On the Unobservability of Multimedia-Based Covert Channels for Internet Censorship Circumvention

Diogo Barradas Nuno Santos Luís Rodrigues INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

Internet Censorship is Widespread

Bypassing Censorship with Video Streams

Mimicking Multimedia Protocols e.g. SkypeMorph [CCS '12]

Tunneling Covert Data over Multimedia Protocols e.g. FreeWave [NDSS '13]

Multimedia Protocol Tunneling is Not a Silver Bullet

FreeWave is easily detected by checking packet length standard deviation

Our Research Path over the Past Five Years

- 1. Improvement of multimedia tunneling approaches
- 2. Evaluation of the unobservability of multimedia covert channels
- 3. Deployment of traffic analysis tools within the network
- 4. Development of a new encoded media tunneling tool

Can We Build a Better Multimedia Protocol Tunneling Tool?

- Strive to maintain unobservability
 - Adapt modulation to resist traffic analysis
- Leverage a higher-bandwidth medium
 - Use video-conferencing applications' video layer

DeltaShaper's Data Modulation Approach

(b) Payload Frame

(c) Covert Frame

Parameter	Description			
ap	payload frame area (pixel×pixel)			
ac	cell size (pixel×pixel)			
bc	color encoding (bits)			
rp	payload frame rate (frames/s)			

Diogo Barradas, ISOC.PT ANRW 2020

A SULFILLER

Unobservability Assessment

• Quantify differences between signatures with similarity metrics

- Packet lenght / inter-packet timing distributions
- e.g., Earth Movers' Distance (EMD)

Performance of DeltaShaper

• Performance

- Raw throughput: **7.2 Kbps**
- Supports low-throughput, high-latency applications
- Achieved Configuration:

Parameter	Description	Configuration
a p	payload frame area (pixel×pixel)	320 x 240
a c	cell size (pixel×pixel)	8 x 8
bc	color encoding (bits)	6
rp	payload frame rate (frames/s)	1

Summary

- DeltaShaper: A new censorship-resistant system
 - Supports high-latency / low-throughput TCP applications
- Maximizes throughput while preserving unobservability
 - Greedy exploration of encoding configurations

Diogo Barradas, Nuno Santos, Luís Rodrigues DeltaShaper: Enabling Unobservable Censorship-resistant TCP Tunneling over Videoconferencing Streams In Proc. of Privacy Enhancing Technologies (PETS), 2017

Are We Doing a Good Job at Assessing Unobservability?

- Evaluation with *ad hoc* similarity-based classifiers that:
 - Depend on small (and similar) sets of traffic features
 - Have not been compared in the literature
- Poor evaluation leads to optimistic unobservability claims
 - Ignores a wealth of research in machine learning techniques
 - Users of censorship-resistant tools may be endangered

Detection of Multimedia Protocol Tunneling

• The first extensive experimental study of the unobservability of covert channels produced by state-of-the-art MPT tools

Facet (WPES'14)

Unidirectional (A/V) Video Transmission

CovertCast (PETS'16)

Unidirectional (V)

Censored Websites Transmission

DeltaShaper (PETS'17)

Bidirectional (V) Arbitrary Data Transmission

How was Unobservability Evaluation Performed?

Linobservability

- Previous systems were evaluated with different similarity-based classifiers
 - **Facet** : Pearson's Chi-squared Test ($\chi 2$)
 - **CovertCast** : Kullback-Leibler Divergence (KL)
 - **DeltaShaper** : Earth Mover's Distance (EMD)

- Feature sets are similar (quantized frequency distributions)
 - **Facet** : Packet size bi-grams
 - **CovertCast** : Packet size, inter-arrival delay
 - **DeltaShaper** : Packet size, inter-arrival delay

	Protocol Tunneling System	χ^2 Classi	fier (acc%)	KL Classifier (acc%)	EMD Classifier (acc%)	
	Facet ($s = 50\%$)	7	74.3	57.5	57.5	
χ^2 is the most accurate classifier				KL and EMD are comparable		
				Recent classifiers offer worse accuracy		

Can Other ML Techniques Better Detect Covert Channels?

- Assess the effectiveness of multiple decision tree-based classifiers
 - Decision Trees
 - Random Forests
 - eXtreme Gradient Boosting (XGBoost)
- Models are easily interpretable
- Provide the ability to assess feature importance

kaggle

Which Features Could an Adversary Use?

- Feature set 1: summary statistics (ST)
 - Total of 166 features, including simple statistics (e.g., max, min, percentiles), high order statistics (e.g., skew), and bursts
- Feature set 2: quantized packet lengths (PL)
 - Quantized PL frequency distribution for the flow carrying covert data
 - Each K size bin acts as an individual feature (K = 5 bytes)

Detection of Facet

χ²: 90% TPR = **45% FPR**

XGBoost-PL: 90% TPR = **2% FPR**

XGBoost-PL reduces the FPR when flagging the same amount of covert channels

Diogo Barradas, ISOC.PT ANRW 2020

DROBSETVALIDIT OF

Detection of DeltaShaper

χ²: 90% TPR = **51% FPR**

XGBoost-PL: 90% TPR = **14% FPR**

DeltaShaper detection results follow a similar trend to those of Facet detection

Diogo Barradas, ISOC.PT ANRW 2020

HIDD SERVED OF

Summary

- Compared similarity-based classifiers on the detection of MPT tools
 - In general, unable to accurately detect covert channels
- Explored multiple ML techniques for the detection of covert channels
 Decision tree-based classifiers can effectively detect existing MPT tools
- Previous unobservability claims were flawed

Diogo Barradas, Nuno Santos, Luís Rodrigues Effective Detection of Multimedia Protocol Tunneling using Machine Learning In Proc. of USENIX Security Symposium, 2018

Can a Censor Leverage Programmable Switches to Gather and Classify Packet Distributions Efficiently?

Collecting Packet Distributions in the Switches

- Stateful memory is severely limited
 - O(100)MBs SRAM
 - \circ $\,$ No memory for storing many flows

- Packets must be processed at line speed (actions < lns)
 - No multiplications or floating point operations
 - Existing packet distribution compression techniques **do not work**
- We need a packet distribution representation that:
 - Provides high accuracy and requires small amount of memory
 - Can be **implemented efficiently** in programmable switches

How Can We Compress Packet Distributions?

Up to 150x

- Produce flow markers with two simple operators:
 - Quantization discretize the packet distribution into bins
 - **Truncation** select the most relevant bins for classification

Truncation (w/ Quantization QL=16)

Applied to Multimedia Covert Channel Detection

Full information = **3000B** Facet: 96% acc. DeltaShaper: 87% acc

Quant + Trunc = 20BFacet: 93% acc. DeltaShaper: 85% acc

Only up to - 3% accuracy 150x less memory

Automatic Profiling

Frattic analysis

- Automate the configuration choice
 - Large configuration space = **Quantization x Truncation**
- Leverage Bayesian Optimization
- Three different criteria for selecting a configuration
 - Smaller marker for target accuracy
 - Best accuracy given a size constraint
 - Fully automatic (compromise between marker size and accuracy)

FlowLens

Halfic analysis

Summary

- FlowLens: ML-based traffic analysis system for programmable switches
- Compress packet distributions into flow markers
 - Reduction of memory footprint (1-2 orders of magnitude)
 - Comparable accuracy to full information
- Automatic profiling to choose optimal configurations

Diogo Barradas, Nuno Santos, Luís Rodrigues, Salvatore Signorello, Fernando Ramos, André Madeira FlowLens: Enabling Efficient Flow Classification for ML-based Network Security Applications In Proc. of Network and Distributed Systems Symposium (NDSS), 2021 (to appear)

Revisiting the Design of Multimedia Covert Channels

- Can we generate covert streams that resist traffic analysis?
- Can we increase throughput w.r.t. existing tunneling approaches?
- Tunneling works without access to implementation
 - But what if we could access the **innards of the multimedia pipeline**?
 - Are there any **widely used applications** that match this profile?

WebRTC

• Framework that provides real-time communication capabilities

- Exposes a set of JavaScript APIs on all major browsers
- Used by an **increasing number of trending applications**
- Open-source

Protozoa is Fast and Resistant against Traffic Analysis

Validation in the Real-World

WebRTC Application	Reachability			
	China	Russia	India	
appr.tc	-	\checkmark	\checkmark	
aws.amazon.com/chime	\checkmark	\checkmark	\checkmark	
codassium.com	\checkmark	\checkmark	\checkmark	
coderpad.io	\checkmark	\checkmark	\checkmark	
discordapp.com	-	\checkmark	\checkmark	
gotomeeting.com	\checkmark	\checkmark	\checkmark	
hangouts.google.com	-	\checkmark	\checkmark	
messenger.com	-	\checkmark	\checkmark	
slack.com	\checkmark	\checkmark	\checkmark	
whereby.com	\checkmark	\checkmark	\checkmark	

Multiple WebRTC apps are available in countries known to experience Internet censorship Protozoa makes it possible to access blocked content / services (e.g. YouTube)

Summary

- First to leverage **WebRTC video streams** to create covert channels
- Introduces a new encoding mechanism: **encoded media tunneling**
 - Instruments the media pipeline in the WebRTC stack to replace encoded video
- Works over a range of existing **unmodified WebRTC apps** (e.g., Whereby)
 - Deployed against real censors (China, Russia, India)

Diogo Barradas, Nuno Santos, Luís Rodrigues, Vítor Nunes Poking a Hole in the Wall: Efficient Censorship-Resistant Internet Communications by Parasitizing on WebRTC In Proc. of ACM Conference on Computer and Communications Security (CCS), 2020

Conclusions and Future Directions

- MPT's unobservability is only as strong as the classifier used to assess it
 - Can we apply information theoretical frameworks to assess unobservability?
- So far, unobservability has been tested in the lab with synthesized traffic • Is it possible to gather more realistic data (e.g. campus network)?
- Censors' traffic analysis capabilities are getting more sophisticated
 - Able to inspect large volumes of traffic at Tbps speeds
 - Understanding the innards of media pipelines is an important step towards unobservable multimedia covert channels

Thank You!

https://web.ist.utl.pt/diogo.barradas

