough description, and they only provide a few examples of
their applicability, then it is not possible to have the operators accurately defined
to begin with. And learning won’t help either, given the limited amount of initial
examples that users are able to provide. Fortunately, as we will show ahead, it is
not necessary to have a completely accurate description of the operators in order
to come up with a correct plan.

Despite the operators being inaccurate on a first stage, if we create a plan and
ask the users for feedback regarding the possibility of executing the activities in that
plan, then we will be able to collect more examples, allowing us to further refine the
operator definitions. By repeating the same procedure a few times, eventually the
correct operator definitions will be found, together with the intended plan. Build-
time and run-time thus become intertwined, as plan execution provides examples
for learning operators, which in turn are used to generate a new, more correct plan.

This life cycle is illustrated in figure 3. The user selects a goal from a set of
predefined goals specified using a common thesaurus. This thesaurus, which is de-
veloped by the users themselves, defines the predicates that are used to describe
world states, activity preconditions, and effects. Then, with the available operators,
the planner generates a plan in order to satisfy the given goal state. Activities may
be assigned to different users, which manage their tasks through their own task
lists, as in regular workflow systems. The difference here is that trying to execute
a task may turn out to be a possible or impossible action, which will result in a
new positive or negative example, respectively. If some action cannot be done, these
examples will be used to re-learn the operators, which will be fed to the planner
again in order to generate a new plan.

This life cycle has been implemented in a prototype system with the user re-
placed by a simulator with knowledge of the true operators. The simulator does not
reveal the operators, but it says whether a given operator can be applied in a given
state or not, by means of a simple boolean response. The algorithm is shown in
figure 4. It begins by learning the operators form the limited set of initial examples,
and then attempts to create a plan for the given goal state. If it is not possible
to create a plan, probably because one or more operators still lack the appropriate
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Fig. 3. Learning and planning life cycle17

effects, it is necessary to collect further examples in order to refine them. This is
done by generating random world states and asking the simulator whether each
operator is applicable in those statesb.

It has been observed that the creation of an initial plan, however incorrect, is not
difficult, mainly because in general the effects of an operator can be learned with
relative ease from just a few examples. The same does not apply to the preconditions,
which require more examples to be learned. Even so, if the operators have most of
their effects in place but their preconditions are missing, it is actually easier for
the planner to find a solution, since there are fewer preconditions that need to be
satisfied.

Returning to figure 4, once a plan is created the system attempts to execute it.
This is done by asking the simulator whether it can execute each activity in the plan.
The advantage of having the simulator in the prototype system is that it provides
a response quickly and automatically. If all activities are successful, then a plan for
achieving the given goal state has been found. If not, each attempt to execute any
activity results in a positive or negative example which is used to further refine the
operators and to generate a new plan. The system repeats this procedure until a
valid plan is found.

bTo guarantee that the randomly-generated states are actually valid states, the simulator generates
each of them by applying a random set of true operators to the given initial state, which produces
a new state. In the blocks world scenario ahead, this is equivalent to ”shuffling” the blocks in order
to obtain a random state.
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Fig. 4. Learning and planning algorithm

Different versions of this algorithm have been implemented in Prolog and Java.
A first Prolog prototype made use of only top-down search in learning and treated
each operator as a whole, attempting to learn both the preconditions and effects
simultaneously. Since there are no negative examples for operator effects, the system
was limited to positive examples. Failure to execute an activity would make the
algorithm select another solution from the ILP tree. In the Java prototype (which
initially was meant to be an alternative implementation of the same algorithm) the
preconditions, the add-list and the remove-list are now all learned separately, which
allows the system to make use of both positive and negative examples to learn the
preconditions, as explained in section 2.2, and to take advantage of both top-down
and bottom-up search. This second approach was shown to produce more accurate
operators with less iterations.

5. Evaluating system behavior

The first approach towards testing the prototype system was to evaluate its behav-
ior in typical planning problems. One such problem is the blocks world scenario,
illustrated in figure 5. The given goal is to go from state SI to state SO. For this
purpose, we have considered the following set of operators:

• movebb(X, Y, Z) - Moves a block X that is on top Y to the top of block Z. Cannot
be done if either X or Z have some block on top of them, or if X is not on top
of Y .

• movebt(X, Y ) - Moves a block X that is on top Y to the table. Cannot be done
if X has some block on top of it, or if X is not on top of Y .

• movetb(X, Y ) - Moves a block X that is on the table to the top of block Y .
Cannot be done if either X or Y have some block on top of them.
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Fig. 5. Blocks world scenario

The thesaurus included only the two predicates on(X, Y ) meaning that block X

is on top of block Y , and clear(X) meaning that there is no block on top of block X.
A single positive example using just three blocks was given for each operator, which
allowed the learner to find out immediately its effects, whereas the preconditions
remained unknown (empty in a first stage).

After five iterations of planning and learning, the following feasible, linear plan
was found: movebt(X, c), movebb(c, b, d), movebb(b, a, c), and movetb(a, b). Surpris-
ingly enough, this plan was found even though the operators were still not accurately
described:

• movetb(X, Y ) was missing a precondition: that X must be clear before being
moved.

• movebt(X, Y ) was missing all of its preconditions, because it was found to be nec-
essary only on the last iteration. This explains why X in movebt(X, c) remained
unbound, since the precondition clear(X) was missing and so the planner never
attempted to satisfy it, which would have caused X to become bound to d.

• The preconditions of movebb(X, Y, Z) were correctly learned. This operator was
used in every planning attempt, so it has collected more (negative) examples than
the other two.

• All effects have been correctly learned.

5.1. When planning fails

We have conducted further experiments, in which the initial examples did not allow
the learner to find out the exact operator effects immediately. In this scenario, it was
impossible to create a plan without providing the system with more examples. This
is due to the fact that the preconditions were being refined (becoming increasingly
demanding) but the effects were still incomplete, so the planner became unable
to satisfy the preconditions, and therefore to link operators, thus planning failed.
Without collecting more initial examples, the system would come to a halt, since if
it is not possible to create a plan, there are no examples from plan execution, and
therefore it becomes impossible to refine the operators.

In order to avoid such difficulty, we have implemented a best-effort planner that
always creates a plan, even though the plan may be incorrect. The implementation
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is based on Ref. 18, in which the authors describe an algorithm for producing
plans with a measurable risk of failure, based on indicators such as the number of
unsatisfied preconditions or the number of possible conflicts between activities. The
best plan is the one with the lowest risk.

In order to make the best-effort planner produce several candidate plans, we
collect several candidate rules for each operator during the learning phase. We allow
the learner to search the ILP tree further in order to find multiple solutions instead
of just one, and we create a different plan for each of the candidate operators. The
plan with the lowest risk is the one that is chosen for execution.

Unfortunately, this approach has hardly been successful, as the best plan is not
necessarily the one which corresponds to the best candidate operator. The result
is that the correct operator often ends up not being considered in favor of other
candidates, and the whole system tends to evolve towards increasingly specialized
operators, moving further and further away from the correct solution. We currently
use the best-effort planner as an effective means to collect more examples by keeping
the system running, rather than by generating random world states as described in
section 4.

Another reason for failing to create a plan is the existence of operators that undo
the effects of one another, thereby allowing the repetition of states. For example, in
the blocks world scenario it is evident that one can perform actions that make the
system go back to a previous state. During planning this may happen as well, as
the planner tries several combinations of operators in order to satisfy the goal state.
Since POP is a systematic algorithm, it follows the same solution procedure when
given the same goal, which can lead to a situation of infinite looping or recursion19.
The simplest way to avoid this problem was to resort to iterative deepening, allowing
the planner to consider plans with n actions only when it has already considered all
possibilities with (n− 1) actions. Fortunately, as the following case study suggests,
real-world business processes are less likely to involve conflicting operators.

5.2. Case study: insurance claim processing

In real-world scenarios, the thesaurus and the operator definitions may get a lot
more elaborate, hence more of a learning problem, but less of a planning problem,
since most information-based business processes are likely to produce information
along the way without completely undoing what previous activities have done. This
means that, when planning, there will be fewer conflicts between operators. In this
section we briefly present such an example, albeit a very simple one.

Figure 6(a) illustrates an overly simplified auto insurance claim process. The
customer calls the insurance company saying her car is damaged, and the employee
at the call center registers the claim. The customer is asked to leave the car at a
specific garage, where an insurance expert will assess the damage. After that, two
things will happen: the car is repaired and the policy rate of the customer increased.
Finally, the claim is closed and filed for later reference.
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Fig. 6. True process (a) and solution found by the system (b)

There is a separate operator describing each activity. All of them accept two
arguments: the claim and the vehicle. The thesaurus includes the following predi-
cates: claim(C), vehicle(V ), policy(P, V ), damaged(V ), assessed(C), repaired(V ),
payed(C), raised(P ), bonus(P ), open(C), closed(C). Given a single positive exam-
ple for each operator, the algorithm took ten iterations until it came up with a
feasible plan and, like in the blocks world scenario, this plan was found before all
operators were accurately defined. The true operator definitions are listed below.
The preconditions and effects that have been learned are shown underlined. Incor-
rectly learned literals are shown in square brackets.

register claim(C, V ) ←
PRECOND : claim(C), vehicle(V ), policy(P, V )
REMLIST :
ADDLIST : damaged(V ), open(C)

assess damage(C, V ) ←
PRECOND : damaged(V )
REMLIST :
ADDLIST : assessed(C)

repair vehicle(C, V ) ←
PRECOND : damaged(V ), assessed(C)
REMLIST : damaged(V )
ADDLIST : repaired(V )

pay repair(C, V ) ←
PRECOND : repaired(V )
REMLIST :
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ADDLIST : payed(C)

update rate(C, V ) ←
PRECOND : assessed(C), policy(P, V ), [repaired(V )]
REMLIST : bonus(P )
ADDLIST : raised(P )

close claim(C, V ) ←
PRECOND : open(C), payed(C), policy(P, V ), raised(P )
ADDLIST : closed(C)
REMLIST : open(C)

Some differences between the true operators and the learned ones are worth
mentioning:

• The preconditions of register claim have not been learned at all. Since this oper-
ator always appeared in the beginning of the plan, where it should be, no negative
examples have been generated.

• The preconditions of the operators repair vehicle and close claim are incomplete
due to an insufficient number of negative examples.

• The preconditions of update rate are actually wrong, containing repaired(V )
instead of assessed(C) and policy(P, V ). This has happened because as ILP tra-
verses the search tree, it searches for rules with one, two, three literals, and so
on. What happened here was that after an initial negative example, the system
was able to create a feasible plan without having to go back and correct those
preconditions.

• The remove-list of update rate has not been learned because the initial example
for this operator was taken from a case where the customer did not have a bonus
already. Since this predicate does not appear in any other operator, it was irrel-
evant for planning purposes, and no run-time examples have been collected that
would suggest that it would be necessary.

Due to the third inaccuracy described above - the mistake in the preconditions of
update rate - the planner actually arrives at the plan shown in figure 6(b) instead
the one shown in 6(a). The presence of the wrong precondition repaired(V ) in
update rate(C, V ) makes this activity admissible only after repair vehicle(C, V ),
which is not really the true sequence.

The fact that some operators are more accurate than others depends on the
stepwise refinement in each planning-learning cycle. In the beginning when all the
operators are poorly defined (especially concerning preconditions) the planner is
able to create plans using just some of the available operators. For example, in the
blocks world scenario the planner found that it needed the operator movebt only in
the last iteration. The operators that get chosen in a planning cycle are the ones
that will collect run-time examples, so the more they are chosen, the more examples
about these operators will be known.
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The operator update rate from above had one initial example and it collected
just one additional negative example at run-time. This example was enough to make
the learner conclude that some precondition was missing, but not enough to make
the learner identify the true preconditionsc. Simply switching the order in which the
operators are given to the planner will make the planner use different operators,
therefore resulting in a different set of run-time examples. This may solve such
mistake in one operator and create a similar mistake in another. This problem can
be mitigated by providing a larger set of initial examples.

6. Related work

The idea of using AI techniques to aid and enable workflow management is by no
means new, and both planning and learning techniques have been applied in this
domain. Here we briefly discuss some important developments:

• In Ref. 20 the authors aim at providing an adaptable workflow system that can
easily handle exceptions and quickly adapt to changes. To this end the system
consists of a least commitment planner (LCP) and a reason maintenance system
(RMS). Run-time flexibility and adaptability is attained by the LCP that is used
to create a new plan whenever a goal is set (process enactment) or re-plan when an
environmental change warrants it (exception causes plan execution failure). The
LCP is also used to facilitate workflow modeling by enabling interactive definition
of the planning operators and testing plan generation. In this phase, its efforts are
aided by the RMS which can for example inform the planner of open conditions
or the required ordering of tasks. Besides the overall system architecture, this
article also contributes with the enumeration of several characteristics required
by the planner such as partial ordering and conditional planning.

• Just as in the case above, in Ref. 21 the authors also decide on the use of a par-
tial order planner. However, the emphasis here is on supporting ad-hoc processes.
Contingency planning is therefore used to deal with uncertainty as opposed to re-
planning. Although contingency planning provides a means with which to increase
system flexibility, it does suffer from a number of problems. First and foremost
it does not ease the modeling of the planning operators because no rule checking
is done. Second, the rule provided by the user must already identify possibly un-
certain outcomes. Lastly, contingency planning itself is time-consuming and will
not guarantee correct execution under all possible conditions (such as competing
events and changes in background knowledge). Even so this article contributes
with interesting ideas such as scheduling parallel activities (implicitly handles
time and resource constraints), meta-modeling that deals with planning explic-
itly, and suggests that learning could be used for process optimization.

cIn practice, the ”true” preconditions are unknown!
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• In Ref. 22 the authors present one of the few attempts to use both planning and
learning within a single process management system. Unlike the two previous
articles, however, the emphasis here is on supporting efficient workflow design
as opposed to efficient run-time behaviour. The proposed system is based on
three elements: (1) defining a process model using both standard workflow graph
meta-model and predicate-based situation calculus (for the AI planner), (2) a
similarity flooding algorithm used to retrieve model cases, and (3) a Hierarchical
Task Network (HTN) planner that can be used to generate plans from composed
and basic tasks. The system then attempts to generate, classify, index and retrieve
case models. A successfully retrieved model may be used or adapted for a new
problem, thus accelerating process modeling. In the event that no case is found,
the planner may be used to generate a new plan by composing already existing
processes or using basic tasks descriptions. Any new plans that are generated
are classified, indexed and stored thereby allowing the system to learn. Its main
contribution is that of attempting to solve the problems related to model storage,
retrieval, reuse and assembly. It is one of the few research efforts that aims at
supporting the complete workflow management life-cycle.

• In Ref. 23 the authors are motivated by the fact that process modeling is difficult
in practice, and they present an induction algorithm for the purpose of finding
a process model from a given set of previously performed activities. Information
about the performed activities is obtained from a system log. The algorithm
creates a stochastic activity graph (SAG) comprising a set of activity nodes and
transition probabilities, and then transforms this graph into a workflow model.
The resulting model is compared to the original process model which produced the
log information, showing that it is possible to infer accurate process models from
run-time information. This kind of approach is referred to as workflow mining24.
Workflow mining shares a similar purpose with our own approach in that it
attempts to create a feedback loop to adapt workflow models according to work
practices. It should be noted, however, that workflow mining aims at discovering
activity sequences, but not why they happen in that sequence, or whether they
could be performed in another sequence. In addition, workflow mining requires
the availability of system logs, which greatly simplifies the problem of eliciting
rules since it does not have to rely on world state information and, hence, is
oblivious to the problem of knowledge representation.

• In Ref. 25 the authors take a much broader view of the problem of adaptive
workflow systems and try to identify how such a system may be implemented
with the use of AI techniques. Here, adaptive refers to the ability of the system
to modify its behavior according to environmental changes and exceptions that
may occur during plan execution. For this purpose, a set of five levels of adapt-
ability are identified (domain, process, organization, agent and infrastructure)
and enumerated together with their respective applicable AI technologies (ratio-
nal maintenance, planning, capabilities matching, dynamic capability matching,
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multi-agent toolkits). Of all these technologies, we believe that planning and (dy-
namic) capability matching are the most important for adaptiveness. It is worth
noting, however, that workflow management systems have always provided some
support (albeit limited) for capability matching. The system described interleaves
planning (using the non-linear planner O-Plan) with execution and plan refine-
ment. It also investigates plan patching and plan repair as a means to enhance
flexibility and responsiveness.

In terms of planning, the point of comparison is that the approaches proposed
in Ref. 20, Ref. 21, and Ref. 25 use planning algorithms that belong to the SNLP
family26. While choosing POP, we also opted for such kind of planner. An exception
is Ref. 22 in which the authors make use of hierarchical task networks. Still, although
the references above demonstrate that the use of planning as a tool to aid workflow
management is not new, it is important to note that previous efforts tend to focus
either on the build-time or on the run-time phase.

In terms of learning, even though the above sources suggest that both planning
and learning can prove beneficial, none have attempted to combine learning and
planning in order to capture and manage business processes across build-time and
run-time phases. It should be noted, however, that the combination of learning and
planning has been an active theme of research in AI, although not in connection
with workflow management. For example, in Ref. 27 the authors have explored the
combination of inductive learning and planning with the purpose of accelerating
plan generation by learning search rules from experience. In Ref. 28, the author
makes use of learning techniques in order to infer action strategies within a given
planning domain.

In general, the application of AI techniques within the scope of workflow man-
agement has been focusing either on the learning algorithm or in the use of planning
to generate workflows. Although the use of each technique is in itself interesting, it
is in the combination of the two techniques that lies the potential to automate the
full life-cycle of workflow process management, which includes process generation,
execution, and re-planning according to run-time data.

Besides the AI-related work, research in workflow management has also recently
recognized the advantages of identifying processes from execution logs24, particu-
larly for ad-hoc processes29. The main theme in such work - referred to as workflow
mining, as mentioned before - is that of aiding the identification and analysis of
business processes. In other words, this work assumes that workflow already exists,
that the execution of such processes generate logs, and that the data contained
in these logs are amenable to offline analysis and processing. Another premise is
that the analysis of workflow logs results in a graph depicting the relationships
between tasks within a specific process, which can be analysed for the purpose of
re-engineering such processes. In any case, these methods are still centered in the
idea that one can completely and correctly model a process and that process mod-
eling and execution are fundamentally two separate phases. On the other hand,
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such work clearly shows that research in the area of workflow management is now
tackling the problem of eliciting and supporting unstructured processes.

7. Remaining challenges

Though the combination of learning and planning seems promising, there are several
challenges that must be addressed before a workflow system based on those features
can be built. Here we briefly discuss some of these challenges to be addressed in
future work:

• Efficiency of the planning algorithm. In our experiments, the system spends most
of its time in planning attempts. The complexity of a planning problem heavily
depends on interference between operators; for example, operators that undo
what other operators do make it harder to find a planning solution, even though
this is less common in business scenarios. On the other hand, as the number
of activities increases so does the complexity of the planning problem, and so
does the time it takes to come up with an accurate description of the operators
via planning and learning. But the ability to produce on demand plans requires
the planner to take no more than a reasonable amount of time computing the
sequence of required actions.

• Planning with sensing actions. One of the must-have features of workflow systems
is the ability to make branching decisions based on run-time data, i.e., the process
model may produce a different behavior based on conditions that can only be
evaluated at run-time. This is currently not supported by our system, which
produces process models as simple partial-order plans. Fortunately, there are ways
to provide planning with such features: one way is to make use of sensing actions30

that gather (and may also change) information from the world at run-time. The
use of sensing actions is fundamental in order to support basic workflow patterns
such as exclusive-choice or multiple-choice31. Other patterns, such as parallel-split
and synchronization, are already supported by partial-order planning.

• Learning with inconsistent examples. Learning relies on examples that are col-
lected by observation of user activities. Ideally, all of these examples are con-
sistent. In practice, however, there are several reasons that could make a set of
collected examples contain inconsistencies. One reason is human error: a user may
perform an activity (an event that will be collected as a positive example) only to
find later in the process that the activity did not produce the desired effects. In
this case the learning algorithm will make use of a wrong positive example when
refining the operator. Another source of inconsistent examples is process evolu-
tion; in this case, the set of examples that is provided to the learning algorithm
contains older and newer examples which, separately, would lead to different op-
erator definitions and, together, may render learning impossible. The problem of
learning inductively from inconsistent examples has already been studied, and it
is known as noise handling11. However, the two sources of inconsistency must
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be treated in different ways. While bad examples due to human error should be
basically disregarded, the new examples, due to changes in business practices,
should invalidate older ones.

• Multiple agents acting concurrently. The ideal way to collect examples is to ob-
serve user actions in a closed world without any source of interference. In practice,
though, several users may be performing tasks concurrently, so the difference be-
tween two world states is the sum of the effects of all activities that have been
executed in a given period. The problem is now how to identify the effects of
the activity being observed, separating them from the effects of other activities
taking place at the same time. Over time, by observing a sufficient number of
examples, it is possible to identify the effects of each operator. But this intro-
duces a degree of uncertainty whose impact on the learning and planning cycle
still remains unclear.

• Mixed-initiative planning. Collecting examples by capturing world states may lead
to a surplus of information when only a small amount of data is actually relevant.
Having to deal with unnecessarily large amounts of data will make planning
unnecessarily difficult. Users can be especially helpful in providing valuable hints
about how to carry out certain parts of the process, hence making it easier to
find the overall planning solution. Facilitating planning by means of user input is
known as mixed-initiative planning32. Mixed-initiative planning could be useful
not only to generate plans but also to collect further examples, since the plan
the user provides is a source of additional examples of operator usage. Both of
these factors could significantly accelerate the convergence of the whole system
towards accurate operator descriptions.

Besides these research issues, there are at least two practical issues to be addressed
before such a system can become operational:

• Capturing world states. It is assumed that users perform their activities over a
common information infrastructure comprising one or more IT systems. A world
state is a snapshot of the existing data in those systems at a certain point in
time. The simplest scenario would be that of a fully-integrated system such as
an Enterprise Resource Planning (ERP) solution where users work over a single
common database, so the world state could be obtained from a single source. In
practice, however, an information infrastructure often comprises several different
systems, so it is more challenging to keep track of all the effects of any given
activity. Capturing the world state then requires collecting and integrating data
coming from different systems. In either case, a world state may comprise an
overwhelming amount of data that cannot simply be handled directly. Some sort
of mechanism must be devised in order to be able to collect and handle world
state information in an efficient way.

• Making use of common semantics. It is central to the proposed approach that
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all users make use of the same semantics when referring to any concept in their
domain, so that the effects of one activity can match the preconditions of the
following ones. In addition, goals must be expressed in a way that is commonly
understood by all users, and world states must be described in a consistent way
throughout all activities being performed in the domain. This requires the use
of a common ontology throughout the whole systemd. Given that a world state
is defined based on the amount and kind of information available at a certain
moment in time (for example, a set of records in a database), the problem of
coming up with an appropriate set of predicates from existing data sources in an
enterprise information system becomes an interesting research challenge, to be
explored in future work.

8. Conclusion

This paper proposes a new life cycle for workflow management based on the contin-
uous interplay between learning and planning. The approach is based on learning
business activities as planning operators and feeding them to a planner that gener-
ates the process model. Besides reducing the modeling effort by allowing the basic
building operators to be refined iteratively according to user actions, it is able to
generate on demand process models, given the intended goal state. Although the
proposed plan may not be feasible on a first stage, the system will produce increas-
ingly accurate plans as it collects more and more examples.

A fundamental result obtained from experiments with the prototype system is
that it is possible to produce fully accurate process models even though the ac-
tivities (i.e. the operators) may not be accurately described. This is evident in the
simple blocks world scenario presented above, which confirms the suspicion that the
first major assumption of workflow management (having an accurate model to begin
with) is not actually an indispensable requirement. Flexibility in workflow manage-
ment may be achieved with a combination of learning and planning, which shows
as much potential as challenges that deserve further discussion and investigation.
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