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Low-Latency Privacy-Preserving

Access to Edge Storage
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Doctor Rolando da Silva Martins, Faculdade de Cîencias, Universidade do Porto
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Abstract

Edge computing is a paradigm that extends cloud computing with storage and processing
capacity close to the user, providing bandwidth savings and lower latencies. This paradigm
assumes the availability of microdatacenters, also known as fog nodes, that are located close to
the edge. These nodes are installed and managed by various local providers, whose privileged
access to the infrastructure represents a significant security risk for applications and clients.
Unethical edge providers my engage in malicious behaviors for financial gains, particularly if
their actions remain undetected. Given the high risk associated with dishonest providers, it is
crucial to secure the functions fog nodes provide.

This thesis is devoted to the design of security mechanisms for data storage in edge computing
environments. Given that accessing data with low latency is a primary motivation for adopting
edge computing, it is crucial to ensure that data is effectively replicated at the edge and can
be accessed in a timely and privacy preserving manner. This thesis address these two relevant
problems that emerge in edge computing, namely how to ensure that edge providers use local
storage as specified in their service level agreements and how to preserve the privacy of edge
clients. In this context, the thesis:

• Proposes an audit technique that verifies whether a storage node at the edge can retrieve a
data object within a specified latency threshold. The technique is based on a cryptographic
time-bounded challenge that needs to be executed by the audited node. Leveraging the
capabilities of secure hardware, we ensure that the proof of data retrieval is generated by
the audited fog node itself.

• Proposes a novel authentication technique for access control at the edge to protect stored
data from unauthorized entities. This technique aims to preserve client anonymity during
authentication processes, despite their physical proximity to fog nodes. The proposed
scheme preserves the privacy of clients even after they have been revoked from the system,
achieving this more efficiently than all the related work.

A promising approach to enhance security in edge storage systems is to resort to the usage
of secure hardware, such as Intel SGX enclaves. This thesis explores the use of hardware enclaves
to design these two mechanisms, that together, will help edge clients in accessing data with low
latency while respecting their privacy.





Resumo

A computação na periferia da rede é um modelo emergente que estende a arquitetura
tradicional da computação na nuvem para próximo dos clientes, com computação e armazenamento.
Esta proximidade é viabilizada pela proliferação de vários microdatacenters, também conhecidos
por fog nodes, localizados estrategicamente na periferia da rede, permitindo assim reduzir a
latência dos serviços e o consumo de largura de banda. Estes microdatacenters são instalados e
mantidos por uma variedade de fornecedores locais, que, em alguns casos, podem revelar-se não
confiáveis, adotando comportamentos maliciosos com o objetivo de obter vantagens financeiras.
Devido ao elevado risco associado à presença de fornecedores desonestos, é crucial assegurar a
proteção dos serviços prestados na periferia da rede.

Esta tese visa desenvolver mecanismos de segurança para o armazenamento de dados na
periferia da rede. Tendo em conta que aceder a dados com baixa latencia é uma das motivações
principais para a adoção de computação na periferia da rede, é crucial garantir que os dados
são efetivamente replicados nos microdatacenters e podem ser acedidos de forma expedita e com
garantias de privacidade. Esta dissertação responde a estes dois problemas relevantes que se
levantam na utilização de armazenamento na periferia da rede, nomeadamente, como assegurar
que os fornecedores de armazenamento na periferia respeitam os ńıveis de qualidade de serviço
acordados e como preservar a privacidade dos clientes que acedem aos dados. Neste contexto,
esta dissertação propõe:

• Uma técnica de auditoria que verifica se um nó de armazenamento na periferia da rede
consegue recuperar um objeto armazenado dentro de um limite de latência especificado.
Esta técnica é baseada num desafio criptográfico que deve ser resolvido de forma atempada.
Recorrendo às funcionalidades de hardware seguro, asseguramos que a prova criptográfica
dos dados é gerada pelo próprio nó auditado.

• Uma nova técnica de autenticação para proteger os dados armazenados de entidades não
autorizadas. Este técnica tem como objetivo preservar o anonimato dos clientes durante os
processos de autenticação, mesmo estando estes fisicamente próximos dos microdatacenters.
O esquema proposto garante a privacidade dos clientes, inclusive após a sua revogação do
sistema, sendo mais eficiente que as soluções propostas anteriormente.

Uma técnica promissora para reforçar a segurança nos sistemas de armazenamento consiste
na utilização de hardware seguro, como os enclaves da Intel SGX. Esta dissertação explora a
utilização de enclaves no desenho destas duas técnicas que, quando combinadas, iram assegurar
que os clientes de serviços de armazenamento na peŕıferia da rede conseguem aceder aos dados
com baixa latência e com garantias de privacidade.
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1
Overview

The cloud computing model has become integral to everyday life, permeating through a
plethora of applications and devices [14]. The expansion of these applications, increasingly reliant
on cloud services, is propelled by the affordability of the cloud. This affordability is attributed to
economies of scale from large shared infrastructures, which provide vast storage, fault tolerance,
computational power, and high availability at low costs. It is projected that over 41.6 billion
devices will be connected by 2025 [198], known as the Internet of Things (IoT), many equipped
with sensors that generate substantial volumes of data needing collection and processing [89].
However, cloud resources are hosted in remote data centers, imposing long latencies and stressing
network infrastructure due to escalating bandwidth demands.

Edge computing [99] has emerged as a solution to the inherent constraints of cloud computing,
aiming to process data closer to the devices, significantly reducing network bandwidth usage
and offering services with lower latency [159]. Edge computing will complement the services
provided by remote data centers with the service of smaller data centers, or even individual
servers, located closer to the edge. This concept is often named fog computing [187, 53, 38]. It
assumes the availability of fog nodes that are located close to the edge. The number of fog nodes
is expected to be several orders of magnitude larger than the number of data centers in the
cloud. Cloud nodes are physically located in secure premises, administered by a single provider.
Fog nodes, instead, are most likely managed by several different local providers and installed in
physical locations that are more exposed to tampering. Therefore, fog nodes are substantially
more vulnerable to being compromised [199, 137], and developers of applications and middleware
for edge computing need to take security as a primary concern in the design.

To unleash their full potential, fog nodes should not only provide processing capacity but
also cache data that may be frequently used [3]; otherwise, the advantages of processing on the
edge may be impaired by frequent remote data accesses [135]. By using cached data, requests
rarely need to be served by data centers. Consequently, a key ingredient of edge-assisted cloud
computing is a storage service that extends the one offered by the cloud in a way that relevant data
is replicated closer to the edge. However, these services must prioritize security and reliability,
particularly because they operate on potentially vulnerable fog nodes.

The work in this thesis is focused on the development of security mechanisms for data storage
at the network edge. It tackles two distinct challenges individually, with solutions that can be
integrated to facilitate the implementation of edge storage systems. The first challenge is to
develop a cryptographic proof of data replication to audit an edge provider’s local storage and
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identify any potential overselling of storage capacity. The second challenge involves data access
control at the edge; the close proximity between clients and fog nodes during authentication may
put user privacy at risk. We create an anonymous authentication scheme based on pseudonyms
that surpasses current state-of-the-art methods in terms of storage efficiency and fault tolerance.

The use of Trusted Execution Environments (TEEs) has been identified as one of the
most promising technologies for securing computation and sensitive data in fog nodes [146, 56].
One of the most popular TEE technologies is Intel Software Guard Extensions (SGX), due
to its widespread availability in standard Intel CPUs. SGX offers a form of TEE known as
enclaves [10, 129]. The potential advantages of this technology for fog computing have been
acknowledged by Intel [104] and have seen practical applications [35, 4, 58]. In recent years,
various storage systems have been developed with the support of Intel SGX to achieve different
security properties. However, many of these systems [49, 40, 114, 58] still face limitations and
challenges, particularly when deployed in edge computing environments.

1.1 Objectives

One of the primary motivations for adopting edge computing is its capability to provide
computing and storage in close proximity to users, ensuring low latency — a property not
achievable with cloud computing due to the potentially distant location of data centers. However,
this close proximity also brings the risk of compromising users’ privacy by local edge providers.
The potential for unethical behavior among edge providers presents a significant challenge in
maintaining both low latencies and the necessary privacy for edge clients. In light of these
considerations, the main objective of this thesis is:

♢ To ensure access to edge storage with privacy and low latency.

Unfortunately, as further detailed below, realizing this objective becomes challenging when
faced with the possibility of edge providers engaging in hidden, financially motivated malicious
activities. Providers may resort to cheap remote storage, instead of the contractual obligation of
the edge storage, imposing long latency’s to clients when accessing this data. Moreover, enforcing
privacy is an mandatory requirement in edge environments. Existing authentication methods
that safeguard privacy rely on complex and cumbersome schemes, that can also impose long
latencies on clients.

In this work, we aim to design schemes that assure low latency access to edge storage by
enhancing security at the edge. This approach is intended to stimulate the development and
adoption of storage services specifically designed for edge computing environments. Next we
define and discuss these two major research problems that can compromise the realization of the
above objective.

1.2 Problem Statement

In our comprehensive study of the state-of-the-art in edge storage systems, as detailed
in Section 2.2.2, we have observed a clear trend towards the utilization of TEEs to address
security vulnerabilities at the edge. A number of storage systems are already leveraging TEEs to
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securely store data on fog nodes, ensuring privacy, integrity, and authentication. Despite these
advancements, there remain several critical, unresolved security challenges that can compromise
this thesis goal.

One significant challenge is auditing edge storage in fog nodes, where untrusted service
providers may oversell their storage capacity. This leads to an essential question that guides our
research:

• Is it possible to design an auditing scheme to verify edge storage?

As storage systems expand to the network edge to provide lower latencies, it becomes crucial
to verify that edge providers are effectively replicating data at the edge, complying with their
Service-Level Agreement (SLA). Applications that pay providers to store data close to their users
necessitate robust auditing tools to ensure these storage services are fulfilling their obligations. A
viable method of auditing involves the use of storage proofs, which offer a variety of cryptographic
proofs with distinct characteristics, as detailed in Section 2.3.1. The most reliable storage proofs
are underpinned by TEEs at the audited node, effectively preventing the delegation of proof to a
remote node. Nonetheless, these proofs are dependent on the local clocks at the audited node,
making them vulnerable to potential security breaches [11, 128].

Consequently, there is a need to develop an auditing scheme that can confirm whether fog
nodes are storing data in a manner that aligns with the low latency requirements of edge clients.
This scheme should facilitate a Proof of Timely-Retrievability, one that does not rely on the local
clocks of the audited node but rather leverages the enclave to support and validate the proof
response.

The second focus of this thesis is providing anonymous authentication. This issue is
particularly acute in edge computing environments, where the close proximity of entities can
potentially be exploited to reveal sensitive information. This prompts the following open question:

• Is it possible to design an anonymous authentication scheme for the edge?

Access control based on authentication is vital for any storage service, especially at the edge,
due to the vulnerable and exposed nature of fog nodes, which leads to a higher risk of being
compromised. Additionally, the process of authenticating at the edge could inadvertently reveal
sensitive client information, such as identity, location, and usage patterns. Therefore, anonymous
authentication becomes a requirement in edge environments to preserve client privacy. Our
investigation into the latest solutions for anonymous authentication, as detailed in Section 2.3.2,
revealed a range of approaches, from group signatures [106] to more complex methods like
zero-knowledge proofs [19]. These solutions rely on heavy cryptographic schemes to protect client
privacy but also result in a significant latency penalty for client authentication. Ideally, the
optimal solution for the edge would involve the use of public key encryption-based pseudonyms,
chosen for their efficiency and broad adoption.

Despite the extensive array of solutions for anonymous authentication, most face significant
challenges in delivering two crucial properties [96]: Backward Unlinkability and Revocation
Auditability. Both aim to maintain client anonymity even after the client is revocated from the
system. Revoking a client’s access can lead to the disclosure of sensitive information, risking
their anonymity. Section 2.3.2 delves deeper into these properties. Briefly, backward unlinkability
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Figure 1.1: Architecture overview of a secure storage system for the edge and mapping to this
thesis structure.

maintains the anonymity of a client’s past authentications following their revocation, whereas
revocation auditability ensures that the client is informed of their revocation. The implementation
of these properties within public key encryption remains a significant, unresolved challenge.

In Figure 1.1, we provide a comprehensive overview of how the two central problems
discussed in this thesis integrate within the architecture of an edge storage system. Each problem
encapsulates specific properties that are the focal points of our research. The challenge of auditing
edge storage systems is comprehensively addressed in Part II, which involves developing a proof
of timely-retrievability. The foundation of our auditing tool lies in the utilization of TEEs, which
is elaborated upon in more detail in Chapter 3. The second problem, concerning anonymous
authentication, is tackled in Part III of this thesis. Here, Chapter 4 focuses on achieving backward
unlinkability, while Chapter 5 delves into attaining revocation auditability. The next section
outlines our three key contributions, each aligning with the three distinct properties we endeavor
to realize within the framework of these two pivotal problems.

1.3 Contributions Summary

This thesis delves into the two aforementioned problems, materialized in two distinct
components: an auditing scheme and an anonymous authentication scheme. While various
security risks exist for storage systems at the edge, our research is particularly focused on these
two critical areas, which are vital for the successful deployment of secure storage systems at
the edge. Driven by these considerations, our work is divided into three significant scientific
contributions:
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• C1: A cryptographic secure and accurate auditing tool for edge replicated storage systems.

• C2: A distributed anonymous authentication scheme that provides efficient backward
unlinkability.

• C3: A distributed anonymous authentication scheme that provides revocation auditability.

Contribution C1 focuses on the component that audits whether data replication at the edge is
being effectively provided. The contributions C2 and C3 pertain to the anonymous authentication
component, with C3 offering different tradeoffs with regard to C2. In this refinement, both
backward unlinkability and revocation auditability are accomplished within a unified scheme.

In the following sections, we offer a comprehensive overview of the key contributions of this
thesis. This exposition is structured around the results from the three pivotal contributions
outlined above.

1.3.1 (C1) Auditing Tool for Proof of Timely-Retrievability

Our analysis on the challenges of current storage proofs, led to the development of our novel
Proof of Timely-Retrievability (PoTR). PoTR assesses whether a storage provider can retrieve
data objects within a latency lower than a specific SLA threshold δ. By setting δ to a value that
can only be met if data is stored locally, PoTR can distinguish whether an edge node stores
data locally or remotely. We avoid the use of vulnerable clocks at the audited node, measuring
time from the auditor’s side. This approach is possible by meticulously designing PoTR to
mitigate network noise, we experimentally validated PoTR using a challenging edge computing
environment. The results demonstrate PoTR’s effectiveness in differentiating a fog node adhering
to the latency SLA from one that does not, even when the dishonest node uses a nearby fog
node, resulting in a latency discrepancy of less than 1.5ms.

PoTR offers several advantages for edge storage systems. Firstly, it enables applications
to confidently trust that their data is effectively replicated at the edge, ensuring low latency
access for their clients. Secondly, PoTR is a cost-effective, easy-to-deploy solution, seamlessly
integrating with the edge computing model. Thirdly, it is beneficial for providers, building
trust in what is often considered a zero-trust edge environment. These advantages significantly
contribute to the design and deployment of future edge storage systems. Detailed information
about this contribution can be found in Chapter 3.

The results of this contributions were published at the IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC) 2023 [60]. This publication can be found at:
https://web.ist.utl.pt/claudio.correia/papers/PoTR PRDC.pdf.

1.3.2 (C2) Anonymous Authentication with Backward Unlinkability

Given the limitations of current state-of-the-art anonymous authentication schemes, we
developed a novel pseudonym-based anonymous scheme, termed Range-Revocable Pseudonyms
(RRP). This system achieves near-perfect backward unlinkability, overcoming the shortcomings
of prior solutions. It introduces a storage-efficient scheme where clients are required to store only
the pseudonyms necessary, independent of any system variable. Additionally, our innovative

https://web.ist.utl.pt/claudio.correia/papers/PoTR_PRDC.pdf
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revocation approach incurs only logarithmic costs due to the granularity of backward unlinkability,
a significant improvement over the linear costs associated with revocation list sizes in previous
systems. Additionally, thanks to the strategic selection of public key encryption, our system’s
authentication latency stays below 3.5ms. This is well within the optimal 5-30ms range for edge
computing mentioned in [159].

Our study validates the practicality of deploying an efficient and anonymous authentication
scheme in edge computing environments. This fully distributed approach, anchored by Intel SGX
technology, establishes a robust trust foundation for edge clients. As mobile devices increasingly
depend on edge infrastructure, our system presents a low-latency and privacy-preserving solution
for both service providers and clients at the edge. Full details of this contribution are given in
Chapter 4.

The results of this contribution were published at the ACM Conference on Computer and
Communications Security (CCS) 2023 [59]. This publication can be found at: https://dl.
acm.org/doi/pdf/10.1145/3576915.3623111 and the extended version can be found at: https:
//arxiv.org/pdf/2308.03402.pdf

1.3.3 (C3) Anonymous Authentication with Revocation Auditability

The previously presented contribution, C2, efficiently provides backward unlinkability, en-
abling authentication with the low latencies required in edge computing environments. However,
a limitation of C2 is its lack of revocation auditability, a crucial step for ensuring complete
authentication anonymity in pseudonym-based schemes. Therefore, we have utilized the prim-
itives introduced by C2 to develop this final contribution, C3, aimed at achieving revocation
auditability. This was essential because the only existing offline solutions capable of offering
this feature are based on zero-knowledge proofs, which are too computationally intensive and
expensive for edge computing.

We demonstrate that this final contribution can achieve both revocation auditability and
backward unlinkability. This new scheme continues to allow clients the freedom to choose the
number of pseudonyms they wish to store and further enhances the storage efficiency of revocation
lists. However, there is a trade-off: clients in this scheme must download the revocation list
at the authentication instant. This requirement introduces an additional latency overhead in
authentication compared to the previous contribution. Comprehensive details of this contribution
are outlined in Chapter 5.

1.4 Ramifications

This section summarizes a ramification of our research. This work, was performed in
collaboration with Rodrigo Silva, a MSC student of our research group, focused on the trade-offs
between deduplication and privacy in cloud storage.

In cloud storage services, data privacy often leads users to encrypt files, yet this encryption
blocks server-side deduplication, as identical files appear different when encrypted. There is
considerable work on merging file encryption with data deduplication, known as encrypted
deduplication. This integration usually necessitates some form of coordination among clients,
potentially creating privacy vulnerabilities like frequency analysis attacks. These attacks deduce

https://dl.acm.org/doi/pdf/10.1145/3576915.3623111
https://dl.acm.org/doi/pdf/10.1145/3576915.3623111
https://arxiv.org/pdf/2308.03402.pdf
https://arxiv.org/pdf/2308.03402.pdf
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the contents of an encrypted file based on its storage or access frequency. Our research sought to
balance the need for data privacy with the advantages of deduplication, focusing on methods to
avoid frequency analysis attacks. We proposed a new protocol for assigning encryption keys to
files using secure hardware to obscure chunk frequencies from adversaries.

The protocol offers a tunable encrypted deduplication system that leverages TEEs to perform
sensitive cryptographic operations and keep track of the frequency of operations performed on
every chunk. This data is stored in a frequency table (cache) internal to the TEE and a larger
encrypted table is stored in an untrusted environment. The resulted protocol is the first to offer
full privacy protection while achieving exact deduplication. It is capable of providing secure
deduplication through frequency hiding. We study and evaluate different privacy policies to
protect this table in insecure memory, and show that is possible to enforce privacy over this table,
while others can not. Additionally, the proposed protocol allows clients to read their files without
requiring interaction with the TEE, offering increased performance on reading operations, more
than 5x faster over the state-of-the-art [133] that require read operations to be performed inside
the enclave.

A manuscript describing this collaborative work was accepted for publication at the ACM/SI-
GAPP Symposium on Applied Computing (SAC) 2023 [167]. This publication can be found at:
https://doi.org/10.1145/3555776.3577711

1.5 List of Publications

Considering the above contributions and collaborations, the publications that resulted from
this thesis, in chronological order, are the following:

• Cláudio Correia, Miguel Correia, Lúıs Rodrigues. Using Range-Revocable Pseudonyms to
Provide Backward Unlinkability in the Edge. Proceedings of the 30th ACM Conference on
Computer and Communications Security (CCS), Copenhagen, Denmark, November 2023.

• Cláudio Correia, Rita Prates, Miguel Correia, Lúıs Rodrigues. PoTR: Accurate and Efficient
Proof of Timely Retrievability for Storage Systems. Proceedings of the 28th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC), Singapore, October
2023.

• Rodrigo Silva, Cláudio Correia, Miguel Correia, Lúıs Rodrigues. Deduplication vs. Privacy
Tradeoffs in Cloud Storage. Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing (SAC), Tallinn, Estonia, March 2023.

• Cláudio Correia. Safeguarding Data Consistency at the Edge. Proceedings of the 50th
IEEE/IFIP International Conference on Dependable Systems and Networks Supplemental
Volume (DSN-S) PhD Forum, Virtual Event, Spain, June 2020.

1.6 Thesis Structure

The remaining of the thesis has the following structure:

https://doi.org/10.1145/3555776.3577711
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Chapter 2: introduces the fundamental concepts relevant for the work on this thesis.

Chapter 3: presents and evaluates PoTR, a new cryptographic proof of storage, tailored to
meet the challenges of edge computing.

Chapter 4: presents and evaluates RRPs, a novel cryptographic scheme for anonymous
authentication with backward unlinkability.

Chapter 5: presents and evaluates Privacy Keeper, an enhanced cryptographic scheme
providing anonymous authentication with both backward unlinkability and revocation auditability.

Chapter 6: concludes the thesis, summarizing the results achieved and suggesting directions for
future research.



2
Background

This section provides the necessary background of the main topics that are relevant to this
work. First, Section 2.1 covers the background on edge computing, different examples of edge
applications, and their current security vulnerabilities. Then, Section 2.2 addresses the benefits
and limitations of current implementations of TEEs and existing storage systems supported by
TEEs. Lastly, Section 2.3 identifies different existing challenges in the design of a secure storage
service at the edge and discusses this challenges in light of current state-of-the-art solutions.

2.1 Edge Computing

The emergence of IoT and the stress it places on services that operate in the cloud motivates
the use of computing resources close to the edge. Edge computing is a model of computation that
aims at leveraging the capacity of edge nodes to save network bandwidth and provide results
with low latency [99]. However, many edge devices are resource constrained (in particular, those
that run on batteries) and may benefit from the availability of small servers placed in the edge
vicinity, a concept known as fog computing [187, 53, 38]. Fog nodes provide computing and
storage services to edge nodes with low latency, setting the ground deploying resource-eager
latency-constrained applications, such as augmented reality. These fog nodes are computers or
clusters of computers with heterogeneous capacity in terms of storage, computation and internet
connection, also known as cloudlets [162]. Services that leverage fog nodes are able to guarantee
availability even if a central data center becomes intermittent due to a cyberattack [149], an
outage [178, 28], or a natural disaster [22, 72].

Figure 2.1 shows a general architecture of fog-edge computing, which consists of multiple
infrastructures layers. As we move down the stack, from the cloud to the edge, the number of
nodes in each layer increases but the capacity of each of these nodes decreases. In the cloud layer,
we may find data centers while in the fog layer we may find ISP servers, private data centers,
and 5G towers. Finally, in the edge, we may find all kinds of devices such as desktops, laptops,
tablets, smartphones, sensors, and actuators.

The architecture suggests that the devices located in the edge layer communicate mainly
with those located in the fog layer. In addition, fog nodes also have to communicate with the
cloud where critical data will be stored in a secure and persistent way.
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Figure 2.1: Three-layer fog computing architecture.

2.1.1 Applications

One of the major motivations to deploy fog nodes close to the network edge is the ability to
offer resources with low latency. Edge applications can use these services at a distance of a hop,
many existing applications and future ones can leverage the edge storage services, where latency
may be a requirement, example of such edge applications are:

• Vehicular communications (e.g., VANETs [158, 43, 153], V2V [87] and V2I [165, 8, 32])
that require access to local traffic information or real-time maps.

• Location-based services (e.g., Google Maps [92], Waze [191], Foursquare [84], Mo-
biShare [192], Yelp [197, 21], Pokemon GO [145], Yahoo! Weather [195]) that can store
all movements and places clients visit over time, that we consider sensitive information
regarding the user’s privacy.

• Various smart appliances (e.g., traffic lights [196, 12], smart locks [98], video cameras [107,
164], industrial machines [97, 91]) that may upload large quantities of redundant information,
such as video frames or sensors data.

Many of these applications require latencies below 30ms, leaving as a requirement for the
fog computing model latencies between 5ms-30ms range [159]. Besides, these applications may
disclose sensitive information regarding both the users and stored data. Leaving user privacy as
a real concern at the network edge.

2.1.2 Data Storage

Storage services are widely used in cloud computing today, and a large number of designs
have been implemented [70, 116, 157]. Most of these systems support geo-replication, where data
copies are kept in multiple data centers. Geo-replication is relevant to ensure data availability in
case of network partitions and catastrophic faults, but it is also instrumental to serve clients with
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lower latency than what would be possible with a non-replicated system. However, as discussed
previously, cloud-based geo-replication may not suffice to achieve the small latencies required by
novel latency-critical applications. Therefore, extending storage services to operate on fog-nodes
is a relevant research challenge.

Many geo-replicated storage services, such as COPS [123], Saturn [39], or Occult [130],
support geo-replication across a large number of nodes, and have been carefully designed to
operate their replicas in several well-connected data centers. Fog nodes connections may become
unavailable, and is important to design systems that can operate even if disconnected from
the network. To answer this challenge new storage services have been designed specifically for
the edge, such as GESTO [2], ElfStore [134], and A-DECS [190], that aim to manage multiple
replicas while striving to offer data availability under possible replicas malfunction or failures.
There is a clear motivation to deploy storage services at the edge, however, all these systems
make a strong assumption that replicas will not fall under attack. Such assumption cannot be
made in the edge environment, where fog nodes are considerably more vulnerable and expose,
therefore, edge storage services must take security as a requirement to ensure service correctness.

2.1.3 Security Vulnerabilities

In the edge computing model, fog nodes bring resources closer to the edge. However, the
security guarantees offered by the cloud cannot be moved so easily. In the cloud model, data
centers are isolated and well protected. On the other hand, fog nodes will be more exposed, and
as a result, it is not possible to use the same techniques as in the previous model. The fact that
fog nodes are dispersed among multiple geographic locations, close to the edge, increases the
risk of being attacked and becoming malicious as discussed in the Zhang et al. [199], Mukherjee
et al. [137] and Zhou et al. [201] surveys. A compromised fog node may delete, copy, or alter
operations requested by edge devices, causing information to be lost, leaked, or changed in such
a way that it can lead the application to a faulty state. Therefore one of the major challenges in
the fog computing model is how to deal with malicious fog nodes.

Given the exposed location and significant heterogeneity of fog nodes, the behavior of a
malicious fog node can differ based on the attacker’s objectives. To clarify, we categorize two
distinct behaviors for a malicious fog node, each correlating with the attacker’s specific intent.

1. Rational behavior: An edge provider may adopt a malicious behavior if it can gain some
benefit and pass unnoticed. Examples of such behavior are: inferring personal information
from its clients, scrutinizing the stored data, or overselling its storage capacity.

2. Destructive behavior: This is the more traditional attack model, where an attacker can
gain either physical or remote control of the system with the sole intention to leave the
system or clients in a failed state. Such an attacker may attempt to corrupt the data stored
in the fog node, discard stored information, replay or block requests, and serve faulty or
stale data to the client.

Our intention in separating the attacker behavior is only to offer a better explanation for
the reader, throughout our document, we assume that a malicious fog node can have both
behaviors simultaneously, and we strive to design mechanisms that protect our storage system
from both. A fundamental objective is to provide an appropriate level of security without
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compromising the performance of the system, given that one of the main goals of supporting
edge computing is to provide services with low latency to clients. Therefore in this document,
we study security techniques to face the challenge of malicious fog nodes while maintaining the
low latency requirements, one such technique is the use of TEE.

2.2 Trusted Execution Environments

Edge and fog devices are a very compelling opportunity to use processors with Trusted
Execution Environment (TEE) [74, 146] technology, a secured execution environment with
guarantees provided by the processor hardware. The code that executes inside a TEE is
logically isolated from the Operating System (OS) and other processes, providing integrity and
confidentiality, even if the OS is compromised. Therefore, the use of a TEE is a natural choice
to secure computation and sensitive data in fog nodes. With it, fog nodes can securely store
private keys and offer clients a base of trust. Should edge providers opt to adopt such technology
and hardware, it would significantly enhance the appeal and adoption of edge computing among
applications and users.

A processor with this technology can operate in one of two modes, normal mode or secure mode.
Normal mode is where the operating system and applications run without any special security
guarantees, while in secure mode, application code has isolation, integrity, and confidentiality.
This division between two different modes requires developers to build applications in two parts,
one for each mode. One important goal of these architectures is enabling any application to take
advantage of this secure environment. Therefore, device hardware configuration provides a TEE
API, where applications in normal mode can request secure operations in secure mode. These
requests require the processor to switch context between the two modes. When the processor
switches from normal mode to secure mode, it fetches the last state of the application that will
run in secure mode, decrypts it and verifies its integrity. When it goes from secure to normal
mode, it encrypts this state and stores it in memory. Between context switch, this state is
encrypted and decrypted using a key that is secure in a chip element.

TEE also offers a remote call to verify that secure mode inside the processor has not been
tampered with, this operation is known as attestation.

Examples of TEE technologies are: AMD Secure Encrypted Virtualization (SEV), which
allows to protect system memory using encryption, but encrypting all the memory of an application
has a significant latency cost; ARM TrustZone that exists in processors focused on the mobile
devices, offering low-power consumption; RISC-V architecture is gaining popularity and also
provide a secure environment [62]; Intel SGX which is an architecture available in many common
Intel processors 1. In the following paragraph we introduce in more detail Intel SGX. We chose
Intel SGX technology as it has led to significant new work in the field [4, 114, 24, 115, 57] in the
recent years. This increases its potential to be used in the real world by the industry, besides the
fact that it is considered a practical solution to the fog (Intel Fog Reference Design [104]).

1Currently Intel is only incorporating SGX technology for server side CPUs, such as Intel Xeons.
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2.2.1 Intel SGX

Intel Software Guard Extensions (SGX) is a set of functionalities introduced in sixth
generation Intel Core microprocessors that implement a form of TEEs named enclaves [10, 129].
The potential benefits of this technology for the fog have already been recognized by Intel [104]
and it has already been used in practice [35, 4, 57].

Figure 2.2: An application in Intel SGX.

Applications designed to use SGX have two parts: an untrusted part (normal mode) and
a trusted part (secure mode). Figure 2.2 shows a simplification of the Intel SGX design. The
trusted part runs inside the enclave, where the code and data have integrity and confidentiality;
the untrusted part runs as a normal application. The untrusted part can make an Enclave Call
(ECALL) to switch into the enclave and start the trusted execution. The opposite is also possible
using an Outside Call (OCALL). The SGX architecture implements a number of mechanisms
to ensure the integrity of the code, including an attestation procedure that allows a client to
get a proof that it is communicating with the specific code in a real SGX enclave, and not
an impostor [26]. Such technology allows to store cryptographic keys in a secure way inside
untrusted machines such as fog nodes and have guarantees about the code that is executed for
example to generate metadata [57]. A limitation of the first SGX implementations is that the
protected memory region, named Enclave Page Cache (EPC), is typically limited to 128 MB [102].
A significant increase in EPC capacity was introduced with SGXv2, an increased EPC capacity
from the previous 128 MB to up to 512 GB per socket [75]. Despite this increase, it still falls
short of the expectations for a standard storage system memory requirements. Therefore, it is
essential to optimize the memory usage inside the enclave. Additionally, enclaves cannot persist
their state, being critical to store data outside the enclave for any long term service, such as
storage system.

Since an enclave depends on the untrusted part for launching and execute and store persistent
state, the Intel SGX threat model does not protect a single enclave from suffering Denial of
Service (DoS), we follow the same assumption in this thesis. However, there are workarounds to
mitigate this issue. One solution is to replicate the system, as discussed in Section 4.3.2. By
replicating a system across different nodes, one can estimate the number of f faults the system
can tolerate. Such mechanisms can also withstand eclipse attacks [170].

Aside from blocking the enclave, the untrusted part can also perform various attacks that
have proven successful in recent years under the Intel SGX threat model. The most notable
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attacks against SGX are Foreshadow and LVI [186]. Intel is actively investigating ways to
mitigate these issues [148]. An alternative solution to mitigate these attacks could be leveraging
system replication, where nodes use different TEEs, such as some resorting to SGX while others
use RISC-V or ARM TrustZone. This approach is orthogonal to the work in this thesis and
could be a direction for potential future research. Implementing such a solution would require a
multi-party computation framework to tolerate any leaks or vulnerabilities in a single TEE. This
vision has motivated the design of our solutions to be easily adaptable to other TEEs.

In this thesis, we leverage Intel SGX due to its high availability and ease of access, making
it a suitable solution for implementation inside fog nodes and providing a trust base for edge
devices. In our work, such guarantees help secure cryptographic material or execute secure
functions in fog nodes.

2.2.2 SGX Storage Systems

The use of SGX has been a hot research topic in recent years, as the security properties
offered by the SGX enclaves are desired by many distributed applications. In particular, this has
inspired many storage systems based on Intel SGX to improve the security of current cloud storage
services. However, as previously mentioned, SGX enclaves have limited memory, therefore in
many of these systems, we see novel mechanisms and schemes to mitigate this memory limitation.
In the next paragraphs, we present the state-of-the-art storage systems based on Intel SGX that
strive to overcome the enclave limited memory.

Enclavecache [49] is a storage system designed to operate at the cloud layer as many others, in
particular, it leverages the Intel SGX enclaves to process clients’ requests, enforcing confidentiality
and integrity of the data. To overcome the limited memory of the enclave, the enclave is only
responsible to encrypt/decrypt the requested data, the data is then stored outside the enclave in
the untrusted part. Before sending the data to be persistently stored in the untrusted part, the
enclave encrypts the data to enforce confidentiality. By resorting to the untrusted part to store
the encrypted data, Enclavecache is able to mitigate the SGX memory limitation.

SecureKeeper [40] is another storage service based on SGX, however, is more concerned with
the distributed aspect of the data replication. SecureKeeper is design on top of ZooKeeper and
leverages the enclaves to enforce data consistency between the multiple replicas, it performs
consensus among replicas that can result in long latencies.

ShieldStore [114], similar to Enclavecache, stores the data in the untrusted part of the system.
However, it offers a novel technique to verify the integrity of this vulnerable data. Note that,
despite being encrypted, data stored outside the enclave can be corrupted by a malicious OS,
assumed to be compromised in the SGX threat model. To answer this challenge, ShieldStore
implements a flat Merkle tree over the encrypted data, and only requires the Merkle tree root to
be stored in the protected memory of the enclave. Such mechanism also overcomes the limited
memory of the enclave and offers a latency efficient solution for the data access and integrity
check. Following the same path, Speicher [24] and Concerto [13], present alternative techniques
to protect the data outside the enclave. Speicher implements a Log-Structured Merge Tree
(LSM)-based storage, with 2 different levels, where the first is the enclave memory and the
second in SSLTables in disk. While Concerto [13] verifies data integrity in a deferred manner
and at client request, a solution that is not practical for the edge. Interestingly Concerto also
implements a Merkle tree outside the enclave but needs to pass as input the entire path from the
leaf to the root through the Ecall.
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These storage systems based on Intel SGX were designed having in mind an untrusted cloud
provided, that may try to read or modify the stored data without authorization. We argue that
an edge provider will be more susceptible to engage in such behavior, which can be amplified due
to the characteristic of the edge environment. The concern for edge security has already been
noted, Harpocrates [4] and Omega [58] are two storage systems that have already been carefully
designed for the network edge, and also leverage the use of enclaves.

Harpocrates [4] implements SGX enclaves at Content Distribution Networks (CDNs) that
are a geographically distributed network of proxy servers, which is located close to the users at
the edge, and host static content. CDNs are capable of mitigating DoS and offer low latency for
stored data, in Harpocrates the enclaves are responsible for the mutual authentication between
the clients and the servers while protecting the required cryptographic material.

Finally, Omega [57, 58] offers a storage service carefully designed for the edge computing
model. In Omega, similar to previous systems, the enclave delegates the storage responsibility
for the untrusted part and also implements a Merkle tree for integrity protection. Additionally,
Omega publishes a public log generated from the enclave, this log leverages blockchain technology
for integrity protection, allowing clients to perform read operations over this data without
requiring the enclave intervention. This particular technique enables to reduce the latency
overhead of the read operations, which no longer requires the enclave interaction.

2.2.3 Limitations

All the previous storage systems based on SGX are centred on a single critical limitation of
the enclaves, their limited memory. Many of their proposed mechanisms offer desirable solutions
for this challenge, with tradeoffs relative to the latency and scalability. Another important
concern is the latency overhead required to perform the context switch between the enclave and
the untrusted part. These limitations reveal that SGX based solutions should resort to the use
of the enclave only for critical operations, and output protected data that can later be reused.
Despite the use of the SGX enclaves, a malicious provider may attempt to perform other attacks,
as discussed in Section 2.1.3, infer information from the client’s authentication or data access
patterns, or oversell the edge storage, non of these systems discuss these issues.

2.3 Protecting an Edge Storage Service

The security vulnerability of fog nodes at the edge is a clear concern, and research efforts
have been redirected to this challenge, where the use of SGX enclaves is one promising approach
to mitigate such concerns. However, the majority of the related work on storage services based
on enclaves has mainly centered its efforts on mitigating the memory limitations of the SGX
enclaves. In this section, we identify two different vulnerabilities that we will strive to solve, and
that we believe to be paramount for the viability of a secure storage service for the edge. For
both identified vulnerabilities, we discuss the state of the art, which is again, mainly designed
for cloud computing. We search for mechanisms and techniques that can either be adapted or
moved to the edge to answer our challenges.
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2.3.1 Auditing Storage Replication

Today, there are numerous scenarios where an end-user or an organization stores data on
machines operated by third parties. This is often done to ensure data durability and availability
or to provide low latency access for others. One such example is edge storage [176], where fog
nodes are utilized for file storage, enabling clients to access data with low latency. Due to the
limited capacity of fog nodes, edge storage providers might be tempted to oversell their capacity
and compensate for this by fetching data on-demand from the cloud, instead of delivering it with
the requisite low latency. It is important to note that even when leveraging a storage system
based on SGX, the data is stored in a untrusted zone and can be easily relocated by the provider.
While the literature abounds with auditing techniques, i.e., evidence that the third party is
adhering to (or deviating from) the agreed-upon quality of service, most of these schemes were
designed for cloud environments. Next, we will present the state-of-the-art schemes in proofs of
storage.

The literature is rich in techniques that allow to obtain different proofs of storage, that
assess different properties of the provided service. The most relevant ones are Proofs of Data
Possession (PDP) [16] and Proofs of Retrievability (PoRet) [15] that aim to check if the storage
provider keeps at least some copies of the stored data; Proofs of Replication [30, 120] that assess
if the storage provider has n copies of a data item (even though they might all be placed in the
same machine); and Proofs of Geographic Replication (PoGR) [31, 90] that test if the storage
provider keeps n data copies in distinct machines, in distinct geographic locations. Each one of
these proofs is issued as a response to a challenge [120], that is sent to the storage provider by
one, or more auditing entities. Typically, a challenge requires the storage provider to execute a
set of reading operations over a subset of the stored data, and return on-time a value that proofs
the access of the correct data items. This return value, may be an cryptographic hash of the
retreived data items.

To save bandwidth most challenges require the storage provider to read a subset of the stored
data items, and compute a cryptographic hash of them. Typically, the response has to be issued
within a pre-defined time deadline, determine by the auditor [30, 31, 120, 66]. Furthermore,
when sending the challenge, the list of data items to be access should not be revealed entirely.
Instead, the list should be interactively revealed, i.e., the next data item to be accessed, it is just
known after accessing the previous one [120]. This interactivity prevents the storage provider to
download the missing data items on-demand. If the storage provider cannot guess in advance
the data items to be accessed, it has to keep all data items within the constraint access time, to
build a correct and timely proof.

There are two main mechanisms to effectively guarantee that a proof is generated in a given
geographic location. The first one consists on using the response delay to predict the audited
node location, since it may be difficult for the storage provider to issue a timely proof if data is
kept in a distant geographic location, due to the extra network latency to access the data. The
usage of a set of auditors, in different locations, may increase the accuracy of this mechanism
by resorting to triangulation mechanisms [31, 90]. The second approach consists on resorting
to a TEE to ensure that operations essential to the proof construction are executed in a given
machine [66]. At the same time, this secure environments may be used to interactively reveal the
challenge.

Recently, several schemes have been developed offering different storage proofs that leverage
Intel SGX to enhance their security or efficiency [200, 108, 66]. By utilizing the enclave, it is
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(a) Simple linkability

(b) Backwards linkability

Figure 2.3: Linkability and anonymity discloser.

possible to ensure that these proofs are genuinely generated on the audited machine, by requiring
a continuous iteration between the enclave and the untrusted part, where data is stored, through
Ecalls and Ocalls. However, as discussed in more detail in Section 3.2.3, these schemes use
the enclave’s trusted clock to monitor the duration of the challenges. Such clocks, whether
TPM or provided by the SGX library, incur substantial overhead; and the untrusted part may
maliciously delay trusted timer messages to fetch remote data blocks on-demand, thereby evading
detection [11, 128]. Given these factors, using the enclave for time measurements becomes
impractical. Therefore, it is necessary to design a new storage proof that does not rely on
clocks in the audited machine, but instead utilizes the enclave solely to ensure that the proof is
effectively constructed at the audited node and not at a neighboring one [128].

2.3.2 Imposing Authentication Anonymity

In any distributed storage service, client authentication before granting data access is vital
to ensure only authorized clients access the data. However, it has been previously noted that
authentication between a fog node and an edge client can disclose sensitive information due
to the strong locality of edge computing. This concern is even more aggravated in other edge
applications such as V2V [87], traffic lights [196, 12], or smart locks [98], where authentication
may not be mediated by a TEE 2. Therefore, we address this concern from a broader perspective,
ensuring authentication protects the client’s identity when accessing any type of edge resource,
including our proposed edge storage system operating in fog nodes.

The diversity of edge resources, often managed by different entities, presents a risk where
curious owners might track access control requests to gather private information about clients,

2Despite the use of a TEE in our storage system, is paramount that the untrusted part participates in the
client authentication process to avoid possible DoS.
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such as daily routines and habits. This possibility arises because access control is usually based
on the identity of the authenticated client requesting resource access. Figure 2.3a shows a typical
access control system where users authenticate using their true identifiers, allowing the controller
to easily track their activities. To counter this, anonymous authentication schemes must be
implemented, one suggested solution is the use of pseudonyms for distinct resource accesses,
as required by the GDPR [132]. This approach, however, increases the data transmitted for
client renewal or revocation, potentially leading to large Certificate Revocation Lists (CRL).
Furthermore, revocation of a client using different pseudonyms allows an adversary to link these
pseudonyms, breaking anonymity [95]. Figure 2.3b illustrates a pseudonym-based access control
system, demonstrating how revocation information can contain all pseudonyms of a user, enabling
a malicious controller to link previously used pseudonyms.

To enhance privacy in such systems, backward unlinkability is a key requirement, where
actions performed under one pseudonym must not be traceable to past pseudonyms used by
the same client, especially after a pseudonym is revoked [95, 113]. We can define backward
unlinkability as follows: when a revocation occurs, the pseudonyms used by the client before the
revocation remain anonymous. This ensures that revocation information does not compromise
the client’s past anonymity, thus providing a safeguard against profiling and tracking. Enforcing
client anonymity during authentication has been addressed by several authors through innovative
techniques and cryptographic protocols. However, authentication based on symmetric keys [32] is
easily compromised if one of the parties is compromised. Identity Based Encryption schemes [36]
impose considerable overhead due to their expensive cryptographic operations. Public key
encryption remains the preferred choice for authentication and managing revocation information,
due to its computational efficiency and widespread adoption.

Since typical pseudonym systems compromise client anonymity upon revocation, there has
been a push for schemes that preserve pseudonym unlinkability after revocation. Haas et al. [95],
followed by Khodaei et al. [113], propose a solution involving the association of pseudonyms with
time intervals and revoking only those for current and future intervals, thereby not disclosing past
pseudonyms. However, within their scheme, all pseudonyms used in the current interval remain
linkable after revocation. Unfortunately, reducing the granularity of these time intervals in their
design leads to a linear increase in storage costs for revocation material. Designing space-efficient
solutions is crucial due to the heterogeneity of fog nodes and the limitations of enclaves.

Another property that must be achieved to fully respect anonymous authentication is
revocation auditability [96]. Revocation auditability ensures that the system can verify the
revocation status of any given credential or pseudonym, upholding user privacy and anonymity.
This implies that users should be able to check their revocation status at a service provider prior
to attempting authentication [96, 182]. If a user is revoked, they can opt to disconnect from the
service without revealing any sensitive information. This capability is vital to avoid scenarios
where a malicious service provider might process authentication requests from revoked users,
thereby narrowing the user’s anonymity set without their knowledge. Such subversion can lead
to significant privacy violations by enabling the service provider to link all of the user’s activities,
which is particularly problematic in schemes that are challenged to provide robust anonymity.
This property has not yet been achieved in pseudonym-based schemes, only in schemes supported
by zero-knowledge proofs.

A final concern is the correct generation of pseudonyms that must be offered by a decentralized
trusted party, which should also strive to offer availability and correctness. However, many
solutions manage the pseudonyms generation and revocation in a centralized manner [165, 8, 112,
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174], which can compromise the system availability or the system corrections (if a user evades
revocation due to information loss).

2.4 Discussion

This chapter presented the background and motivation to design an edge storage system and
highlighted two major challenges that such design will face at the edge. Recent storage systems
have shown a clear interest in pursuing solutions based on SGX, that offer confidentiality and
integrity despite the untrusted storage provider. We envision such a solution in the distributed
edge environment, leveraging an enclave in each fog node, offering strong security guarantees for
edge users and applications.

Despite the use of Intel SGX at the edge, different security challenges remain, we have
highlighted two challenges that we aim to solve, thus contributing to the deployment of a more
secure storage service at the network edge. One of these challenges is the design of an auditing
tool to enforce edge storage providers to effectively store data at the edge, to detect and penalize
if they resort to cheap remote cloud storage. The other challenge is the implementation of an
authentication service capable of enforcing user anonymity while reducing the required storage
at the fog node. Previous solutions either require a central entity or impose a linear storage cost
for the system operation. Note that, even with the implementation of TEEs in fog nodes, this
alone is not sufficient to ensure privacy. Edge storage systems, such as Omega [57], necessitate
dual authentication: within the enclave for private data storage and in the untrusted part to
avert Distributed Denial of Service (DDoS) attacks, thus motivating the need for anonymous
authentication schemes. In the next sections, we present the contribution that we achieve under
the context of these two security challenges.
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3
Auditing Edge Storage:

PoTR

This chapter introduces and evaluates an auditing mechanism that offers a novel Proof of
Timely-Retrievability (PoTR). Our new cryptographic proof of storage, PoTR, aims at assessing
whether a storage provider is able to retrieve data objects with a latency lower than some
SLA-specific threshold δ. PoTR is capable of detecting a misbehaving storage provider in the
challenging edge environment.

The remaining of this chapter is organized as follows: we begin by establishing the motivation
for this contribution and defining its objectives in Section 3.1. Section 3.2 delves into related
work. Our assumptions are laid out in Section 3.3, followed by the presentation of our solution in
Section 3.4. Finally, Section 3.5 offers experimental results concerning the computational impact
and the accuracy of our proposed cryptographic proof.

3.1 Motivation and Goals

Today, there are many scenarios in which end users, or organizations, store data in machines
run by third parties, either to ensure durability and availability, or to ensure that customers
can access data with low latency. Relevant examples include cloud storage (e.g., Dropbox,
iCloud, and Google Drive), peer-to-peer storage (e.g., Filecoin [82], IPFS [29], and Swarm [175]),
content distribution networks (e.g., Akamai [6] and Cloudflare [54]), and, more recently, edge
storage [176, 6]. As highlighted in the preceding chapter, latency poses a significant challenge
and concern when accessing data in edge environments. The delay in data retrieval is a critical
issue impacting the efficacy of data placement algorithms within the extensively distributed and
zero-trust edge environment [20].

Despite significant advances in storage systems, trust in providers has remained un-
changed [94]. Customers require mechanisms to verify that QoS (Quality of Service) is being
respected. Relevant QoS aspects include the guarantee that the third party will not discard
or corrupt the stored data, that the data is stored on multiple distinct machines, in specific
geographic locations, and that users are served with some bounded delay. Unfortunately, a
misbehaving provider may opt to avoid complying with the agreement if it can gain some benefits
and pass unnoticed. For example, the provider may keep the data in fewer locations than agreed
with the customer, assuming that it may be impossible for the customer to audit how many
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Systems Data
Locality

Efficient/Cheap
Execution

Challenge Delegation
Protection

Timer Delay
Protection

Single Remote Auditor
PoTR ✓ ✓ ✓ ✓

PDP (2007) [16] ✗ ✓ ✗ ✓

PoRet (2016) [15] ✗ ✓ ✗ ✓

Benet et al. (2017) [30] ✗ ✓ ✗ ✓

Li et al. (2020) [120] ✗ ✓ ✗ ✓

Filecoin [82] ✗ ✓ ✗ ✓

Multiple Auditors
Benson et al. (2011) [31] ✓ ✗ ✗ ✓

Gondree et al. (2013) [90] ✓ ✗ ✗ ✓

Local Auditor Relying on TEE Clocks
Dang et al. (2017) [66]* ✓ ✓ ✓ ✗

EnclavePoSt (2022) [200] ✓ ✓ ✓ ✗

Multiple Auditors and Reliance on TEE Clocks
ReliableBox (2021) [108]* ✗ ✗ ✗ ✗

* deprecated since Intel excluded trusted time from SGX Linux PSW [7].

Table 3.1: PoTR properties compared with the related work

replicas are used or where these replicas are placed. This threat has motivated the development
of auditing techniques that are capable of extracting storage proofs, that is, evidence that the
third party is complying with (or violating) the defined quality of service [31, 90, 66, 30, 120].

In this section, we present our new scheme, Proof of Timely-Retrievability (PoTR), which
has the following objective:

Goal: Propose an auditing tool that aims at assessing whether a given server node is able to
retrieve data objects with a latency lower than some SLA-specific threshold δ. By estimating an
upper bound on the data access latency, we can also determine if the data is placed where expected.
Namely, when the SLA threshold δ is small, it is possible to verify if data is being stored at the
audited node or elsewhere. Our new proof mechanism, PoTR, takes advantage of the existence
Intel SGX enclaves to ensure that the challenge is executed by the node being audited [128], not
by some other remote node. By using SGX, we can also avoid prematurely revealing the data
to be accessed during an audit, while keeping the communication between the auditor and the
audited node to a single request-reply exchange. PoTR has been carefully designed to mitigate
the noise introduced by this single message exchange. Our approach minimizes the network
impact on our challenge accuracy, eliminating the need to rely on vulnerable and discontinued
TEE clocks [7, 11], in contrast with recent related work, listed in Table 3.1.

Compared with previous work [108, 200, 66], we take a step forward and evaluate our proof
in the highly challenging edge computing environment. When auditing edge services, the auditor
may be located far away from the audited node and the communication network may exhibit
large delays and jitter that can affect the accuracy of the proof. Edge computing relies on placing
resources physically close to end users, such that applications can offer a latency lower than
some SLA-specific threshold δ. By setting the SLA threshold δ to a small value that can only be
satisfied by the provider if data is kept locally, we use PoTR to distinguish the case where the
edge node stores data locally (Figure 3.1a) from the case where it keeps the data in some remote
node or in the cloud (Figure 3.1b). We show that, even in the case where the dishonest node
stores the file in a nearby fog node (and the observed latency differs by less than 1.5ms) our
PoTR can accurately pinpoint the misbehaviour.
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Figure 3.1: PoTR auditing scenarios.

3.2 Related Work

In this section, we delve into the critical related work and pertinent studies that underpin our
research. Here, we explore the the importance to audit edge storage, scrutinizing its advantages
and inherent challenges. We also examine auditing mechanisms for third-party storage services
and discuss their current limitations.

3.2.1 Overselling Edge Storage

Many applications strive to reduce their loading times (e.g., social media, entertainment,
e-commerce, advertising, and gaming), knowing that even a small difference in milliseconds can
significantly impact their revenue [5]. In recent years, a growing number of applications have
relied on content delivery networks (CDN) [93], such as Akamai, Amazon, or Verizon, to store
static content closer to end users, achieving lower access latencies. Edge computing has emerged
to offer storage and computation even closer to end users, supporting applications for face or
object recognition [172], real-time databases [6], and just-in-time video indexing [163], which
demand response times below 5-30 milliseconds [160], something that cannot be guaranteed with
cloud storage alone or CDNs.

Fog nodes are managed by many local providers, and due to their limited resources, they
cannot store copies of all objects stored in the cloud [57]. Instead, they typically keep copies of
items that are required by local applications. Moreover, due to their limited storage capacity,
edge storage providers may be tempted to oversell their storage and hide this behaviour by
fetching, on-demand, data from the cloud or from other servers, instead of serving them from
local (edge), resulting in increased latency for data users. One effective approach to address
and detect such misbehaviour is through auditing mechanisms. These mechanisms can enhance
the intelligent edge environment by providing real measurements to build trust autonomously
between the local entities (e.g., through rating schemes) or to penalize non-compliant providers.

Filecoin storage [82] is a concrete example of an auditing mechanism, where a node that fails
to prove its ability to store data as required will no longer receive financial rewards and may be
expelled from the network. In cloud or edge storage, providers can be compelled to compensate
their customers for violations of the defined contract, known as the SLA. Is essecnial to audit
that the SLA is being delivered in edge applications such as: 1) Web, EdgeKV [6] (similar to
CDNs) charge their clients to store data near clients and reduce latency; 2) Augmented reality
apps, they need low-latency access to data to be shown to the user; 3) Autonomous vehicles,
they need low-latency access to maps, directions, etc.
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3.2.2 Auditing Third-Party Storage Services

When a storage provider is subject to an audit, it must provide a proof that it is applying
the storage policies specified in the SLA. This proof is generically called a proof of storage [30].
Moreover, since an SLA may cover different aspects of storage implementation, such as the target
number of replicas, the location of those replicas, or the latency observed by users when accessing
data, it is possible to define different proofs.

3.2.2.1 Proofs of Storage

In the realm of data storage auditing mechanism, particularly in cloud storage as outlined in
Section 2.3.1, substantial research has been undertaken. Fundamental techniques includeProofs
of Data Possession (PDP) [16] and Proofs of Retrievability (PoRet) [15], which mainly verify the
existence of some data copies. While, more complex methods like Proofs of Proofs of Geographic
Replication [31, 90] attempt to audit whether data is replicated in distinct physical locations.
These auditing methods required the audited node to respond to challenges initiated by auditing
entities, typically involving the storage provider demonstrating access to the correct data items
through specific reading operations and providing timely evidence, like a cryptographic hash of
the audited data.

3.2.2.2 Structure of a Challenge

A simple way to verify if a storage provider keeps a given data item would be to request
that item and then check its integrity. Although this method could, in fact, offer a PoRet, it has
several limitations.

First, this approach is inefficient, as it requires the auditor to consume a large amount
of bandwidth to obtain the proof. Therefore, to save bandwidth, most challenges require the
storage provider to read a subset of the stored data items and compute a cryptographic hash
of them. Typically, the response has to be issued within a predefined deadline, determined by
the auditor [30, 31, 120, 66]. Furthermore, when sending the challenge, the data items should
be revealed interactively to prevent the storage provider from downloading missing items on
demand [120]. If the provider cannot guess in advance the data items to be accessed, it has to
keep all items within the constraint access time to build a correct and timely proof.

Second, a single request for data items cannot verify some of the service requirements. For
example, it cannot assess whether the storage provider keeps just one or several replicas of the
data items. A typical solution is to encode each file with a distinct secret key [30]. Unfortunately,
this does not prevent a provider from keeping all replicas in the same machine, which may
compromise availability. An option is to design the challenge so that it is impossible to respond
on time if all replicas are kept on the same machine, although it can be feasible if the proof is
built in parallel[120].

These mechanisms are not enough to guarantee that the proof was generated by the target
node. For this purpose, it is possible to leverage a TEE to interactively reveal the challenge and
ensure that the operations essential to the proof construction are executed in a given machine [66].
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3.2.3 Discussion

We now discuss the limitations of the related work in auditing storage systems, summarized
in Table 3.1.

Efficient Execution. Both PDP [16] and PoRet [15] are designed to offer efficient cryp-
tographic mechanisms to verify the integrity of cloud-stored data. Benet et al. [30] present a
mechanism capable of verifying if there are a certain number of copies of a file, while Li et
al. [120] audit if such copies are stored on different physical machines. These proofs depend on
a single remote auditor, requiring low cost for deployment and execution. Filecoin [82] offers
blockchain-based cooperative digital storage, which requires expensive cryptographic operations.
These proofs cannot estimate data location or access latency, making them unsuitable for testing
if a provider stores the required data in a specific node.

Data Locality. Triangulation mechanisms are one way to estimate data location. Gondree
et al. [90] and Benson et al. [31] follow this approach by relying on multiple auditors/landmarks
for the estimation. Unfortunately, triangulation can be expensive since it requires the intervention
of multiple landmarks for each proof execution, and the accuracy of this mechanism depends on
the proximity of the landmarks to the audited node. In this work, we take a different approach,
where we decouple geolocation from data locality. An auditor can first geolocate a node (using
techniques as in [90]) and then run our PoTR to check if the files are stored locally at that node.
This approach has the advantage that the accuracy of the locality proof no longer depends on the
landmarks, and exclusively relies on a single parameter that affects the proof duration, making it
practical, particularly in edge environments.

Delegation Attack. Despite the use of triangulation, none of these systems is capable of
enforcing the proof to be executed on a given machine; this is a critical obstacle when attempting
to audit specific nodes, particularly in an edge storage environment. A storage provider, which
controls the infrastructure, may capture the challenge request and delegate the production of the
response to the remote storage: such behavior may be difficult to detect. Dang et al. [66], and
EnclavePoS [200] resort to a TEE to execute their challenge on the correct machine to prevent
this attack but, unfortunately, are still vulnerable to a clock delay attack.

Delay Attack. Using a TEE to trivially implement the auditor alone is not enough to
ensure the generation of correct and honest proofs. These systems assume that the SGX clock
can be trusted to measure the duration of the challenge at the audited node [66, 108, 200], but
recent research has shown that the enclave cannot read an accurate and reliable system clock,
due to the following issues [11]: (1) the storage node system clock is vulnerable to manipulations
by the untrusted part; (2) the operation to read trusted timers, such as those provided by SGX
or, TPM (Trusted Platform Module), has a large overhead, penalizing the proof accuracy; and
(3) the untrusted part can maliciously delay trusted timer messages, to fetch remote data blocks
on demand, and thus escape detection. Additionally, since 2020, Intel has excluded SGX trusted
time from Linux PSW, leaving Dang et al. [66] and ReliableBox [108] deprecated. As a result,
it is not practical to use the enclave for time measurements. Furthermore, as discussed below,
ReliableBox focus on the triangulation task and is unable to verify if the audited node keeps the
files locally or remotely.

Geolocation of the Node Being Audited. Some applications may require the geolocation
of the machine being audited. The geolocation problem is orthogonal to the problem of timely
retrievability and we advocate that these problems must be addressed by different, complementary,
mechanisms. Geolocation typically requires the use of multiple auditors (namely, to perform
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Figure 3.2: System architecture.

triangulation) while, as we show in this chapter, timely retrievability can be achieved using a
single auditor. This separation allows performing the proof of geolocation only sporadically (for
instance, when the machine boots) and then run a proof of locality more often.

One way to perform triangulation is by leveraging One-Way Delay (OWD) estimation.
ReliableBox [108] measures the duration of the challenge both at a set of remote auditors and
inside the enclave. It then computes the time difference between these two measurements to
estimate the Round-trip time (RTT) between the auditors and the server, performing geolocation
via triangulation. Unfortunately, ReliableBox only captures the network delays and is unable to
assess accurately the duration of the proof construction at the audited node. This means that
the response to the challenge can take an arbitrarily long duration (e.g. when data is stored
in a remote node) without affecting the operation of ReliableBox: triangulation would still be
accurate but the result of the challenge cannot guarantee data locality or any other properties.
To provide both geolocation and timely retrievability, schemes such as ReliableBox need to be
combined with schemes such as the one we proposed here.

3.3 System Architecture

We now present our system architecture in the context of edge computing that includes an
auditor, a set of fog nodes, and a set of remote storage systems connected to the fog nodes (see
Figure 3.2). Our proof, presented in the next section, is computed by a fog node to prove that it
can access data with a latency lower than a given agreed threshold δ.

3.3.1 Assumptions

The protocol for obtaining a proof is executed between two nodes: the auditor and the
audited fog node. A fog node is said to be correct if it can retrieve the files assigned to it with a
latency lower than some given threshold δ. Any fog node that cannot satisfy this requirement is
denoted faulty. The value of δ is application specific, but can be small and, in some cases, can
only be satisfied if data is stored in a storage device directly connected to the fog node. Providers
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should offer SLAs that define δ based on their capacity to maintain consistent performance under
varying workloads. If a provider cannot meet δ latency under under high loads, they should
consider offering an SLA with higher latency.

Our proof requires the audited node to read a configurable number N of data blocks. N
can be conservatively selected to mask worst-case errors that may result from the variability of
access to local storage and the variability in round-trip times. We also show that knowledge of
the distribution of network delays and the distribution of storage access delays can be used to
optimize the value of N when auditing honest nodes. Interestingly, these optimizations cannot
be exploited by a rational provider to evade auditing. The configuration of PoTR is discussed in
Section 3.5.3.

We assume that each fog node has a processor with Intel SGX, as we rely on the guarantees
provided by a TEE. We assume that the auditor has the guarantee that it communicates with
the expected enclave, due to the attestation process [57, 128], and also that the integrity and
confidentiality of the data and code inside the enclave are guaranteed [57]. As explained in
Section 3.2.3, the enclave cannot read a reliable system clock [11, 7]. However, the enclave can
provide us with the guarantee that the proof is effectively built at the audited node, which is the
property we leverage in the solution [128].

Finally, we assume that it is not feasible for the edge storage provider to reallocate enough
objects in less than δ at the beginning of the audit, from a remote storage location. As it will
be seen, our audit executes quickly (under 500ms), limiting the number of files that can be
downloaded in time, even if the edge node has a high bandwidth link.

3.3.2 Fog Node Storage Organization

The edge storage provider is responsible for storing the files in the fog layer and ensuring
that the files are stored in such a way that they can be retrieved with a latency lower than δ, the
SLA defined threshold.

In each fog node with Intel SGX, local documents are kept in the untrusted part, as the
storage capacity of the enclave is limited [57]. Thus, if the processor is running inside the enclave,
there must be an exchange between execution environments to read a data item (from the enclave
to the untrusted part). Even if the data item is remote, there is also an exchange of execution
environments, as the untrusted part is responsible for communicating with remote machines [57].

The set of auditable files is known to both the auditor and audited node and sorted in
a deterministic manner. Thus, both parties can use the index of a file in the sorted list as a
mutually agreed short unique identifier for that file. We denote this index by set index. However,
agreeing on the set of files and supporting file modifications is beyond the scope of this work. For
simplicity, files assigned to a fog node, including their content, do not change. The modification
of files can be trivially supported using versioning.

3.3.3 Enclave Geolocation

The goal of PoTR is to check whether a given node stores data locally. When an enclave is
attested, it is possible to uniquely identify the specific enclave, but attestation does not reveal its
location. Therefore, PoTR alone cannot ensure that data is stored at a given target location; for
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that, one also needs to geolocate the node. Several geolocation techniques have been proposed in
the literature [50, 185, 1] and any of them can be combined with PoTR to ensure data locality
and geolocation. Although geolocation proofs are orthogonal to our work, we briefly sketch two
methods to discover the location of the enclave: 1) Proximity Attestation – the auditor physically
launches the enclave in the local machine at the correct location and exchanges a certificate with
that enclave for later authenticating the same specific machine/enclave; 2) Triangulation – any
technique of triangulation can be applied without requiring heavy cryptographic operations (the
goal is to geolocate the machine and not data), so the accuracy is not compromised in any way
by the storage proof.

3.4 Proof of Timely-Retrievability

We now introduce the Proof of Timely-Retrievability (PoTR) mechanism: a storage proof
that aims to assess whether a storage node can access stored data with a latency smaller than
some specific threshold δ. The auditor can select the value of the δ parameter based on the
specific requirements of a given application, but it is typically small and, in some cases, can only
be satisfied if the audited (edge) node keeps the data locally. With the goal of applying the proof
in edge computing scenarios, we assume small values of δ, in the order of the time required to
read a data block from the local disk. By supporting such strict values of δ, PoTR is capable of
distinguishing the case in which the fog node stores the data locally (Figure 3.1a) from the case
it keeps it in some remote node or cloud (Figure 3.1b).

The PoTR is obtained by the storage node in response to an audit, so our solution requires a
machine with auditing capabilities. We do not restrict the placement of these auditing machines,
as there may be many geographically distributed fog nodes [138]. Therefore, our proof was
designed to be obtainable from an audit machine anywhere on the Internet. This property offers
a lot of flexibility regarding the deployment of the auditor and allows a single auditor to perform
audits on a large number of fog nodes.

Alternatively, it could be possible to use multiple auditors and combine our proofs with
related work to achieve better accuracy. However, we strive to design our proof to rely on a single
auditor for easy, efficient, and cost-effective deployment and execution of our PoTR. Another
alternative could be to ask clients to report the latency they observe and use this information to
perform the audit. However, this approach raises many privacy challenges; an attacker could infer
the client’s location based on its latency to a fog node. If a PoTR can be extracted independently
of the auditor’s location, we avoid these limitations.

3.4.1 Challenges

In the design of our PoTR, we face some obstacles, namely: i) the timing information
provided by the audited node cannot be trusted [11], thus the time to produce the proof must be
measured by the auditor; ii) the network between the auditor and the audited node is subject
to variance that introduces errors when estimating the time the audited node took to produce
the proof; iii) storage/fog nodes are heterogeneous [138], and the time they require to perform
computations and read data (even if the data is local) is not constant, so the proof should
be based on average values from multiple readings; and iv) the audited node may attempt to
delegate the generation of the proof to another node that has faster access to the data than the
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audited node itself, so it is required to ensure the proof is produced by the audited node, and
not delegated.

3.4.2 Design of the Challenge

The challenge requires the untrusted part of the fog node to access a given number of data
objects, in a certain sequence, and return, at the end, a value related to these data objects. The
delay the fog node takes to read these data blocks, and to compute the final value, is used by the
auditor to estimate the reading delay observed at the audited node and to check if it matches the
target threshold δ.

Each challenge (implicitly) specifies a sequence of files that must be accessed by the audited
node, and each file is uniquely identified by a set index. For efficiency reasons, the fog node for
each file reads a data block of size sb, instead of the entire file. In practice, the block size should
be a multiple of the block size used by the fog node file system.

In each challenge c, the fog node has to read a pseudorandom and unpredictable sequence
of N data blocks (each of size sb), and return a cryptographic hash of the concatenation of all
data blocks accessed. The number N of data blocks is a configuration parameter that influences
the accuracy and efficiency of the challenge: the higher the value N , the more accurate but less
efficient the proof. The approach to configure this parameter is explained in Section 3.4.4, and if
the user is unable to configure sb, it is still possible to execute our challenge defining only N , as
discussed in Section 3.5.3.

The pseudorandom sequence of the data blocks is determined by a nonce ηc (unique per
challenge, and generated by the auditor) and the content of the data blocks. For each challenge,
the auditor sends the nonce (encrypted with a symmetric key), the number N of data blocks and
the size sb of a block to the enclave. To ensure that the nonce ηc is not disclosed to the untrusted
part, the nonce never leaves the enclave. The untrusted part only has access to a cryptographic
hash of the nonce, we denote this hash as #index. With the #index, the untrusted part is able to
determine the set index of the first file to be accessed. The set index is determined by applying
the modulo function (mod) to the hash with the total size of the set of files, i.e., the set index is
the remainder of the division of the hash by the number of files.

Since the fog node has to read a data block of size sb, and not the entire file, the auditor
sends to the enclave a second nonce ηcb that will determine a data block inside the file, with the
computed set index. The enclave, in turn, computes the cryptographic hash of this second nonce
and forwards the result to the untrusted part. Both nonces are hashed by the enclave, to ensure
that the untrusted part does not know them in plain text. Otherwise, the untrusted part could
maliciously predetermine the N data blocks. Now, with the hashed ηcb , and the total size of the
file to be accessed, the untrusted part can determine the data block, with size sb, inside the file
to be retrieved, by applying the modulo function.

When the untrusted part receives the first #index from the enclave, it proceeds to determine
and read the corresponding initial data block. It then calculates a cryptographic hash of the data
block’s content, combined with the #index, resulting in result hash. Subsequently, the untrusted
part returns the value of result hash to the enclave. The enclave, in turn, computes a new #index
by hashing the response result hash together with the nonce ηc. This newly generated #index is
then forwarded to the untrusted part, which uses it to identify the next file.
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Figure 3.3: PoTR challenge execution. set indexi is the index of a file, and block indexi is the
index of a data block with size sb inside filei. blocki is the read data block. sk is a secret key
between the auditor and the enclave. #index is a hash.

For each subsequent hash, the untrusted part repeats the execution of the modulo function
to obtain the next set index and the index of the data block within the identified file. It reads
the corresponding data block and calculates its cryptographic hash together with the file #index,
yielding result hash that is returned to the enclave. The enclave computes two new hashes (block
and file index), and this process continues until all N data blocks are read. Note that each
new #index is computed using the hash of the previously retrieved data blocks. Finally, the
enclave computes a final hash using ηc and sends the result back to the auditor as the conclusive
proof. The auditor, upon receiving the final hash, repeats all the aforementioned computations
to construct a verifiable version and verify the correctness of the proof. If both computations
match, the issued proof is deemed correct. In Figure 3.3, we present in detail all the steps of
our communication protocol in the execution of our PoTR challenge. We separate the steps on
the auditor’s side between the untrusted part and the enclave, where the sensitive parts of our
challenge, such as the nonce, are always securely stored inside the enclave.

Security Guarantees: Each challenge requires two unique nonces that will determine in a sequential
and pseudo-randomly faction which N data blocks the untrusted part must read. This interaction
with the enclave ensures that the fog node is unable to retrieve the N data blocks in parallel
from neighboring nodes. Instead, it must retrieve one block at a time to determine the next
block it needs. Additionally, the dependency between data blocks, since the next block index
depends on the content of the previous one, ensures that the fog node cannot reuse outputs
from previous challenges, thus maintaining challenge freshness. The constant exchange between
execution environments (enclave to untrusted part and vice versa) guarantees that the fog node
cannot rely on a remote machine for the entire proof computation. The proof is computed solely
on the expected machine [128]. It is important to note that through the verification of proof
correctness, the auditor can assess the integrity of the stored documents. Any modification to a
file will render the proof invalid.
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3.4.3 Reading Delay δ at the Audited Node

In addition to checking proof correctness, the auditor has to check the proof timeliness. When
the challenge is sent to the enclave of the audited node, the auditor starts a timer that is stopped
when the proof is received. A proof is valid if it is correct and the reading delay estimation, for a
single data block, is acceptable to the auditor.

Having Ti as the time elapsed between the auditor sending the challenge i and receiving the
response from the fog node, Ti can be decomposed into different factors, namely:

Ti = rtti + α1
i + . . .+ αN

i + δ1i + . . .+ δNi (3.1)

where rtti is the network round trip time for challenge-response messages, N the number of data
blocks to be accessed, αj

i the delay observed at the fog node to compute the cryptographic hash

of a given data block j and compute the index of the next block, and δji the delay observed to
read a data block j. Note that for sufficiently large values of N , we will have the following:

α1
i + . . .+ αN

i

N
= αi ≈ α

δ1i + . . .+ δNi
N

= δi ≈ δ (3.2)

However, the auditor is unable to measure accurate values for rtti, αi and δi, as they are
different and variable in each challenge i and the auditor is only able to measure the total delay
Ti. Therefore, to estimate δ, i.e., the actual mean delay a fog node takes to read a data object,
in our work we resort to mean values:

Ti = rtt+Nα+Nδ (3.3)

δestimate =
Ti − rtt−Nα

N
(3.4)

Therefore, the estimate error for a given challenge i will depend on how far the observed
values are from the mean values. The rtt is calculated independently of our challenge, being
obtained by measuring several network samples and dividing them by the number of samples.
Experimentally, we verified that the α values are subject to a negligibly small variance, whereby
we assumed αi = α, i.e., we ignore the error introduced by α sampling. Therefore, the error of
the estimate δestimate depends on two factors: i) the reading error εδ when estimating δ (which
depends on the sample size, i.e., the number of data blocks accessed) and ii) the variance between
the observed network round-trip time (rtti) and the expected mean value (rtt), divided by the
number N of data blocks, as Equation 3.5 describes:

εrtt =

∣∣rtti − rtt
∣∣

N
=

∆rtt

N
(3.5)

3.4.4 Configuring the Challenge

The challenge can be configured by providing two parameters: the maximum error εδmax that
he is willing to tolerate, when estimating δ, and the reliability of the challenge ϕ, a parameter
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specified by the auditor that captures the probability of estimating δ with an error lower than
εδmax (in practice we use the 99.99 percentile). As noted before, the error of the estimate εδmax

results from the variance of local reads experienced by the audited node (εδimax) and by the

variance of the network delays (εrttmax), i.e., ε
δ
max = εδimax + εrttmax. For both sources, the error

diminishes with the number of samples N , thus, N should be chosen so that εrttmax + εδimax < εδmax.

Let εδ
j
i be the difference between the average access latency δ and the latency observed when

reading block j during the execution of challenge i. The error caused by the variance of storage
access in a given challenge i is given by:

εδi =

∑N
j=1 ε

δji

N

Given ϕ, the expected value of εδmax can be derived from the distribution of the access delays.
Similarly, with the inverse cumulative distribution function (ICDF) of the network distribution,
we can also calculate the expected maximum difference between the observed value rtti and the
expected mean rtt that matches ϕ.

3.4.5 Network Delay Distribution

Our proof is capable of finding the correct δestimate even if delay distributions are unknown, by
choosing worst-case default values that can be used conservatively (see Section 3.5.3). However,
it is possible to leverage information regarding the network delay distribution to select a more
efficient N value such that the sum of both errors is kept below a target value of εδmax. We show
this in the concrete edge node scenario in Section 3.5.4.2. This optimization, based on measuring
network behavior, is safe and cannot be exploited by a malicious provider. The provider can
introduce artificial delays when replying to the auditor, but this will not reduce the variance
that is introduced by the network itself; on the contrary, it may only increase the variance. In
turn, this may force the auditor to use larger values of N than strictly required, increasing the
accuracy of the proof at an extra cost to the malicious provider. Therefore, it is always beneficial
for the adversary to be honest when the network behavior is measured.

3.5 Evaluation

We now present our proof evaluation. We begin by describing our experimental setup and
the different benchmark scenarios. Then we show that our proof works even without knowledge
of network distribution. Afterward, we discuss how the challenge should be configured, for the
block size, and N samples. After finding the correct configuration, we evaluate the performance
of the challenge in the different scenarios and show experimentally that our proof can accurately
distinguish a misbehaving server from a correct server, in the context of edge computing. Finally,
we evaluated different alternatives to reduce the impact of our proof on the audited node.

3.5.1 Experimental Setup

We resorted to two different types of machines: 1) Intel NUCs to represent fog nodes, and 2)
virtual machines in the Windows Azure cloud to represent remote entities. For NUCs, we have
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Figure 3.4: Overview of PoTR δ estimative without network knowledge, picking a large N value
of 3000, 64KB block size.

resorted to the Intel NUC10i7FNB, it has an Intel i7-10710U CPU that supports Intel SGX, 16GB
RAM, 240GB SSD M.2, and Ubuntu 20.04 LTS. We run the Intel SGX SDK Linux 2.13 Release
and OpenSSL 1.1.1k. An Intel NUC is an example of what a fog node might be, as it possesses
modest computational resources but is relatively inexpensive for large-scale deployments. For the
cloud deployment in Azure, we resort to Standard D2ads v5 with two vcpus, and 8 GB RAM in
west Europe (Netherlands) the closest data center to our laboratory; our laboratory is located in
a European capital. We leverage these two types of deployment to create different scenarios and
evaluate our storage proof; we explain our scenarios in more detail in the next section.

For the stored data that our proof is responsible for auditing, we generated 150GB with
random data divided into files of 1GB, our proof leverages a hash function to choose the next
block to be accessed; this offers uniform distribution access over the 150GB of data. In our code
implementation, we used the SHA-256 function as a cryptographic hash function and AES in
GCM mode with 128 bit keys to cipher the nonces, both currently considered secure [27, 111].

3.5.2 Evaluation Scenarios

In our experiments, we leverage three different entities to evaluate our PoTR storage proof:
an auditor; the audited node, which represents a fog node that stores data; and the remaining
one is the remote storage node, which is used by the audited node to access data in configurations
where it does not store the files locally. In our experiments, the fog node stores all files at the
same location, i.e., all files are stored locally, or all files are stored in the remote node.

We deployed four different scenarios to evaluate PoTR; the difference between the scenarios
is the location of the remote storage node, since the closer the remote storage is to the audited
node, the more difficult it is to detect malicious behavior. The first scenario is represented in
Figure 3.1a: the fog node has honest behavior and stores all data locally. Figure 3.1b presents the
malicious behavior that the edge provider can adopt by resorting to remote storage. Figure 3.1b
represents the three remaining scenarios in which we vary the location of the remote storage from:
a) a virtual machine on the Azure cloud; b) a NUC on a different campus of our university; c) a
NUC located in our laboratory and connected through a switch to the audited node, with a mean
network delay of 0.1ms. Regardless of the scenario, both the auditor and the fog node/audited
node do not change their location, the auditor is running in the Azure cloud, and the audited
node in an NUC at our laboratory. By deploying different machines at different geographic
locations, we capture the different variations and delays of wide-area links.
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Figure 3.5: PoTR experimental error for different scenarios and block size, EOE is Experimentally
Observed Error.

3.5.3 PoTR Without Network Knowledge

As stated in Section 3.3.1, the efficiency of PoTR can be improved given knowledge on the
distribution of network delays and access delays. When executing PoTR without this knowledge,
a large default value for N should be used, enough to compensate worst-case network variance;
we show that a default value N = 3000 can be safely used in most scenarios. We have selected
this default value based on latency measurements from our laboratory to the farthest Azure data
center1, the Australia Central 2. We have observed an average RTT of ≈ 286ms and a maximum
latency of ≈ 1143ms. When considering a network variance with this order of magnitude in
Equation 3.5, by setting N = 3000 we can reduce εrtt to ≈ 0.28ms. In this scenario, the variance
in storage access delay is negligible compared to the network variance.

Figure 3.4 shows the results of running PoTR using the default value of N = 3000 in different
scenarios. We can observe that it is possible to set the SLA threshold to a small value such as
δ = 2.5ms, to ensure that the audited node has the data stored locally (the local delay to read a
data block is ≈ 1.7ms), and that our δestimate achieves high accuracy in both scenarios.

However, with N = 3000 our challenge takes approximately 5.2s to execute. When the
challenge is executed using more stable networks, it is possible to fine-tune the value of N
to achieve similar accuracy with a lower cost for the audited node. In the next section, we
demonstrate results for various values of N . For instance, with N = 500, we achieve accurate
results with a challenge executed in just 0.9s.

3.5.4 PoTR Configuration

We now derive, based on experimental results, the best configuration for our storage proof,
by setting the block size and the N value for PoTR. Note that in a situation where the user is
unable to configure the block size, they can simply use a high value for N , as demonstrated in
the previous Section 3.5.3.
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3.5.4.1 Selecting the appropriate Block Size

To find the appropriate value for the size of the block to use in our challenge, we evaluated
the performance of the challenge with different block sizes and different N values. The results
are presented in Figure 3.5. We executed our challenge to estimate the δ value and calculated
the error relative to the real reading delay in the fog node, we present the results for the honest
fog node scenario in Figure 3.5(a) and for the nearby fog storage scenario in Figure 3.5(b). We
observe that for small values of N the results obtained exhibit a large variance and only by
increasing N do we obtain more accurate results. In both scenarios, we observe that the size of
the block has a relatively smaller impact on the accuracy of the result than the value of N . Still,
it is possible observe that, when using larger block sizes one can obtain more accurate results.
This is clearly noticeable in the scenario where files are stored in a nearby fog node, where the
configuration using blocks of 4KB takes longer to converge than configurations with larger block
sizes. Furthermore, in Figure 3.5(b), it is possible to observe that when the N value goes above
100, blocks of 64KB offers a slightly smaller error than blocks of 16KB. For these reasons, we
opted to set our challenge with blocks of 64KB.

3.5.4.2 Finding the appropriate value for N

As described in Section 3.4.4, the value N can be determined by providing εδmax, which
depends both on the network error and the reading error, this network knowledge allows us to
find an optimal value for N . Figure 3.6 presents the estimated error for our challenge under
different percentile values, of the reliability ϕ, for each error εrtt and εδi (these two were measured

experimentally). Note that εδmax decreases as we increase the value N , this results from the
impact that N has on εrtt reducing its effect on the challenge, on the other hand, εδi has a
negligible impact on εδmax, ε

δi is mostly below 1ms reaching at most 5ms. Figure 3.6 also presents
the measured error of our challenge in real experiments in the four different scenarios presented

1We leveraged this website: https://cloudpingtest.com/azure

https://cloudpingtest.com/azure
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Figure 3.7: Distribution and correspondent averages for reading delay δ, in milliseconds, for
different scenarios where PoTR is configured with N = 250 and 64KB block size.

earlier. We observe that the error increases when we also increase the distance between the data
and the audited node.

Both ϕ values of 100th and 99.99th percentiles are able to predominantly capture the real
observed error of our challenge. We use the estimated error to choose a desirable value for N ; in
this case, we chose N = 250 since this is where we observe the last most significant reduction
in the estimated error of −6.1ms, versus the increase in the value of N , of 150. As expected,
increasing the value of N also improves the accuracy of our challenge, for N = 10 we obtain an
error of ≈ 5ms, which can be undesirable for edge environments, while for N = 250 the observed
error is only ≈ 0.1ms, such a small error can provide a δestimate with high reliability.

3.5.5 PoTR Accuracy

Using the configuration parameters derived from the previous analysis, i.e., using a block
size of 64KB and by setting the number of samples N to 250, we have executed our challenge
in multiple scenarios and captured the distribution of the data access latency estimated by our
challenge. We compare the estimated values with the real values, observed at the audited node
itself. The results are depicted in Figure 3.7. Each point in the figure represents either the real
latency to access a data block or the δestimate to access a block resulting from the execution of
our challenge.

It is possible to observe that our challenge estimate closely approximates the real value
with a small error, as discussed in Section 3.5.4. The error between the real value and δestimate

increases as the audited data move further from the audited node. This happens because the
farther away the audited node is, the more likely the network delay exhibits a larger variance.
Nonetheless, our challenge can still distinguish whether the data is local to the fog node or at a
remote site. The accuracy of the PoTR is sufficient to differentiate between scenarios where files
are stored locally or at a nearby fog node. Even with a latency difference of less than 1.5ms, our
PoTR accurately identifies the configuration used by the audited node.



3.5. EVALUATION 41

Evolution of Time
0

500

1000

1500

2000

Pa
ra

lle
l c

lie
nt

th
ro

ug
hp

ut
 (o

p/
s)

Challenge Start

57%

Challenge End

Normal Client Throughput Client Throughput During Challenge of 64KB Block Size

Figure 3.8: Challenge impact on concurrent reads.

Looking at the results in Figure 3.7, our PoTR enables the establishment of a threshold
to accurately differentiate between a correct node (storing all files locally) and a faulty node
that stores files elsewhere (even if they are kept in nearby nodes). This threshold is determined
by setting a very strict value for δ in the SLA, such as the 100th percentile for reading delays
measured locally at the fog node. The 100th percentile line, located at 2.2ms, corresponds to
0.005% false positives and 0% false negatives (we define as positive the detection of malicious
behavior of the audited node).

3.5.6 Overhead Imposed by a PoTR Challenge

We now assess the overhead imposed on the audited node while it responds to a challenge.
For this, we run a local client that performs read/write access to the data stored on the edge
node, and then we measure the loss in throughput of that client during challenge execution. The
results are shown in Figure 3.8.

The throughput of the concurrent client decreases by approximately 57% during the processing
of the challenge by the audited node. This is expected as our resource-constrained edge nodes
need to access multiple files and compute their digest to respond to the challenge. Despite this
non-negligible overhead, we argue that its impact on the overall operation of an edge node is not
significant in practice. The challenge typically takes less than 500ms to complete, and auditing
occurs sporadically in most scenarios (e.g., once per day). Nonetheless, in the next section, we
discuss and evaluate strategies to further reduce this overhead.

3.5.7 Strategies to Reduce PoTR Overhead

We considered three complementary avenues to attempt to reduce the overhead of running a
challenge in an audited node. The first was to1modify the implementation, taking advantage
of switchless calls [179] that reduce the ECall/OCall overhead. The second was to use blocks
size smaller than 64K. As discussed earlier, smaller sizes can reduce the accuracy of the test
but can have an impact on the overhead. Finally, one can simply reduce the number of samples
N . By reducing the number of samples, one would reduce the challenge duration and therefore,
the period during which clients would be affected by the concurrent execution of a challenge.
However, as we show in this section, using switchless calls or reducing the size of the blocks has
a minor impact on the overhead.
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Figure 3.9: PoTR duration and throughput impact on concurrent reads, Blk is block, and Sw is
switchless.
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Figure 3.10: False positive and negative rates of PoTR under different N values for honest and
nearby fog node scenarios.

Figure 3.9 shows how the use of switchless calls, different block sizes, and different values of
N , affect the drop in throughput observed by clients during the execution of the challenge and
also the duration of the challenge.

It is clear from Figure 3.9a that the drop in throughput during the execution of the challenge
is roughly the same regardless of the block size used or the use of switchless calls. Switchless
calls offered a small performance improvement, just a latency reduction of ≈ 1.6% in the best
case. When considering block size, the largest difference is observable from 256KB block size,
with a throughput reduction of −55%, versus 4KB block size alternative, with a reduction of
−38%, relative to the parallel client. This is not a large improvement considering that the 256KB
block size is 64 times the 4KB block size. This is because, during the execution of our challenge,
our disk access is continuous, independently of the block size, and therefore the impact on other
clients will be similar; however, our challenge duration may vary. Additionally, as discussed in
Section 3.5.4.1, having a very small block size can still affect our storage proof error.

These results suggest that the only effective way to reduce the overhead of the challenge
is to reduce its duration. Figure 3.9b shows that, although block size has some impact on the
duration of challenge executions, its impact is relatively minor compared to the effect of reducing
the number of samples N . This indicates that the most effective strategy to reduce the overhead
of the challenge is to reduce the number of samples, as this reduces the duration of the period in
which clients are affected. Of course, as discussed before, reducing the value of N will degrade
the accuracy of the test, increasing the chances of producing false positives and false negatives.
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Figure 3.10 shows the effect of N on both false positive and false negative rates when using
the threshold δ = 2.2ms, as discussed in Section 3.5.5. In this analysis, we consider the scenario
where a faulty node stores data at the nearby fog storage, as this is the scenario where it is
most challenging to accurately detect a misbehavior, given the small difference between the
latency offered by correct and faulty nodes. It is interesting to observe that our PoTR offers a
false negative rate close to 0% for most values of N . Therefore, even where the values of N are
smaller than 250 (the required to obtain the best accuracy), our PoTR will detect a misbehaving
client. Unfortunately, the true positive rate can increase significantly when using low values of
N , risking identifying a correct node as faulty. More precisely, the false positive rate increases
slowly as we decrease the number of samples from 250 to 100 (at this point, our PoTR offers a
false positive rate of approximately 1%), but then increases sharply. For values of N smaller
than 100 the challenge no longer provides acceptable values for the false positive rate.

In summary, by tolerating a small fraction of false positives, the auditor can reduce the
challenge overhead by decreasing the number of samples from 250 to 100. This roughly halves
the period during which clients are affected by our challenge.

3.5.8 Combining Multiple PoTR Configurations

As seen in the previous section, using a reduced number of samples, 100 instead of 250, our
challenge imposes significantly less overhead while still obtaining a negligible false negative rate
and a very small positive rate (≈ 1%). Faced with these observations, we conclude that in some
deployments the auditor should combine different configurations of the PoTR: one that is cheaper
and works 99% of the time; another that is more expensive but provides extreme accurate results.

For example, the auditor might use N = 100 to challenge the audited node. If the node
was flagged as malicious (a positive), the auditor could then launch a second challenge with
N = 250, to filter out false positives. Note that in such a case, the combined challenge would
read on average 102.5 (0.01 × 100 + 0.01 × 250 + 0.99 × 100) blocks instead of the 250 in the
normal auditor, a reduction of 41% on average for the number of blocks required to execute our
challenge. Notice that, as hinted before, for N = 85 this strategy would no longer be worth it
since it would require reading 257.5 (0.69× 85 + 0.69× 250 + 0.31× 85) blocks on average, which
is larger than the 250 required by the normal auditor solution.

Summary

In this chapter we presented our novel auditing mechanism that is capable of extracting a
proof of timely-retrievability, that is, a proof that a given storage node is able to serve requests
without violating some given data access latency constraint δ. The proof is designed in a way
that, if the storage node does not store locally a significant fraction of the objects, it will be
unable to respond in time. We enforce our proof to be executed in the audited node by leveraging
SGX enclaves, for iteratively revealing the next data block to be read to the untrusted part.

Our evaluation shows that our proof can accurately detect a node that cannot satisfy the
target latency constraint δ under different edge computing scenarios, resulting in the detection
of a misbehaving storage provider.
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The significance of auditing tools for cloud storage has been well-established, enabling clients
to utilize cloud storage providers without complete trust. With the advent of new edge storage
solutions managed by numerous local providers, clients have even more reasons to be cautious
with these new providers. Therefore, the development of auditing mechanisms for edge storage,
such as our PoTR, is increasingly vital. We are confident that this contribution will enable the
implementation of diverse edge storage systems more reliably and transparently, thus promoting
and easing their adoption.

In the next chapter, we introduce the RRPs, an anonymous authentication scheme that
offers backward unlinkability. RRPs present a novel cryptographic scheme enabling edge clients
to perform authentication while preserving their privacy. The RRPs scheme is constructed
solely based on public key encryption, achieving the low latencies required for the authentication
process in edge environments.
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Providing Backward Unlinkability:

RRP

This chapter introduces and evaluates a novel abstraction named Range-Revocable
Pseudonyms (RRPs), an anonymous authentication scheme that provides effective backward
unlinkability based solely on public key encryption.

The remainder of this chapter is structured as follows: Section 4.1 provides the motivation
and outlines the goals for this contribution, while Section 4.2 reviews related literature, and
Section 4.3 describes our assumptions. Section 4.4 presents the RRP algorithm, and Section 4.5
offers an extensive proof of our scheme’s unlinkability. Section 4.6 proposes an implementation
of our scheme in an access control system tailored for the edge environment. Finally, Section 4.7
presents experimental results to demonstrate the practicality of our proposed scheme.

4.1 Motivation and Goals

Anonymous authentication offers both accountability and privacy, protecting clients from
curious application providers while ensuring that only authorized participants are able to use
the application [156, 106, 113, 174]. The number of edge applications requiring anonymous
authentication is on the rise, and many of these applications will depend on edge storage.
Examples include crowdsensing [88, 151, 144, 173] and Vehicular Networks (VANETs) [158, 87, 32],
which may need to access local maps or publish information about their environment for the
common good. To ensure the reliability of edge storage systems and subsequently these edge
applications [155, 88], the client authentication is a crucial mechanism to provide accountability
for malicious and erroneous activity. Unfortunately, as previously discussed in Section 2.3.2,
authentication can compromise user privacy, as it may be associated with sensitive information,
such as location [151]. This is exacerbated by the fact that, in most of these applications, clients
are mobile and may need to authenticate frequently, e.g., when they move to the range of a different
base station or cell. Multiple authentications may be linked to extract additional information
such as daily routines [88] or health status [121] for financial gain [132, 51, 119, 18, 184, 34].
Anonymous authentication can be achieved using Group Signatures (GS) schemes [48, 37, 173]
or pseudonym certificates [126, 47].

A challenging task in this context is to support revocation without violating privacy. Revoca-
tion aims to prevent some clients from further authenticating in the system. Client revocation may
be required in the event of credential misuse, sensor malfunctioning, change in client privileges,
stolen secret keys, or when a client leaves voluntarily. Client revocation can be implemented in
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different ways. We distinguish two main classes of revocation strategies, namely, global client
revocation and verifier local revocation.

Strategies based on global client revocation require all clients to obtain new credentials (or
update their credentials) every time a single client is revoked. Examples of this strategy include
Ateniese et al. [17] (where the group public key is renewed at each revocation) and Ohara et
al. [147] (where a small public membership message is broadcast at each revocation). These
approaches make revocation very onerous in scenarios with many clients (e.g., consider vehicle
numbers in VANETs) and impractical in mobile settings, where clients may become temporarily
disconnected from the network.

Strategies based on Verifier Local Revocation (VLR) [37, 42] do not require that all clients
are contacted when a given client is revoked. Instead, only the nodes that perform authentication
(often called the signature verifiers) have to be informed about the revoked clients [165, 8, 112,
174, 106, 173]. In systems that use pseudonyms, this involves sending to the verifiers a Certificate
Revocation List (CRL) with the pseudonyms of the revoked client. In systems based on group
signatures, this involves sending a cryptographic token that can be used to trace the digital
signatures of the revoked client.

As describe in Section 2.3.2, a problem with with these approaches is that, if one or more
credentials have been used before revocation, an attacker can cross-check the information used for
revocation with the information collected when those pseudonyms were used to break the privacy
of the client. In order to respect backward unlinkability [95, 113, 106, 139], client revocation
should not allow linking credentials that have been used prior to the revocation. Previous
strategies to provide backward unlinkability assign credentials that are valid only during a given
time slot of a certain duration [95, 113, 156, 173]. Then, when a client is revoked, only the
credentials for future time slots are revoked and no information is disclosed regarding credentials
used prior to revocation. One can divide these recent strategies as GS with time-bounded
keys [52, 76] or pseudonyms with time slots [95, 113]. However, these schemes require the use
of revocation lists whose size grows linearly with the number of time slots which, in practice,
preclude the use of fine-grain time slots.

Revoking only the credentials for future time avoids backward linkability but, unfortunately,
if time slots are large, it may be unacceptable to let revoked clients continue accessing resources
until the current slot expires. For this reason, many systems immediately revoke the credentials
for the current time slot, at the expense of exposing the client’s privacy during that period [95,
113, 106, 139]. Our new class of pseudonyms supports efficient revocation even when fine-grain
time slots are used, avoiding this dilemma.

In this section, we present our new anonymous authentication scheme,
Range-Revocable Pseudonyms (RRPs), which has the following objectives:

Goal 1: Propose a new class of pseudonyms, RRPs, that can be revoked for any time-range
within their original validity period while respecting backward unlinkability. Clients hold a
number of RRPs that is proportional to the number of authentication actions they need to
perform, regardless of the granularity of the linkability window. Each RRP should be used at
most once during its lifetime. In runtime, the RRP can be used to generate a capability that is
only valid for the specific time slot where the RRP is being used. The key feature of RRPs is that
the information provided to revoke a pseudonym for a given time-range cannot be linked with
the information provided when using the pseudonym outside the revoked range. In particular, if
a pseudonym is revoked at some point in time, it is impossible for an attacker to find out if that
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pseudonym has been used before that time. We provide an algorithm to implement RRPs where
the space complexity of the pseudonym is constant, regardless of the granularity of the revocation
range, and the space complexity of the revocation information only grows logarithmically with
the granularity; this supports the use of fine-grain slots and makes the use of RRPs far more
efficient than the use of many short-lived pseudonyms. We show that RRPs can be used to solve
efficiently the backward unlinkability problem for anonymous authentication.

Goal 2: Demonstrate the feasibility of RRPs in an edge use case. We implemented an access
control system, named EDGAR, that uses RRPs to offer backward unlinkability. EDGAR
illustrates how edge applications, such as VANETs, can leverage RRPs to enforce access control
to local edge storage or resources. In EDGAR, we deploy Pseudonym Manager (PM) servers that
run on the edge of the network, serving clients with new RRPs. Since a PM server holds sensitive
information, and the edge infrastructure is known to be exposed to attacks [199, 137], we have
designed the PM server to be executed with the support of Intel SGX enclaves [129, 57, 143].
This allows the server to provide new RRPs to clients without disclosing their identities, even if
the untrusted environment is compromised.

EDGAR paves the way for arbitrarily small time slots with minimal overhead. Consider a
client who during the day goes to the hospital and before that to a nearby shop. When using
EDGAR, clients only need a number of pseudonyms proportional to the number of resources
they need to access (in this example, 2 resources), and not proportional to the granularity of the
time slots. With previous work, if the two events above could occur within 20 minutes of each
other, a client would require 72 pseudonyms; if the events could occur within 5 minutes of each
other, previous works could require 288 pseudonyms. Also, with RRPs the cost of revocation is
logarithmic with granularity: only 12 credentials would need to be revoked with a 20 minute
granularity and only 16 credentials would need to be revoked with a 5 minute granularity.

4.2 Related Work

Backward Unlinkability has been defined in previous work [95, 113, 106, 139] as follows:
when a revocation occurs, the signatures produced by the client before the revocation interval
remain anonymous. The notion of unlinkability captures the inability of an adversarial server
to link a revocation phase of the protocol to any individual signing phase. We are interested
in non-blocking approaches such as VLR [37, 42], where the credential of non-revoked clients
remain valid, and only the verifiers need to be informed about the credentials of revoked clients.
As discussed next, the most popular anonymous authentication schemes that offer backward
unlinkability are based on GS or pseudonyms. In both cases, solutions typically consist of
assigning different credentials to different time intervals and then revoking only the credentials
for future intervals. Unfortunately, in these previous works, the cost of revocation grows linearly
with the granularity of the intervals. Note that if intervals are large, it may be unacceptable
to wait for the next interval to revoke the credentials: in this case, it may also be necessary to
revoke the credentials for the current interval. Unfortunately, this makes all the credentials used
in the current interval vulnerable to being linked.

Anonymous Blacklisting is a term used to describe techniques that are able to safeguard the
privacy of revoked clients. Techniques to ensure this goal include the use of pseudonyms [182],
group signatures [171], accumulators [19], and zero-knowledge proofs (ZKPs) [180]. Most systems
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that aim to offer anonymous blacklisting also aim at offering backward unlinkability [96], but
either use computationally expensive cryptographic operations or also incur a cost that is linear
with the granularity of the linkability window. For example, BLAC [180] relies on inherently
computationally expensive ZKPs [96]. We avoid the use of ZKPs to implement RRPs due to
their high cost; instead, we explore more efficient approaches.

Accumulators, Symmetric Keys, and IBE: Cryptographic accumulators [45] may be
vulnerable to linkability [171], i.e., the previously performed operations become linkable when
a user is revoked. These solutions also lack VLR since clients need to update their witness
at each revocation [19, 44]. Credentials based on symmetric keys [32] require a high level of
trust in the verifier and are susceptible to identity theft if the verifier is compromised [100].
Nymble [182] achieves backward unlinkability but requires a central manager to share a symmetric
key with every verifier. Credentials based on Identity-Based Encryption (IBE) [36] do not provide
anonymity (as they consider the user’s identity as the public key) and incur considerable overhead
due to expensive cryptographic operations.

Group Signatures with Time-Bound Keys: GS [48] allow different signatures produced by
different group members to be verified using a common group public key, achieving anonymity
in the set formed by the group members. GS schemes have been augmented with mechanisms
to support VLR, as suggested by Brickell [41] and formalized by Boneh and Shacham [37].
Unfortunately, in this scheme, the revocation is performed by publishing a cryptographic token
that links all the signatures produced from a revoked member, compromising the anonymity of
signatures produced before the revocation. Nakanishi and Funabiki [139] extend [37] to offer
backward unlinkability while preserving VLR. Their approach divides the time into slots and
locks a different secret key for each slot, revoking only the keys for current and future slots. Chu
et al. [52] introduce the notion of Time-Bound Keys (TBK) by setting a configurable expiration
date in each key, improving the revocation performance in VLR-GS schemes. In recent years,
different solutions have been proposed, following a similar path while aiming to reduce the
revocation cost and complexity. LBR [171] requires a trusted online manager to check revocation.
Rahaman et al. [156] embed pseudoIDs in private key parameters and ties the pseudoID to an
epoch, improving the revocation check complexity to log(R), where R is the size of the revocation
list. Emura et al. [76] propose an efficient solution with a constant signing cost, but clients are
required to download expiration information at each time slot. In Sucasas et al. [173], the authors
also achieve backward unlinkability, yet, their solution prevents clients from participating in the
same task several times. Ishida et al. [106] leverage a mixture of IBE with GS, generating IBE
private keys locked to time slots. However, their revocation is still based on the GS private key,
also having O(R T ) (where T is the number of time slots). Despite the interesting properties
of GS schemes, GS solutions are usually complex and some may require heavy cryptography
operations (such as ZKPs), resulting in few implementations and deployments in real-world
scenarios.

Pseudonyms with Bounded Time Slots: Client anonymity can also be achieved by using
pseudonyms. These can be implemented using a Public Key Infrastructure (PKI), where clients
maintain multiple keys to represent pseudonyms [32, 165, 161]. Pseudonym-based solutions also
struggle to offer backward unlinkability. Some solutions invalidate global information, forcing
clients to renew credentials at each revocation [45, 87], failing to preserve VLR. V-token [165],
IFAL [188] and PRESERVE [78] follow the C2C-CC standard [78], revoking only the long-
term vehicles certificates and letting the pseudonyms expire, also failing the VLR. ACPC [169]
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is inspired by IFAL, resorting to activation codes to enable valid certificates, requiring the
publication of a typical revocation list only for currently activated pseudonyms. PrivacyPass [69]
is an anonymous authentication scheme implemented in Cloudflare CDNs, unfortunately, no
revocation technique is presented. PUCA [83] requires the owner of the pseudonym to trigger
revocation, letting a misbehaving entity evade revocation. The most common solution is to
publish all pseudonyms of the revoked client in a CRL [95, 113, 194, 174], respecting VRL but
failing backward unlinkability. The challenge of maintaining the unlinkability of pseudonyms
after revocation was first addressed by Haas et al. [95], followed by Khodaei et al. [113], and
implemented in SCMS POC [194] and CAMP [46] pilots, supported by Volkswagen, Mazda, and
Nissan. These solutions associate pseudonyms with time intervals and revoke only pseudonyms
of the current and future intervals. However, all interactions in the current slot can still be linked
and an adversary can use the revocation information to break anonymity [95].

Pseudonyms at the Edge: VANETs serve as an exemplary use case to underscore the imperative
of privacy in edge storage systems. Vehicles within VANETs produce and disseminate vast
amounts of data, which necessitates storage and processing at the network’s edge. Consequently,
safeguarding privacy is of paramount importance for edge storage systems that support VANET
operations. Presently, private entities are investigating ways to capitalize on user data [184, 34,
189], frequently at the cost of user privacy. Projections indicate that the value of this market
could ascend to a staggering $750 billion globally by 2030 [184, 34]. For example, unethical
edge providers [177, 18] may sell user data to insurance companies, that can subsequently tailor
insurance plans based on individual driving habits [141]. Car-sharing and rental agencies can
exploit user data with the same purpose [85]. An attacker could also gain access to user data in
the edge infrastructure [67, 25, 65, 154, 101, 73], inferring if the certain individual is out of the
household or has been attending the hospital [127, 184, 183, 34, 150, 142, 140].

To mitigate these problem, pseudonyms are recommended in the GDPR [68] and by ETSI [79],
and are a standard practice in various connected vehicle pilot programs of major car manufacturers
(ETSI [77], IEEE [136], NHTSA [141]) such as CAMP [63], New York City [105], and Canada [9]
pilots. According to a study by ETSI on the use of pseudonyms [78], frequent pseudonym
changes enhance privacy: “the more often an ITS-S1 changes its pseudonym, the higher its
privacy”. However, revoking access rights for a client using different pseudonyms can compromise
anonymity when an adversary leverages the revocation information to link the pseudonyms [95].
Approaches that mitigate backward linkability by associating pseudonyms with time slots result
in increased storage requirements for pseudonyms at the client side and, consequently, in the
CRL [95].

Comparison: Table 4.1 summarizes the differences between the related work. We highlight that,
with our RRPs implementation, the size of the revocation information grows only logarithmically
with the number of time slots. Cryptographic accumulators do not offer VLR. Symmetric
encryption cannot protect user privacy from the verifier, and IBE schemes revoke clients by
timeout [36] (failing VLR) or issuing the user identifier in a CRL [72] (breaking anonymity).
When using GS, clients can generate multiple unlikable signatures with the same secret key,
achieving O(1) for the client storage. Some of these GS schemes revoke clients without providing
backward unlinkability, by simply publishing a token for all possible signatures [42, 52]. Other
solutions cannot provide the VLR property [171, 147]. Although GS schemes that offer both

1Intelligent Transport Systems (ITS) refer to network components, including the On-Board Equipment (OBE)
of a vehicle.
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Systems VLR BU RDS
Revocation
data size

for an epoch

PM storage
(excluding

revocation data)

Client
storage for
an epoch

Signature
size or

verification

Revocation
communication

cost
Cryptographic Accumulators

PEREA [19] ✗ ✗ S-b R T N p p R

Camenisch et al.[45] ✗ ✗ – R N 1 1 R

Symmetric Encryption

Octopus [100] ✓ ✗ – R N 1 1 R

Mix Zones [86] ✓ ✗ – R N 1 1 R

Nymble [182] ✓ ✓ S-b R p T V p T 1 R p

Identity Based Encryption

Boneh et al. [36] ✗ ✓ – – N 1 1 –

Echeverŕıa et al. [72] ✓ ✗ S-b R N 1 1 R

Group Signatures

Bringer et al. [42] ✓ ✗ S-b R T N 1 1 R

Chu et al. [52] ✓ ✗ E-b R log(T ) N log(T ) log(T ) log(T ) R log(T )

LBR [171] ✗ ✓ – R R 1 1 –

Ohara et al. [147] ✗ ✓ S-b R log(N/R) N log(N) log(N) 1 R

Emura et al. [76] ✓ ✓ S-b R T N 1 1 R

Sucasas et al. [173] ✓ ✓ S-b R p T (p + 1) N 1 1 R p

Rahaman et al. [156] ✓ ✓ S-b R p T N 1 1 R p

Nakanishi et al. [139] ✓ ✓ S-b R T N 1 1 R

Ishida et al. [106] . ✓ ✓ S-b R T N 1 1 R

Public-key Encryption

Rigazzi et al. [161] ✓ ✗ S-b R p T N p p T 1 R p

ACPC [169] ✓ ✗ S-b – N p T 1 R p

PRESERVE [78] ✗ ✓ – – N p T 1 –

IFAL [188] ✗ ✓ – – N p T 1 –

V-token [165] ✗ ✓ S-b R p T 1 p T 1 –

PASS [174] ✓ ✓ S-b R p T N p T 1 R

SCMS POC [194] ✓ ✓ S-b R p T N p T 1 R

Khodaei et al. [113] ✓ ✓ S-b R p T N p T 1 R

Haas et al. [95] ✓ ✓ S-b R p T N p T 1 R

RRPs/EDGAR (Ours) ✓ ✓ E-b R p log(T ) 1 p log(T ) R p log(T )

N : Number of clients. R: Number of revoked clients. p: Required pseudonyms.
RDS: Revocation Data Structure. S-b: Slot-based. E-b: Epoch-based.
T : The number of time slots in one epoch. PM: Pseudonym Manager. V: Number of verifiers.
BU: Backward Unlinkability

Table 4.1: Properties and complexity offered by different systems, we omit O() notation for
simplicity.

backward unlinkability and VLR simultaneously require the revocation procedure to manage a
number of credentials that is proportional to the number of time slots O(R p T ) [173, 156] and
O(R T ) [76, 139, 106]. Another limitation of GS schemes is that they rely on complex and heavy
cryptographic operations, in particular, to support revocation; this can induce large latencies
when performing authentication. PKI based schemes are appealing due to their cryptographic
efficiency and wide adoption. Some PKI schemes delay the revocation until all pseudonyms
expire [69, 78, 188, 165], breaking VLR. Previous schemes that provide both VLR and backward
unlinkability suffer from the same issue as GS scheme [174, 194, 113, 95], by locking pseudonyms
to time slots, they require revocation information that is linear with the time slots, times each
pseudonym, O(R p T ). In addition, these solutions require the clients to carry pseudonyms for
all time slots, imposing a storage burden of O(p T ).

4.3 System Model

This section presents preliminaries on RRPs and EDGAR, which is an edge authentication
system based on RRPs. In EDGAR, to perform authentication, a client first uses an RRP to
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Figure 4.1: System Overview.

obtain a capability. This capability, which is only valid for a given target time slot, is then
presented to a verifier. To revoke the use of a RRP during a range of time slots, the corresponding
capabilities are revoked. There is a level of indirection between the RRPs assigned to clients and
the capabilities used for authentication and revocation that is the enabler to achieve backward
unlinkability.

4.3.1 Entities

EDGAR is composed of three main types of entities: clients, verifiers, and a (distributed)
pseudonym manager service. We follow a nomenclature similar to previous work [156, 95].

Clients: the application client that generates signatures to perform authentication against
any verifier. Clients are the holders of RRPs that they use to generate capabilities to ensure
anonymity. Clients are responsible for renewing their RRPs when needed.

Verifiers: the component that performs client authentication before granting access to a resource,
such as edge storage. Verifiers are responsible for checking the capabilities provided by clients
before granting access. They are also responsible for updating their state by fetching the list of
revoked capabilities from the manager servers.

Pseudonym Manager (PM): this component is responsible for providing new RRPs to clients
and, when necessary, revoking capabilities generated from these pseudonyms. PM servers are the
only entity capable of accessing the true identity of a client so, in our implementation, they run
partially inside a TEE, ensuring users’ anonymity even if the device is compromised.

Administrator: a trusted entity responsible for adding clients to the system and request PMs
to revoke clients.

Figure 4.1 shows the interactions between these entities, where the PM uses a TEE. The
figure represents a typical collective perception scenario, where mobile devices are used to extend
human perception. In this example, mobile devices (the clients) authenticate towards the verifiers,
to update or download information. When required, clients can contact a nearby PM to renew
the set of RRPs used to generate capabilities. Periodically, verifiers will pull from the PM
updated revocation information.

In our system, only the PM depends on TEE support. If both clients and verifiers possessed
TEEs, implementing an anonymous authentication system would be trivial. Unfortunately, this
scenario is not realistic. Edge devices, including both clients and verifiers, are heterogeneous,
and it would be an unrealistic assumption to expect all of them to support TEEs. For these
reasons, we aim to minimize the trust base required only at the PM.
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Notation Definition Notation Definition

t/epoch Large time interval s Time slot, part of an epoch
δ Duration of a time slot s c Capability

K−,K+ Private and public key p Pseudonym
es Node label for the time slot s ERCSet/erc Encoded revoked capability sets
lx Latchkeys for es i Identifier of pseudonym from a user in an epoch
h Latchkey tree height M Extra pseudonyms to circumvent false positives
f Number of faulty nodes cid Client identifier
m Bloom filter size (bits) n Number of items inserted in a Bloom filter
k Number of hash or index functions cs Number of clients in EDGAR
fr Fraction of pseudonyms to be revoked d Branching factor of the latchkey tree
x False positive rate

I
Maximum number of pseudonyms
a client can possessN Number of PM replicas

Table 4.2: Table of notations.

4.3.2 Fault Model

For RRPs, we assume a partial synchrony model [71]. In this model there are unstable
periods when messages may be arbitrarily delayed, and stable periods when messages between
correct entities arrive within at most ∆ units of time. Additionally, we assume that correct
processes have access to loosely synchronized clocks, which can differ at most by ϵ. We assume
that at most f server nodes can be faulty. We do not place constraints on the number of faulty
clients.

Furthermore, verifiers and clients are insecure and prone to Byzantine faults [117]. PM
servers are executed (partially) inside TEEs and are only subject to crash and omission faults [64].
Thus, faulty clients may use expired or invalid credentials when contacting servers, faulty verifiers
may arbitrarily deny or grant access to resources, but faulty PMs will never provide faulty
information, and will never renew pseudonyms for revoked clients. EDGAR ensures liveness
during stable periods and offers graceful degradation during unstable periods: when the network
is unstable and nodes are unable to receive up-to-date information in a timely manner, they may
stop providing service, but never compromise safety.

4.3.3 Threat Model

We trust only administrators and PMs. Following related work [95, 165], an administrator is
responsible for adding and revoking users in the system by contacting the PM server. We assume
that each PM has a processor with TEE (e.g., Intel SGX), as shown in Figure 4.1. All other
entities within the system are considered untrusted and susceptible to the control of attackers,
potentially engaging in malicious activities. Table 4.2 provides the notations.

Malicious Client: may attempt to generate pseudonyms or capabilities to impersonate a valid
client and access resources to which it is not authorized. It can also try to use old capabilities
and pseudonyms after being revoked to authenticate towards verifiers.

Malicious Verifier: if a verifier is compromised, the resource it is tasked with protecting is
left vulnerable, but this is not the problem we consider in this paper. For example, under a DoS
attack, a verifier may be unable to refresh revocation information and should enter a “safe-mode”
(the safe-mode behaviour is application specific but may be as simple as halting).
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The problem we consider is that a malicious verifier may try to perform linking attacks
[165, 95]. Such attacks involve associating (linking) various pseudonyms with a single client,
thereby compromising user anonymity. This type of attack becomes trivial when revocation lists,
which enumerate all of a client’s pseudonyms, are disclosed. A malicious verifier could potentially
compile all observed data with the aim of deducing user identities.

Malicious Pseudonym Manager: PM code is split in two parts, one that runs inside the TEE
and one that runs outside the TEE. The latter can be compromised and engage in malicious
behavior, supporting many of the previously introduced attacks. The untrusted part of PM may
attempt to modify, delay, block, or read all messages on the system. This behavior may be done
in collusion with other entities to facilitate Linking Attacks or allow a user to evade revocation.
Additionally, in our system, we do not protect a single enclave from suffering DoS, as this is also
not covered in the Intel SGX threat model. However, we assume that a node suffering from DoS
is one of the f faulty nodes and that at most f servers can be faulty.

Trust Assumptions: Entities use asymmetric key pairs to establish secure channels. Clients
employ RRPs for authentication, integrity, and non-repudiation. Both the PM and the adminis-
trator hold unique key pairs, (K−

PM ,K+
PM ) and (K−

admin,K
+
admin), respectively, being both public

keys known to all entities. Specifically, the administrator’s public key K+
admin is hard-coded

in the enclave’s source code. We assume that the PM correctly executes our protocol within
the TEE, where K−

PM remains securely within the enclave. The PM will only revoke users if
instructed by the trusted and authenticated administrator, and will generate fresh pseudonyms
for non-revoked and authenticated clients. We assume that there is no collusion between the
trusted PM and the verifiers.

The communication between the administrator and the enclave supported by TLS using
their keys. We assume a trusted administrator who only revokes pseudonyms after informing
the corresponding clients. Revocation auditability is beyond the scope of RRPs and EDGAR.
Furthermore, both capabilities and revocation information are accompanied by a digital signature
created using K−

PM , confirming the origin from the PM TEE.

We make the usual assumptions about the security of TEEs/enclaves [57] (code/data
executed/stored inside the TEE have integrity and confidentiality guaranteed), about the
cryptographic schemes (they satisfy their security properties) and cryptographic keys (secret and
private keys are never disclosed). In the EDGAR prototype, we use Ed25519 to generate digital
signatures [33]. As a collision-resistant hash function, we use SHA-256. We use Intel SGX as our
TEE, although our scheme can be easily adapted to other TEEs. We leverage the Intel SGX
SDK inside the enclave and OpenSSL outside (all in C/C++).

Although side-channel attacks such as Foreshadow and LVI [186] exist, we consider the
defense from these attacks to be orthogonal to our contribution; possible mitigations are discussed
in Bagheret al. [23]. Correctly synchronizing concurrent data structures can mitigate exploits
against synchronization bugs [193], with the help of debugging checkers2 [122].

2In EDGAR implementation only a Bloom filter and the current epoch value are accessed concurrently inside
the enclave.
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4.4 Range-Revocable Pseudonyms

RRPs are a novel abstraction that provides authentication based on pseudonyms whose
validity can be revoked for any time-range within their original validity period. Clients hold
a number of RRPs that is proportional to the number of authentication actions they need to
perform. A validity of an RRP is bounded to an epoch. An epoch is divided into time slots of
length δ. The parameter δ is application-specific but can be small, e.g., 1 minute or less. An
epoch is assumed to be much larger than the slot, e.g., 1 day. Each RRP should be used for
authentication at most once. To perform authentication, a client instantiates a capability that
is specific to target slot. If a client is revoked for a time period, pseudonyms are not revoked
directly; instead, only the capabilities associated with the time-slots of that period are revoked.
We store these capabilities in an Encoded Revoked Capability Sets (ERCSet). An RRP can
be revoked for a short period, by revoking only the capabilities associated with an interval of
time-slots, or permanently, by revoking the capabilities associated with all future time-slots.
Since the revocation information is connected, indirectly, by capabilities, to pseudonyms, when
using RRP, a client is required to carry a different RRP for each access it needs to perform.
However, any given RRP can be used at any slot of the epoch. Thus, the number of RRPs
a client needs to keep is independent of the granularity of the time-slots. This contrasts with
previous pseudonym-based solutions, where clients need to carry a number of pseudonyms that
grows linearly with the epoch granularity (i.e., the number of slots in an epoch).

4.4.1 Operations Overview

Authentication based on RRPs uses 3 different related objects, namely (range-revocable)
pseudonyms, (time-bound) capabilities, and ERCSet. At an abstract level, the operations
supported by these objects are the following:

– pepoch ←createRRP(cid, epoch, K−
PM): used to create a new RRPs, that can be used by

client cid during a target epoch. Only PMs, using their private key K−
PM , can create RRPs.

– cs ←getCapability(pepoch, s, K−
p ): used to create a capability associated with an RRP pepoch

for time slot s (s must belong to the epoch for which the pseudonym was created). Only PMs
and the client that owns the pseudonym, and the correspondent private key K−

p , can create
capabilities.

– boolean ←verifyCapability(cs, K+
PM): To verify if a capability was generated from a valid

RRPs, used by verifiers during authentication, requires the PM public key K+
PM .

– ERCSet ←createERCSet(capabilities): used only by PMs to create an ERCSet that encodes
one or more given capabilities, using some one-way function, such that it is unfeasible to
extract a capability from the ERCSet. These capabilities are filtered to ensure that they do
not compromise unlinkability (Section 4.4.3).

– ERCSet ←mergeERCSet(erc1, erc2): used to merge two ERCSets so that a single ERCSet
can be used to capture the revocation of multiple capabilities. PMs and verifiers can merge
ERCSets.
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reqestRRP(cid)

⟨𝑠𝑖𝑔𝑝1, ..., 𝑠𝑖𝑔𝑝𝐼 ⟩

sendReqest(𝑟𝑒𝑞, 𝑠𝑖𝑔𝑟𝑒𝑞, 𝑐 )

accepted

revoke(𝑐𝑖𝑑, ⟨𝑠, ..., 𝑠𝑛 ⟩)

return

Client Verifier Pseudonym Manager Administrator

epoch = currentEpoch( )
for 𝑖 in 𝐼 :

seed = Digest(cid, epoch, 𝑖 )
𝐾−𝑝 , 𝐾+𝑝 = DetKeyGen(seed)
𝑠𝑖𝑔𝑝 = DetSign(𝐾−𝑃𝑀 , ⟨epoch, 𝐾+𝑝 ⟩)
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Figure 8: Protocol workflow for RRPs and pseudocode for each operations.
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Figure 4.2: Protocol workflow for RRPs and pseudocode for each operations.

– boolean ←isRevoked(erc, capability): used to verify if a capability is part of an ERCSet. This
operation is used by verifiers to check if a capability has been revoked.

The manager creates RRPs on request from authorized clients. If later an RRP needs to
be revoked for a given range of time slots, the PM generates the corresponding capabilities
and encodes them in an ERCSet that is sent to the verifiers. Figure 4.2 provides in detail the
operations workflow for each operation, and how each entity interacts in the system.

Clients hold a small number of RRPs (e.g., corresponding to the number of distinct events),
and instantiated a short-lived capability (for the current slot) to authenticate. Then, it presents
the capability to the verifier. The verifier checks if the capability is correctly constructed, is
genuine (i.e., if it was generated from a valid RRPs) and subsequently check if the capability has
not been revoked; only in this case, the client is granted access to the resource.

To ensure unlinkability, a client must never present two capabilities generated from the same
RRP, as capabilities generated from the same RRP can be linked (cf. Section 4.4.3). Therefore,
clients have to carry a number of RRPs proportional to the number of resources they need to
access. However, contrary to previous systems, the revocation of an RRP for a time-slot does
not expose capabilities that may have been used in non-revoked time slots: this is guaranteed by
the use of a one-way function to encode revoked capabilities.
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4.4.2 Making Range-Revocation Efficient

A problem with the use of time-bound pseudonyms is that the number of pseudonyms that
need to be revoked grows with the granularity of the time slots. RRPs are not immune to this
problem, because to revoke the use of an RRP in a range of time slots, all capabilities associated
with those time slots need to be encoded in the ERCSet. However, our implementation of
RRPs uses a mechanism that allows the revocation cost to grow only logarithmically with the
granularity, rather than linearly, as previous approaches.

To achieve this goal, a capability is represented by a sequence of latchkeys, extracted from
a set of latchkeys that are associated with a given RRP. The latchkeys are organized in a tree
of fanout d, such that there is a leaf latchkey for each individual time slot on an epoch (in this
work, we use d = 2, i.e., binary latchkey trees). Figure 4.3 provides a simple example where
a binary tree of latchkeys is associated with an epoch of 1 hour divided in 4 time-slots of 15
minutes. Note that the latchkey tree structure resembles but is not a Merkle tree [131]: the tree
nodes are generated independently (the value of a parent node does not depend on the value of
its children).
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Figure 4.3: Latchkeys for time slot [0, 15[ of epoch [0, 60[.

A capability for a given time slot is represented by the set of latchkeys in the path from the
root of the tree to the corresponding leaf node in the tree. Using the example of Figure 4.3, the
capability for the first slot would be represented by the following set of latchkeys: {e, e0, e00}.
Note that each capability, for each time slot, is always different, because it contains one unique
leaf latchkey. However, different capabilities may have some latchkeys in common; in particular,
all capabilities include the root latchkey.

A capability is only considered valid if all latchkeys used to represent it are valid. Therefore,
the capabilities can be revoked by invalidating any of its latchkeys. In particular, a capability
for a given time slot can be revoked by invalidating the leaf latchkey associated with that
slot. However, it is also possible to revoke multiple latchkeys by invalidating latchkeys that are
inner nodes of the tree: by invalidating an inner node, all the capabilities that are part of the
sub-tree rooted at that inner node are invalidated. This can also be illustrated using our example.
Consider that the client is revoked at the beginning of the second slot (e01) until the end of the
epoch. At this point, the client may already have used its pseudonym p to generate a capability
to access the resource during the first slot. To prevent linkability, the latchkeys used in the first
slot cannot be revoked, i.e, the latchkeys e, e0 and e00 cannot be revealed. To revoke all future
capabilities that may be generated with pseudonym p, it suffices to revoke latchkeys e01 and
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e1. Note that the capabilities generated for the second slot must use e01, and the capabilities
generated for the third/fourth slots must use e1.

We use this construction to perform revocation efficiently. ERCSets do not explicitly contain
capabilities, but only latchkeys that belong to those capabilities and a single latchkey can be
used to revoke multiple capabilities. It is easy to show that the number of latchkeys that need to
be revoked is at most logd with the number of slots. In fact, for each pseudonym valid in the
epoch, the number of latchkeys will be given by logd(granularity).

4.4.3 RRP Implementation

We now describe the construction of RRPs.

Scheme assumptions: We assume that the epoch and time slot size are publicly known to all
parties in the system. This means that any party can independently and consistently calculate
all the labels from any leaf to the root (i.e., e, e0, etc.), as illustrated in Figure 4.3. There is also
a maximum number of pseudonyms I that any client can use in any given epoch.

Cryptographic primitives: We assume there are sources of entropy and a function that allow
generating random asymmetric key pairs (K−,K+). We assume that there is a function, named
DetKeyGen(seed), to generate asymmetric key pairs deterministically from a seed value. There
is also a deterministic signature scheme that, given some private key K− and a text as input,
will output a deterministic signature sig = DetSign(K−, text). The output sig can be verified
by true/false = VerSign(K+, text, sig). Lastly, there is a secure one-way function Digest(text)
that computes a digest on the text input and is not possible to invert given the output.

PM Keys: There is an asymmetric key pair (K−
PM ,K+

PM ) associated with every PM. The
private key K−

PM is only known by the PMs and is kept in the implementation inside the TEE
enclave. The public key K+

PM is known to all participants, including clients and verifiers.

RRPs: An RRP is a tuple ⟨cid, epoch, i,K−
p ,K+

p , sigp⟩ where cid is the client identifier (only
known by the client and the PM), epoch is the time windows for which the pseudonym is valid, i
is a label that can be used to distinguish each pseudonym instance generated for the same epoch,
where i ∈ [1, I]. The (K−

p ,K+
p ) is a unique asymmetric key pair associated with the pseudonym,

and sigp is the signature performed with the private key of the PM over the concatenation of
the epoch, and public key of the pseudonym, sigp = DetSign(K−

PM , epoch ∥ K+
p ). Note that

some fields of an RRP are secrets known only to the client and PM and never revealed to a
verifier. In particular, only the client and the PM know the secret key K−

p associated with a given
pseudonym. To obtain an RRP, a client establishes a secure channel with a PM, presents its
client identifier cid, and obtains one or more RRPs for some given target epoch. When describing
EDGAR, we will discuss for which epochs clients are allowed to obtain RRPs from a PM.

Generating (K−
p ,K+

p ): The asymmetric key pair associated with a pseudonym is generated
using the DetKeyGen(seed) primitive. We use as seed the tuple ⟨cid, epoch, i⟩, avoiding the
need for the PM to memorize the information associated with all the pseudonyms it created, as it
can always re-create them (as explained below, the key pair is also needed to perform revocation).
Recall that cid is known only by the client and the PM. This identifier is securely stored by
the PM inside the enclave. Also, DetKeyGen is non-reversible, thus two different public keys
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created for different epochs and/or instances for the same client cannot be linked with the secret
cid.

Latchkeys: Latchkeys are unique for each pseudonym and are obtained by deterministically
signing the label of the corresponding node with the private key K−

p of the pseudonym. Therefore,
the latchkey l0 associated with the label node e0 of an RRP, is generated as l0 = DetSign(K−

p , e0),
and can be verified by using the public key of the pseudonym by performing VerSign(K+

p , e
0,

l0).

Capabilities: A capability c for a given time slot s is a tuple:

c = ⟨K+
p , sigp, lleaf , . . . , l00, l0, lroot⟩

where K+
p is the public key of the pseudonym and the latchkeys correspond to the nodes on the

path from the root of the latchkey tree to the leaf latchkey node associated with the time-slot
s. Note that a capability has a number of latchkeys that is logarithmic with the granularity
of the time-slots in the epoch. The latchkeys that are part of a capability can be generated
on demand, when the capability is created, and are not required to be stored explicitly by the
client. It should also be noted that any two capabilities generated from the same RRP reveal the
same K+

p and can be linked; therefore, a client that wants to prevent authorization request to be
linked should always use different RRPs.

To verify a capability, a verifier performs the following steps. First, it uses the public key of
the PM to verify sigp, calculating VerSign(K+

PM , epoch∥K+
p , sigp). Then, it uses K

+
p to verify if

the latchkeys presented with the capability are in fact associated with that RRP, by performing
VerSign(K+

p , ex, lx). If all latchkeys can be verified using K+
p and follow a correct path from

the current slot to the root, the capability is genuine. Note that a capability can be genuine but
may have been revoked, as explained next.

ERCSet: an ERCset in an encoding of a set of latchkeys that represents a set of revoked
capabilities. The set of latchkeys encoded in an ERCset has the following properties: inclusion-of-
revoked – if a capability has been revoked, at least one of its latchkeys is encoded in the ERCSet;
exclusion-of-non-revoked – if a capability has not been revoked, none of its latchkeys are encoded
in the ERSet. Below we explain how latchkeys are selected to be encoded in the ERSet to satisfy
these properties. Latchkeys are encoded in the ERCSet using a one-way function, Digest(lx) .
Thus, verifiers can check if a given latchkey belongs to an ERCSet but cannot extract latchkeys
from the ERCSet. Different data structures that rely on one-way functions could be used to
implement ERCSet, including SHA256, or compact data structures such as Cuckoo filters [81],
Cascade filters [118] or Count-min sketch [55]. We use Bloom filters to implement the ERCSet.
Bloom filters are efficient and, as discussed later, a good fit for the EDGAR architecture. A
disadvantage of Bloom filters is that they can present false positives, but we will explain later
how EDGAR circumvents this limitation.

Revoking a single capability: To revoke a capability cp of a pseudonym p, the PM encodes in
the ERCSet the leaf latchkey lx associated with cp. This trivially satisfies the inclusion-of-revoked
and exclusion-of-non-revoked properties: the encoded latchkey belongs to the revoked capability
but does not belong to any other capability (each capability is associated with a distinct, unique,
leaf latchkey).
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Revoking a range of capabilities: Revoking a set of capabilities of a pseudonym could be
trivially achieved by encoding the corresponding set of leaf latchkeys, but this would have a linear
cost. The latchkey hierarchy is used to reduce this cost as follows. Let d be the fanout of the
latchkey tree. Any d latchkeys that have the same parent in the latchkey tree can be replaced by
their parent. This also satisfies the inclusion-of-revoked and exclusion-of-non-revoked properties
of ERCSets: 1) the parent of any latchkey is part of the capability that includes that latchkey
and 2) a parent latchkey is not included in capabilities other than the capabilities that include
its children. The susbtitution of all d sibling latchkeys by their parent latchkey can be applied
recursively in the tree. Note that the root latchkey can only be included in an ERCSet when a
pseudonym is revoked for the entire duration of the epoch, because the root latchkey belongs to
all capabilities for that epoch. Next Section 4.4.4 provides a precise description of this algorithm
with pseudo-code.

Merging ERCSet: An advantage of using Bloom filters is that ERCSet can be easily merged
by performing bitwise OR operations. This makes it easy to disseminate revocation lists for
many different RRPs in a single data structure.

Checking if capability revoked: Verifiers receive ERCSets from PMs, store them, and use
them to check if the capabilities presented by clients have not been revoked. After checking if a
capability is genuine, verifiers test if any of the latchkeys are included in the most recent ERCSet.
If even a single latchkey is in the ERCSet, the capability is considered revoked.

4.4.4 ERCSet Creation Algorithm

We now present in Algorithm 1 the pseudo-code for the algorithm used to implement the
createERCSet function, previously described using natural language in Section 4.4.1. The
algorithm receives multiple capabilities to be revoked (from a given pseudonym). It first merges
all the latchkeys from the set of provided capabilities (function mergeLatchkeys). Then, the
function removeUnsafe will search and remove any latchkeys that may cover time slots that
have not been revoked, to ensure that any authentication information that may be used outside
the revocation interval, represented by the provided capabilities, is not present in the ERCSet.
Afterward, the function removeRedundant will remove any redundant latchkeys, i.e. any
latchkey children, that are already covered by their parent. This step is only to achieve efficient
storage since it takes advance of our latchkey tree and only requires a logarithmic number of
latchkeys to cover the revoked time slots. Finally, the function latchkeysEncoding takes the
remaining latchkeys and inserts each one in a Bloom filter that implements the ERCSet. Our
prototype implements an optimized version of this algorithm.

4.4.5 RRPs Linkability Analysis

A key problem with previous approaches for performing pseudonym revocation is that the
information used for revocation could be linked with the information used for access control
(in particular, this is obvious when the pseudonym identifier is used both for authentication
and revocation). This allows an adversary to collect information about the resources that have
been accessed by revoked pseudonyms. When a client has several pseudonyms that are revoked
together, an attacker can link the past usage of these pseudonyms to break the privacy of the
user. RRPs avoid this problem because the information used for revocation cannot be linked
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with the information used for access control. Thus, if a client used one or more pseudonyms prior
to revocation, the use of these pseudonyms cannot be linked based on the revocation data.

Here we present an argument that RRPs offer unlinkability, this is a simpler analyse for a
better understating. In the next Section 4.5, we provide a more complex and complete proof
that RRPs offer unlinkability.

Observation 1. Verifiers cannot generate latchkeys associated with a pseudonym.

Basis: Latchkeys are generated using the private key K−
p of the pseudonym. The private key is

generated using the secret cid that is shared between the PM and the client and never revealed
to other entities. Therefore, verifiers cannot generate latchkeys. □

Observation 2. ERCSets do not include latchkeys used outside the revocation interval.

Basis: This property is achieved by construction, that ensures the exclusion-of-non-revoked. As
described above, when a PM assembles an ERCSet, it never includes in the ERCSet latchkeys
that are part of capabilities for time-slots outside the revocation interval. □

Argument 1. Revocation information cannot be linked with authorization information used
outside of the revocation interval.

Basis: The revoked latchkeys are encoded in an ERCSet using Digest(lx), so verifiers cannot
extract latchkeys from an ERCSet. Verifiers can only test if a given latchkey has been revoked.
However, by Obs. 1, verifiers cannot generate latchkeys, so they can only test latchkeys that
are provided by the client when presenting a capability. By Obs. 2, latchkeys for capabilities
associated with non-revoked time-slots are not included in an ERCSet. □

Argument 2. Capabilities generated from different pseudonyms cannot be linked.

Basis: All the information in a capability depends on the asymmetric key pair associated with
the pseudonym. Asymmetric key pairs for different pseudonyms are different because they are
generated using different seeds (the unique instance number i is part of the seed ⟨cid, epoch, i⟩).
Additionally, asymmetric key pairs cannot be linked to the seed used for generation (this derives
directly from the standard properties of DetKeyGen). □

4.5 Unlinkability Proof

We now provide a proof that our implementation of RRPs ensures that the information
used to revoke clients cannot be linked to the information used by clients when authenticating
on non-revoked time-slots. For clarity of exposition and without loss of generality, the proof
considers a single epoch, a single client cid with a single pseudonym p, and a single PM.

For convenience we use three sets, MayHaveBeenUsed, Safe and ERCSet, that represent
different sets of information that are relevant for the correctness of the algorithm. The set
MayHaveBeenUsed contains all latchkeys that the client may have provided when authenticating
in non-revoked time-slots. The set Safe contains all latchkeys that are used to perform revocation
of a range of time-slots (that corresponds to the output of function removeUnsafe in Algorithm 1).
The set ERCSet includes an encoded version of all latchkeys in the set Safe, which results from
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applying a one-way function to each latchkey in Safe (that corresponds to the output of function
latchkeysEncoding in Algorithm 1). Note that the function removeRedundant is relevant
to reduce the size of the Safe but is not relevant to the proof (which remains valid, even if this
layer of filtering is not applied).

MayHaveBeenUsed captures the information that the client may provide to the verifier when
performing authentication. The set ERCSet captures the information included in Safe. We
consider that MayHaveBeenUsed and ERCSet are public in the sense that an adversary can be
aware of their content. Only the PM has access to the set Safe.

We begin by demonstrating that the sets MayHaveBeenUsed and Safe are disjoint, i.e., that
MayHaveBeenUsed ∩ Safe = ∅. Then, we show that encoding the latchkeys of Safe in the set
ERCSet achieves the desirable unlinkability.

Assumption 1. There is a secure deterministic digital signature scheme.

We assume the availability of a secure deterministic digital signature scheme, such as
Ed25519 [33], which ensures the usual authentication, integrity, and non-repudiation properties.
This scheme supports DetKeyGen(seed) that creates a key pair (K−,K+) from any given seed.
Signatures are also deterministic, generated by DetSign() using K−, and verified by VerSign()
with K+. Finally, it is not possible to forge a signature without K−.

Assumption 2. There is a secure one-way function.

We assume the availability of a secure collision-resistant hash function Digest(), such as
SHA256, that is easy to compute on every input, but not possible to invert given the output.

Assumption 3. Only the client and the PM can access cid.

We assume that both the client and the PM will securely store the secret cid and never
disclose it.

Definition 1. A time-slot tree is a n-ary tree data structure that represents the time period of
an epoch divided in time slots.

A time-slot tree (see Figure 4.3) is a tree data structure where the time period of an epoch
is divided into smaller slots of size δ; each time slot is represented as a leaf node in the tree,
identified by a unique node identifier ex. An inner node of the tree has n children and represents
the entire time interval of its children nodes; the tree root node e captures the entire epoch time
interval.

Definition 2. A valid latchkey is a digital signature of a tree node.

A latchkey lx represents the unique bond of a pseudonym p to a node ex in the tree. This
bond is implemented by a digital signature performed over the node identifier (cf. Definition 1),
where lx = DetSign(K−

p , ex). By using the private key of the pseudonym (K−
p ), we enforce

authentication, integrity, and non-repudiation of the latchkey (see Assumption 1).

Definition 3. A valid capability Cp is defined as:

c = ⟨K+
p , sigp, lleaf , . . . lroot⟩
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where K+
p is the public key of the pseudonym p, and the signature sigp is used to prove

the pseudonym authenticity (cf. Section 4.4.3), being generated by the PM as sigp =

DetSign(K−
PM , epoch∥K+

p ), ∥ represents the concatenation of both values. Finally, lleaf , . . . lroot
is a sequence of valid latchkeys (from Definition 2) associated with the nodes in a path from a
leaf node to the root node of the time-slot tree. The path is required to perform pseudonym
revocation efficiently. Each time-slot s is associated with a different capability, which is uniquely
defined by the path from the root node of the time-slot tree to the leaf node associated to
time-slot s.

Definition 4. The Non-Revoked Capability Set is the set of capabilities for all non-revoked
time-slots.

Note that the Non-Revoked Capability Set is never used in the algorithm (in fact, a client uses
each pseudonym a single time, and never for multiple time-slots). The Non-Revoked Capability
Set is an abstract artifact that is useful for the proof; it represents all capabilities that may be
used by a client in non-revoked time lots.

Definition 5. We define MayHaveBeenUsed as the union of all the latchkeys in all capabilities
from the Non-Revoked Capability Set.

Like the Non-Revoked Capability Set, MayHaveBeenUsed is never explicitly used in the
algorithm and can never be collected by verifiers because, as noted before, a correct client only
uses each pseudonym once (for a single time-slot). The set MayHaveBeenUsed captures all
latchkeys that may be exposed to verifiers by the client when authenticating in non-revoked time
lots.

Definition 6. The Revoked Capability Set is the set of all capabilities for all revoked time-slots.

The Revoked Capability Set is provided as input for Algorithm 1, that constructs an ERCSet
that is subsequently used for revocation.

Definition 7. The Unfiltered Revoked Latchkey Set, or simply Unfiltered, is the union of the
latchkeys in all capabilities in the Revoked Capability Set.

The Unfiltered set is obtained by applying the mergeMatchkeys function to the Revoked
Capability Set in Algorithm 1.

Definition 8. The Safe set is constructed by applying the removeUnsafe function from Algo-
rithm 1 to the Unfiltered set.

Definition 9. The ERCSet is constructed by encoding all the latchkeys in the Safe set with one
or more one-way hash functions.

In our implementation we use Bloom filters to implement the ERCSet. The one-way hash
functions are implemented using Digest( lx) from Assumption 2.

Lemma 1. MayHaveBeenUsed and Safe are disjoint.

Proof. We now show that MayHaveBeenUsed ∩ Safe = ∅ by contradiction: The same latchkey
being in both sets can be written as: ∃x : x ∈ MayHaveBeenUsed ∩ Safe.
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Let us assume that the latchkey x belongs to MayHaveBeenUsed then, from Definition 4,
there is a capability cs, of a non-revoked time slot s, that contains x. Let ls be the latchkey
associated with the leaf node for time slot s. Note also that if x is associated with an inner node
of the time-slot tree, the leaf node for time slot s is a descendant of that inner node, because a
capability includes all nodes in the path from the root to the leaf node, and nodes in the path
have a parent-child relation.

Let us assume that the latchkey x belongs to Safe. Then ls must belong to Unfiltered,
otherwise, because ls descends from x, function removeUnsafe in Algorithm 1 would remove x
from Safe if ls ̸∈ Unfiltered.

Thus, if ∃x : x ∈ MayHaveBeenUsed ∩ Safe then ls must belong both to MayHaveBeenUsed
and to Unfiltered. Because ls is associated with a leaft node, this means that there is a time slot
that is both revoked and non-revoked, a contradiction.

Lemma 2. Only the client and the PM are capable of generating a valid capability Cp and the
respective latchkeys.

Proof. From Definition 3, capability Cp includes a set of latchkeys. From Definition 2, to construct
each latchkey, access to the pseudonym private key K−

p is required. From Assumption 1, the
key pair (K−

p ,K+
p ) for the pseudonym p that the client holds is generated using the cid as seed

in the asymmetric scheme. From Assumption 3 only the client and PM can access the cid and,
therefore, only the client and the PM can generate K−

p . Therefore, only the client and the PM
can generate valid latchkeys for the capability Cp.

Lemma 3. An adversary can only access latchkeys from MayHaveBeenUsed.

Proof. MayHaveBeenUsed contains all the latchkeys that appear in non-revoked capabilities. An
user, to authenticate in a non-revoked time-slot, must generate and present the corresponding
capability to a verifier (that is non-trusted). Therefore, the attacker may have access to latchkeys
in MayHaveBeenUsed. On the other hand, by Definition 9, ERCSet is constructed by encoding
each latchkey lx using Digest(lx), and by Assumption 2 the adversary is not capable of inverting
any entry in ERCSet to extract a latchkey.

Theorem 1. The information used to revoke clients cannot be linked to the information used by
clients when authenticating on non-revoked time-slots.

Proof. Revocation is performed using exclusively latchkeys from the Safe set that are en-
coded using Digest(). To link the information provided during authentication with the in-
formation used for revocation, the adversary would need to have access to at least a latchkey
u ∈ MayHaveBeenUsed and to a latchkey r ∈ Safe. From Lemma 3, the adversary can only access
the latchkeys in MayHaveBeenUsed. From Lemma 1, MayHaveBeenUsed and Safe are disjoint.
Therefore, the information used to revoke clients (latchkeys from the Safe set) cannot be linked
to the information used by clients when authenticating (the latchkeys in MayHaveBeenUsed).

From Theorem 1, a client using a single pseudonym obtains unlinkability guarantees, since no
revocation information can be linked with authorization information used outside the revocation
interval. Next we show that RRPs also offer unlinkability when multiple pseudonyms are used.

Theorem 2. Capabilities generated from different pseudonyms cannot be linked.
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Proof. From Definition 3, all the information in a capability depends on the asymmetric key
pair associated with the pseudonym. From Assumption 1, asymmetric key pairs for different
pseudonyms are different because they are generated using different seeds (the unique instance
number i is part of the seed ⟨cid, epoch, i⟩). Additionally, asymmetric key pairs cannot be linked to
the seed used for generation: this is guaranteed by the security of the key generation scheme.

4.6 EDGAR

We now present the design of an anonymous authentication system for the edge that leverages
RRPs to offer backward unlinkability. We have named our system EDGAR: EDGe distributed
Access contRol, targeting the VANET scenario [158, 87, 32]. The goal of EDGAR is to reduce
the linkability window, improving client privacy at the edge. EDGAR demonstrates how to use
our RRPs abstraction and how to address implementation challenges in a distributed setting.

4.6.1 EDGAR in VANETs

In the VANET scenario, vehicles continuously broadcast CAM messages [80] containing
various information such as their geolocation, sensor readings, direction, and speed. This
information is crucial for various edge applications, including enhanced navigation, traffic
congestion estimation, remote vehicle diagnostics, autonomous cars, and others [85]. However, as
explained in Section 4.2, edge providers can collect and monetize this data, at the expense of users
privacy, highlighting the importance for clients to use anonymous authentication methods such
as EDGAR. We now contextualize the RRPs entities to the corresponding entities in EDGAR:

Clients: These are vehicles that constantly propagate CAM messages with location and sensor
readings, with the purpose of enhancing their safety and that of others.

Verifiers: Mainly compose by Roadside Units (RSUs) [61] that listen to all CAM messages,
aggregate them, store them, and broadcast them in the network. These devices can be deployed
by various local entities (e.g., municipal authorities) or edge providers to improve traffic flow,
pedestrian safety, and provide services to vehicles such as infotainment or software updates.

PM servers: These are fog nodes with the same services as verifiers but with higher computa-
tional capacity and storage, and may be physically more distant than verifiers. Any fog node
with TEEs can serve as a PM. We assume the same trust level as mentioned in Section 4.3.3,
where the PM does not share its private key or the client pseudonyms. However, the PM is
controlled by edge providers, who can access the non-trusted zone outside the TEE.

Administrator: In the context of the edge, the administrator should be a trusted entity
independent of all applications and providers within the edge. It should work similarly to the
current Certificate Authorities (CAs) in PKI.

Figure 4.4 illustrates the interactions in the edge environment. In this example, a vehicle
(a client) presents a capability to the RSU (the verifier). If the capability is valid, the RSU
accepts the message from the client and alerts the vehicles about pedestrians behind the corner.
Authentication is critical to avoid false information that may cause other drivers to break without
justification. The RSU works a storage node that maintains a local map of the street. The RSU
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Figure 4.4: EDGAR entities and VANETs interaction at the edge.

also relies on multiple nearby fog nodes, running edge replicas of the PM, to update its state.
Vehicles can contact a nearby PM replica to renew the pseudonyms used to generate capabilities,
if necessary.

EDGAR prevents the de-anonymization of clients based on the tracking the RRP usage (i.e.,
even if edge providers like Verizon, Akamai, and Amazon aggregate data from verifiers and the
untrusted zone of the PM). Our pseudonyms also protect users’ privacy in case of data leaks
from verifiers.

4.6.2 Revocation in EDGAR

Although RRPs supports the revocation of a pseudonym in any range of time slots, in
EDGAR we assume that clients can be revoked at a target revocation time slot (RTS), selected
by the administrator, and that all capabilities of that client are revoked for all time slots after
RTS (i.e., the revocation range spans from RTS to the end of the epoch). Also, after being
revoked, clients become unable to obtain new pseudonyms from edge PMs after some time. In
particular, as we will show later, EDGAR is able to provide the following guarantee: if a client is
revoked in a given epoch t, that client may still attempt to use pseudonyms it has obtained for
epoch t+ 1 but will not be able to obtain pseudonyms for epoch t+ 2.

4.6.3 Epochs, RRPs, and ERCSet

Time is divided in epochs and epochs are divided in time slots. The length of an epoch and
the granularity δ of the time slot are application specific. As we show in the evaluation, the
efficient revocation mechanism of RRPs, based on the latchkey hierarchy, supports the use of
relatively large epochs and fine-grain granularity, for instance, epochs of one day and time slots
of 1 minute.

There is a limit I of the number of pseudonyms that a client can request for a given epoch.
When using RRPs this is not a limitation because clients only need to have a pseudonym for each
access regardless of the time slot where the pseudonym is used (and not a different pseudonym
for each time slot, as in previous work). Also, clients are only allowed to obtain pseudonyms for
the current epoch and for the next epoch (we allow clients to obtain in advance pseudonyms for
the next epoch to avoid having PMs to be overload with a rush of requests whenever an epoch
begins). This allows us to limit the number of pseudonyms that need to be added to ERCSet
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when a client is revoked. Also, verifiers only accept requests that use pseudonyms from the
current epoch. This allows to garbage collect revocation information from previous epochs safely.

Due to the constraints described above, EDGAR is only required to maintain two ERCSets:
one associated with the current epoch and another associated with the next epoch. When an
epoch t terminates, the ERCSet associated with epoch t can be discarded and a fresh ERCSet is
created for the next future epoch (t+ 2).

4.6.4 ERCSet dissemination

The revocation of a client is initiated in the central PM. The PM first generates all possible
pseudonyms that the client may have obtained for the current epoch (i.e., by creating the
pseudonyms for all instances 1 . . . I) and creates an ERCSet that revokes all the capabilities
that may be generated for these pseudonyms in the range starting from the revocation time slot
(RTS) to the end of the epoch. For this, it uses the algorithm described in Section 4.4.2. It then
merges this ERCSet into the global ERCSett for the current epoch. The PM then generates
all possible pseudonyms that the client may have obtained for the next epoch and creates an
ERCSet that revokes these pseudonyms for the entire epoch (this is very efficient, because it
suffices to include the root latchkey of each pseudonym in ERCSet); it then merges this ERCSet
in the global ERCSett+1.

Disseminating client revocation among the PMs. The updated values of ERCSett and
ERCSett+1 are then disseminated in the system using a two-step procedure. First, they are
disseminated from the central PM to all edge replicas of the PM. Then, verifiers pull these values
from their nearest PM replicas. EDGAR implements the propagation of ERCSets among PM
replicas using a gossip-based broadcast protocol. The central PM first selects f + 1 edge PMs at
random and sends them the updated ERCSets. When receiving an ERCSet from another replica,
a PM checks if the ERCSet is different from the local version. If the ERCSet is the same, it
discards the redundant update. If the ERCSet is different, it assumes that it may contain new
information and merges it with its own ERCSet, picks other f + 1 edge PMs at random, and
sends them the updated ERCSets. This eager push strategy allows revocation information to be
propagated quickly on the network. Additionally, a PM that does not receive any updates for
more than a predefined gossip timeout engages in pull-gossip with another random PM. Pull
gossip is used to recover from temporary crashes or disconnections. A PM that is down when a
revocation is eagerly propagated will later obtain the information using pull gossip. Note that
the ERCSet for a given epoch always accumulates new information. Thus, any single gossip
exchange with an up-to-date server will convey all the information that a node may have missed
while disconnected.

Disseminating latchkey revocations to the verifiers. The edge will consist of many verifiers
placed at different locations. It is not efficient to have all these PM servers sending the same
information to all verifiers. Therefore, we only use pull-gossip to propagate ERCSets to each
verifier. Each controller periodically picks a PM at random, pulls ERCSett from that server, and
merges its content with a local copy of ERCSett. If a verifier fails to execute the pull-gossip
procedure (possibly due to an adversary jamming the PM), it enters “safe-mode” (the specific
behavior varies depending on the application, but could involve stopping the service to protect
the resource).
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4.6.5 Obtaining New Pseudonyms

Clients can obtain pseudonyms from edge PMs. EDGAR does not require edge PMs to keep
an explicit list of all clients that have been revoked and of their corresponding revocation time slot
as this is already encoded in the ERCSet. When requesting new pseudonyms, a client establishes
a secure channel with any edge PM and provides its own cid and a valid capability. If the client
has not been revoked, the PM can provide the requested pseudonyms for the current of for the
next epoch. If the client has been revoked, it will be denied access to additional pseudonyms.

To check if a client has not been revoked, a PM performs the following checks: first it verifies
if the capability presented by the client is in fact associated to a pseudonym of that client. This
procedure leverages that fact that any PM can create all pseudonyms of a client, and therefore,
can check if the public key included in the capability corresponds to a public key of one of the
valid pseudonyms for that client. Then, it checks if the capability has not been revoked. If the
request passes these tests, the PM generates and sends the requested pseudonyms to the client.

4.6.6 Size of ERCSets

EDGAR uses Bloom filters to implement ERCSets. Bloom filters have O(1) insertion and
query time [125], are space-efficient, and can be merged easily. However, Bloom filters suffer
from false positives and should be used with care. In fact, there is evidence that, if not used
properly, the false positives generated by Bloom filters can jeopardize the operation of large-scale
systems[118]. We first discuss how the size of the Bloom filters used to implement ERCSets is
chosen in EDGAR. Later, we discuss how we deal with the fact that false positives cannot be
entirely avoided.

The false positive rate of a Bloom filter depends on the filter size m (bits), the number of
items to be inserted n, and the number k of hash or index functions used for insertion and search.
The false positive rate can be approximated as described in [95]:

P (false positive) =

(
1−

(
1− 1

m

)kn
)k

(4.1)

In the case of ERCSets, the average number of items in the Bloom filter is given by:

n = cs × I × fr × logd

(
epoch

δ

)
(4.2)

where cs is the number of clients, I is the average number of pseudonyms that each client
uses, fr is the fraction of pseudonyms that may need to be revoked, d is the branching factor
of the latchkey tree, epoch is the length of an epoch, and δ is the length of the time slot. By
using Eq. 4.2 to compute the number of latchkeys that are expected inserted in an epoch in a
Bloom filter, we can use Eq. 4.1 to select the size of the Bloom filter that limits the probability
of having a false positive to some pre-defined threshold.

Let us assume a scenario with cs = 250, 000, 000 clients (the estimated number of vehicles
in the USA), and assume a fraction of pseudonyms that need to be revoked of 10−4 per year
(from [95]). If we set the length of an epoch 24h, this provides an average of revocations per
epoch of fr = 10−4/365. Then, if we set the granularity of the time slots to δ = 10 minutes.
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This yields 144 time slots per epoch. If we use a binary tree of latch keys, the average number of
latchkeys used per revocation is log2(144). If we assume that clients need at most 10 pseudonyms
per day, the expected resulting number of items to be added to the Bloom filter is:

n = 250, 000, 000× 10× (10−4/365)× log2(144) ≈ 4911

In this scenario, a Bloom filter of 9KB provides a false positive rate of 0.1% (from Eq. 4.1).
We can determine the false positive rate of a capability by: PFP (C) = 1− (1− x)h, where x is
the false positive rate of the Bloom filter, from Eq. 4.1, and h is the tree height. In the same
scenario, that corresponds to a false positive of 6 in every 1000 capabilities. Additionally, if one
wants to increase the granularity of the time slot to δ = 1 minute, the number of time slots
per epoch increases 10 times, but the number of latchkeys increases only logarithmically, thus
the size of the ERCSet must increase only by a factor of log2(1, 440)/ log2(144) = 1.46, i.e, an
ERCset of 13KB will be enough to maintain the same false positive rate

4.6.7 Circumventing False Positives

Even if the size of Bloom filters is set appropriately, there is always some probability of the
occurrence of false positives. In EDGAR we bypass this problem by having clients request M
extra pseudonyms, in addition to those that are strictly needed to access the resources. If a false
positive occurs, the system automatically picks another unused pseudonym and resubmits the
authorization request to the verifier. The only perceived effect by the client is an additional
latency in serving the request. We show below that the number of additional pseudonyms that
a client needs to carry to circumvent the occurrence of false positives is small. Equation 4.3
describes the probability that a client will execute all authentication successfully with the help
of the M extra pseudonyms.

P (full access) = 1−
p+M∑

j=M+1

p+MCM+1 × (PFP (C))j × (1− PFP (C))p+M−j (4.3)

When applying Equation 4.3 to the previous scenario, where δ = 10 minutes, and setting
M = 0, it is possible to derive that 1% of the clients may fail some authentication; this number
can be reduced to 1.9 · 10−12 by setting M = 4. These extra 4 pseudonyms will require increasing
the filter size from 9KB to just 13KB (to achieve the same probability with M = 0 would require
increasing the size of the Bloom filter by 34KB). If each client would require 1000 pseudonyms
instead, the probability of a client successfully executing all authentication with M = 0 is just
63% but when using M = 15 it increases to 1− (1.9 · 10−14), with a storage increase from 883KB
to 896KB (to achieve the same probability with M = 0 would require a filter of 3.89MB).

Leveraging M extra pseudonymous is a space-efficient solution to make the effect of false
positives negligible, even for large-scale systems such as EDGAR. We could consider alternative
encoding techniques that completely eliminate false positives, such as cascade filters [118].
However, this would require anticipating all possible false positives in order to create the multiple
filter levels; in a scenario of millions of vehicles with multiple pseudonyms, this operation would
be very expensive and might become infeasible.
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4.6.8 Handling Epoch Changes and Quarantine

When a client is revoked, all future capabilities that can be generated from the pseudonyms it
may have obtained are revoked. As discussed above, if a client is revoked in epoch t, this requires
revoking capabilities for future time slots in epoch t and all the capabilities for epoch t + 1.
Capabilities for epoch t+ 2 and other future epochs do not need to be revoked because EDGAR
ensures that a client that is revoked in epoch t cannot obtain pseudonyms for epoch t+ 2. This
property is guaranteed by a coordination phase that is executed by any PM when it transitions
from epoch t to epoch t+ 1. The purpose of the coordination phase is to ensure that any PM
that enters in epoch t+ 1 is aware of all revocations performed in epoch t and, therefore, will
refuse to issue pseudonyms for epoch t+ 2 to clients that have been revoked in epoch t. During
coordination, a PM enters in a quarantine mode, where it cannot serve pseudonym requests for
epoch t+ 2.

The coordination protocol is implemented by forcing each PM to send to every other PM its
version of ERCsetst and ERCsetst+1 at the beginning of the quarantine. Furthermore, a PM
waits to receive revocation information from at least N − f PMs before ending the quarantine.
Because revocation is performed by updating f + 1 PMs, and a PM waits for the input of other
N −f PMs, for each revoked client, a PM is guaranteed to receive at least one up-to-date ERCset
that includes the corresponding revoked capabilities. At the end of the quarantine, a PM is
guaranteed to be fully aware of all revocations that have occurred in epoch t and can start
serving requests for pseudonyms in epoch t+ 2.

4.6.9 Handling a PM failure

The temporary failure or disconnection of a PM is treated as follows. When the PM server
recovers, it will immediately start the pull-gossip procedure. Eventually, it will be able to get
up-to-date information on the revoked clients. The same applies to temporarily disconnected
PMs. A PM that is offline for a short period of time can operate normally, even if it is slightly
outdated. If it is contacted by a verifier, it will not be able to provide the most recent revocation
information, but the verifier will be able to fetch that information from another PM in the
next gossip interaction. If it is contacted by a revoked client, it may issue new pseudonyms to
that client for the current or the next epoch. However, the corresponding latchkeys for those
pseudonyms have already been revoked by other PMs, and the client will be revoked in a bounded
time.

4.6.10 Discussion

In this section, we discuss the key features of EDGAR.

Epoch Based Pseudonyms: Pseudonyms in EDGAR are bound to epochs instead of slots.
Capabilities are bound to slots, but can be generated at any moment by the client. This
decoupling allows clients to store only the desired number of pseudonyms based on application
logic, instead of the δ granularity of slots.

Space Efficiency: Both edge computing and TEEs have memory constraints, making space
efficiency a crucial aspect [57]. With EDGAR, revoking a client only requires a logarithmic
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number of latchkeys, while previous solutions require a linear amount of revocation information
relative to the number of time slots (see Figure 4.5).

Backward Unlinkability: EDGAR revokes future capabilities while ensuring that these
capabilities cannot be linked to capabilities used in the past. Unlike previous work, the δ
granularity of the time slots can be arbitrarily reduced without imposing a burden on the system:
the number of pseudonyms used by a client does not depend on δ and the cost of revocation is
log2(1/δ).

Support for Distributed Fault-tolerance: EDGAR distributes and replicates the PM func-
tionality. This increases both availability and resilience. It increases availability because clients
can obtain pseudonyms from any correct PM. It increases resiliency, because the coordination
required to change epoch effectively prevents PMs that have been isolated or whose clock has
been attacked from providing new pseudonyms to revoked clients in future epochs (if the clock is
moved backward in time and the server generates invalid pseudonyms for old epochs; if the clock
is moved forward in time, the server cannot progress through quarantine).

Traceability and Accountability: If required, EDGAR can be extended with mechanisms in
which verifiers share (limited) information with the PM to provide traceability and accountability.
Specifically, a verifier may present one or more used capabilities to the administrator and ask to
revoke or trace the anonymous client that is responsible for such capabilities. Depending on the
application and the facts to justify the request, the administrator may agree and forward the
capabilities to the trusted central PM. Since the PM can generate all the public keys associated
with the pseudonyms it has provided, it can subsequently match the used capabilities with the
clients identifiers (note that only the trusted PM can perform this operation; this does not
conflict with ensuring unlikability, which aims at preventing non-trusted entities, such as verifiers,
from achieving the same goal). However, we have not implemented or evaluated such extensions
as part of this work.

4.7 Evaluation

We evaluate the power of RRPs, using a prototype of EDGAR. We compare the space
efficiency of EDGAR against a state-of-the-art scheme for backward unlinkability in the PKI
setting. We also show that our scheme offers a latency suitable for edge applications. Finally,
we evaluate EDGAR’s throughput when serving pseudonyms. The source code is available at
https://github.com/claudio-correia/RRP-EDGAR.

https://github.com/claudio-correia/RRP-EDGAR
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Figure 4.6: Storage and latency in Haas et al. Vs EDGAR.

We have implemented both a verifier and a PM server on an Intel NUC10i7FNB. An Intel
NUC is an example of what a fog node might be, as it possesses modest computational resources
but is relatively inexpensive for large-scale deployments. It has an Intel i7-10710U CPU with
Intel SGX, 16GB RAM, and Ubuntu 20.04 LTS. We run the Intel SGX SDK Linux 2.13 Release,
Intel SSL-SGX [103] version Linux 2.14 1.1.1k and OpenSSL 1.1.1k. We used a real-world data
set composed of multiple vehicle trajectories in the city of Porto [110].

4.7.1 Space Efficiency

We have experimentally compared EDGAR with Haas et al., as both support backward
unlinkability by dividing the epoch in time intervals in the PKI setting. Haas et al. scheme
was more recently implemented in the SCMS POC pilot [46] under the name of linkage values
technique. The comparison is not trivial since the pseudonyms in Haas et al. are locked to a
time slot, being invalid if used in any other, while in RRP the pseudonyms are free to be used at
any moment of an epoch.

For a clear comparison, we test both mechanisms in a real-world use case of a taxi company
operating in the city of Porto, using a dataset of taxi trajectories [110]. We choose the mix zones
strategy [32, 86, 153] for pseudonym changes, i.e., taxis change pseudonyms at crossroads. This
use case requires a large number of pseudonyms due to constant vehicle movement, favoring the
Haas et al. design. In scenarios with fewer pseudonyms needed over the same period, EDGAR
will outperform Haas et al. by even larger margins.

Figure 4.6 shows the results obtained in our experiment. The top part of the figure presents
the user latency experienced when acquiring all pseudonyms for a specific epoch, and the bottom
part presents the required Bloom filter size for each solution.
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In the dataset, we observed that some taxis drive long distances, requiring 692 pseudonyms
per day (which entails 5, 677 per moth and 32, 142 per year). Since EDGAR clients can use
pseudonyms freely, these values were used as I, the number of pseudonyms instances in an epoch.
On the other hand, Haas et al. must fix the number of pseudonyms in each δ interval, e.g.,
with δ = 1 min there was a taxi driver who crossed 12 intersections, forcing to fix 12 different
pseudonyms for each δ interval, which has an explosive effect on the number of pseudonyms
generated. Furthermore, as we tighten the δ interval, the difference between Haas et al. and
EDGAR is more pronounced, for δ = 1 sec and epoch = 1 year we observe an improvement
of ≈ 2.5 ∗ 106KB to ≈ 6.4 ∗ 104KB, two orders of magnitude lower in the required storage.
This results from the logarithmic effect provided by RRPs, while Haas et al. suffers from a
linear effect. For large values of δ, when an epoch is divided into a few time slots, Haas et al.
slightly outperforms EDGAR, since the overhead imposed by the latchkey hierarchy is no longer
compensated by a significant reduction in pseudonyms.

Finally, we also observed that a large number of taxi trips take around 10 min., so we believe
that δ = 1 min would be a reasonable configuration for this use case, representing a storage
saving between 35KB and 15KB (for epoch = 1 day) and 508MB to 51MB (for epoch = 1 year)
by implementing EDGAR instead of Haas et al., highlighted with the vertical orange line.

4.7.2 δ Granularity vs Latency Trade-off
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Figure 4.7: Client latency for capability verification, for different levels of granularity and number
of threads.

The use of the latchkey hierarchy makes revocation of a range of time slots efficient, because
a single latchkey can be used to revoke many capabilities. The efficiency of revocation comes at
the cost of penalty in the authentication procedure, because the verifier must check a number
of latchkeys equal to the tree height (instead of verifying only the leaf latchkey). Fortunately,
the height of the latchkey tree grows only logarithmically, and latchkeys can be verified in
parallel. Therefore, the penalty of RRPs on latency is small. Figure 4.7 shows the latency of
the verification procedure as the granularity of the time slots increases. For instance, a system
that uses δ = 1 min and an epoch of one day requires a binary latchkey tree of depth 11; if
the epoch is increased to a month, the depth of the binary tree increases to 16. In such a case,
clients will incur a latency below 2ms in a single-thread verifier, still an acceptable latency for
edge applications. Note that a tree with 32 levels can support an extreme large number of time
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slots, such as the ones resulting from using δ = 1 sec and epoch = 70 years; even in this case,
clients would experience only 3.5 ms of latency. We have used multithreading to parallelize the
verification of latchkeys, reducing the impact on latency. We observe a latency reduction that is
linear with the number of cores of 47% and 45% from 1 to 2 threads and from 2 to 4 threads,
respectively. Hyperthreading, from 6 to 12 threads, offers no improvement since most of the time
is spent in cryptographic operations, and each core has a single ALU.

4.7.3 PM Server Throughput

We use the Ed25519 scheme [33] to obtain deterministic digital signatures, but is not yet
available in the SGX SDK. Since the PM is responsible for generating the pseudonyms and runs
inside the enclave, we implemented two different versions of the Ed25519 inside the enclave: a
portable one [152] and one based on OpenSSL [103].

The portable version is straightforward to implement in any type of TEE, but the lack of
optimization affects its performance. In the second implementation, we use the Intel SSL-SGX
library to import the OpenSSL library into the enclave. This library was designed for the SGX
enclaves, being the most efficient implementation of the scheme. We also evaluated the system
with and without SGX, using the OpenSSL library outside the enclave as well.
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Figure 4.8: Pseudonym throughput and number of served clients by the PM w/ and w/o SGX.
P is the number of pseudonyms generated in each request.

Figure 4.8 presents the pseudonym throughput for each of these implementations. We vary
the number of threads on the PM node side, improving throughput as expected. Additionally, we
vary the number of pseudonyms that each client requests from the PM, from 4, 8, 16, and 32 new
pseudonyms. We observe that increasing the requested pseudonyms also increases throughput by
reducing other system overheads, such as signing and encrypting. On the contrary, the number
of served clients decreases since the PM server requires more time for each request. Following
the previous discussion and fixing δ = 1 min, a taxi could request 32 new pseudonyms in just
133 ms, useful for at least the next 32 min.



76 CHAPTER 4. RANGE-REVOCABLE PSEUDONYMS

Summary

In this chapter we presented Range-Revocable Pseudonyms, an abstraction that supports
an anonymous authentication scheme based on pseudonyms that is able to enforce backward
unlinkability with storage costs that are multiple orders of magnitude lower than those of the
related work. The gains derive from our novel technique to decouple pseudonyms from time slots,
and perform authentication/revocation based on the use of latchkeys that can be generated from
a given pseudonym for any desired time slot. This technique prevents clients from having to
store a large number of unnecessary pseudonyms. As a proof of concept, we have designed and
implemented a prototype of EDGAR, an authentication system for the edge based on the use of
RRPs. We have used this prototype to perform an experimental evaluation using a real dataset
of vehicle traces. The results show that EDGAR is capable of offering low latency (0.5− 3.5 ms)
and storage savings (even when using time slots as small as 1 second) when serving clients.

We motivated our work using a VANET scenario, as one of the most prominent use cases
for anonymous authentication at the edge computing environment. Both VANETs and other
applications, such as crowdsensing, supply chain tracking, and augmented reality, will be
integrated with or complemented by edge storage services. Our RRPs can be implemented at any
level of the application stack, whether at the application level or the storage level. Anonymous
authentication is a crucial property for the adoption and deployment of edge applications,
including the storage systems that are the focus of this thesis.

In the next chapter, we present the Privacy Keeper, an alternative anonymous authentication
scheme to RRPs. The Privacy Keeper is capable of providing backward unlinkability and
revocation auditability simultaneously. However, the enhanced security offered by the Privacy
Keeper comes at a higher cost in the authentication process, which may not be tolerable for all
edge applications as it requires downloading the revocation list at the time of authentication.
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Algorithm 1: ERCSet creation, trusted PM side

C = ⟨Ca, . . . , Cb⟩: capabilities to be revoked for a pseudonym

Function mergeLatchkeys(C):
latchkeySet← ∅ // latchkeySet is a genuine set (not a multiset)
foreach ci ∈ C do

latchkeySet← latchkeySet ∪ extractLatchkeys(ci)
end
return latchkeySet

Function removeUnsafe(L):
Safe = L
/* Remove latchkeys from non-revoked time slots */
foreach li ∈ L do

/* Returns all children nodes/latchkeys of li */
descendantsi ← getLatchkeysSubTree(li)
if ∃x ∈ descendantsi ∧ x /∈ L then

Safe← Safe \ li
end

end
return Safe

Function removeRedundant(L):
NonRedundantSet = L
/* Remove latchkeys that are covered by parent */
foreach li ∈ L do

parenti ← getParentLatchkey(li)
if parenti ∈ L then

NonRedundantSet← NonRedundantSet \ li
end

end
return NonRedundantSet

Function latchkeysEncoding(L):
ERCSet← createNewBf()
foreach li ∈ L do

ERCSet.bfAdd(li)
end
return ERCSet

Function createERCSet(C):
Enclave Zone Start
Unfiltered← mergeLatchkeys(C)
Safe← removeUnsafe(Unfiltered)
SafeNonRedundant← removeRedundant(Safe)
ERCSet← latchkeysEncoding(SafeNonRedundant)
Enclave Zone End
return ERCSet
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5
Providing Revocation Auditability:

Privacy Keeper

This chapter introduces and evaluates a more secure anonymous authentication scheme than
RRPs, named Privacy Keeper. It not only provides backward unlinkability but goes a step
further by also providing revocation auditability, a missing property in RRPs to achieve complete
authentication anonymity. Similarly to RRPs, Privacy Keeper is entirely based on public key
encryption.

This chapter is structured as follows: Section 5.1 provides the motivation and defines the
objectives of Privacy Keeper, while Section 5.2 reviews related work. The solution is detailed
in Section 5.3. Finally, Section 5.5 presents experimental results evaluating the performance of
Privacy Keeper.

5.1 Motivation and Goals

Privacy is an increasingly vital requirement for modern-day customers. However, large
companies are actively exploring novel approaches to monetize the abundance of available data.
Unfortunately, as previously discussed, the process of client authentication on applications or
services often exposes sensitive information that can be exploited for monetary gain. To address
this issue, many anonymous authentication schemes offer solutions that safeguard client privacy
during multiple authentication instances, even after revocation. Yet, revoking a client without
breaking anonymity presents a significant challenge since the revocation data can be used to link
past and future anonymous authentications from a client [96].

Existing solutions that try to provide anonymous authentication leverage various mechanisms,
including efficient approaches like public key encryption [182] and Group Signatures (GS) [171],
as well as more robust techniques like ZKP [180]. A crucial aspect of these solutions is their
compliance to Verifier Local Revocation (VLR) [37, 42], which involves publishing Revocation
Lists (RLs) to verifiers, maintaining the availability of large distributed applications.

PKI-based solutions are more appealing due to their efficiency and simplicity, resulting in
widespread adoption in real-world applications [165, 188, 78, 69, 83]. In the RRPs presented in
Chapter 4 we have achieved near perfect backward unlinkability [95, 113] while relying exclusively
on public key encryption, whereas prior solutions required Non-Interactive Zero Knowledge
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Proofs (NZKPs) [19, 181]. We achieved backward unlinkability in RRPs by employing short time
intervals for proof generation, which introduces trade-offs between storage and privacy.

Despite the fact that RRPs solve the backward unlinkability problem, RRPs still suffer from
a limitation; they are unable to offer revocation auditability. This feature is crucial to prevent
situations where a malicious service provider accepts authentication requests from revoked users,
thereby reducing the size of the user’s anonymity set without his awareness.

Following the same rational as in RRPs, we want a scheme that provides revocation au-
ditability using only public key encryption, a challenge not yet achieved. A direct benefit of
this choice is that clients no longer suffer the burden of cryptographically intensive proofs, as is
required in solutions that rely on NZKPs. In this chapter, we present a new scheme, thatt wa
have named Privacy Keeper, which has the following features:

Goal: Propose an efficient authentication scheme, Privacy Keeper, designed to provide revocation
auditability. Our approach shares similarities with the mechanisms used by NZKPs for providing
revocation auditability [96]. However, our scheme relies solely on public key encryption. Besides
revocation auditability, our solution provides backward unlinkability without depending on short
time intervals, as many previous solutions did [95, 113, 156, 173] (including our own [59]). This
feature allows Privacy Keeper to achieve immediate revocation for clients by publishing RLs
without any time interval delay, while also requiring smaller RLs.

By avoiding computational costs on the client side, Privacy Keeper introduces some complexity
in RL construction on the server side. To mitigate the effects of this complexity, we introduce an
optimization for Privacy Keeper that allows for the pre-computation of RLs. In our evaluation,
we demonstrate that despite the cost associated with creating our RLs, Privacy Keeper offers
acceptable latencies in RL construction.

5.2 Related Work

Despite the existence of various schemes for anonymous authentication [59, 96], they face a
significant challenge in maintaining client anonymity after their revocation [96]. This issue arises
in authentication systems that respect VLR [37, 42], as it requires to publish revocation lists.
As described in Section 2.3.2, the existence of these lists allows an attacker to flag/identify the
authentication instances performed by a revoked client, which can be exploited to link multiple
authentications and, consequently, compromise the client’s anonymity. An adversary can exploit
these lists to link past and future authentications. Backward unlinkability is the property that
safeguards past authentication anonymity, achieved by RRPs in Chapter 4. Instead, revocation
auditability, our main focus in this chapter, aims to provide unlinkability in future authentications
performed by a revoked user. In the next sections, we provide details of how the related work
provides both of these properties.

5.2.1 Revocation Auditability

Informally, revocation auditability means that a user has the ability to verify his revocation
status at a service provider before attempting to authenticate [96, 182]. If the user is indeed
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revoked, he can then safely disconnect from the service without disclosing any potentially sensitive
information. Otherwise, clients could be revoked without their knowledge, and a malicious service
provider might still accept authentication requests from these revoked users, thereby compromising
their privacy. Such an attack can lead to severe privacy breaches, enabling the service provider to
link all of the user’s actions, which is especially concerning when schemes rely on uncircumventable
forward linkability for achieving revocability. In the literature on anonymous authentication we
have identified four main techniques to achieve revocation auditablity:

Central authority: The simplest solution is to have clients access a central and remote node
that issues revocation lists. Before each authentication, clients pull the most recent list and verify
their status in the system (i.e., whether they have been revoked). However, this solution is not
desirable for large-scale and dynamic systems like distributed edge storage systems or VANETs,
where clients have intermittent connections, and reliance on a central node can lead to multiple
availability failures. Additionally, it does not respect VLR.

Contract-based revocation: Another approach is to use contract-based revocation [96, 166, 124],
where the contract semantics are agreed upon by both the user and the provider. This enables the
user to determine whether a certain action will constitute misbehavior before deciding whether to
engage in it. Thus, the client is aware that it may be revoked after such an action. Unfortunately,
due to the large variety of applications nowadays, it is very difficult to define all the possible
behaviors a client may exhibit, making these approaches inflexible and impractical.

Revocation list freshness: A more desirable approach is to ensure that fresh revocation
information reaches the client. This is achieved by having RLs published at regular ∆t time
intervals, containing a signature with the corresponding timestamp [182]. When a client performs
authentication, it can first request the local revocation list, which must have a fresh signature
for the current ∆t, and then check if it has not been revoked; otherwise, it should halt the
authentication process. This is a practical and easily deployable solution, but the downside is
that ∆t imposes a tradeoff between system availability (clients do not authenticate if revocation
information is not fresh) and effective revocation (the larger the ∆t, the longer it takes for a
revocation to take effect).

Non-Revocation proof based on the RL: The more secure approach is to have clients locally
generate a non-revocation proof unique to the presented RL (before authentication, the client
downloads the list from the local provider). This guarantees that the generated proof cannot
be tested against another RL (that may contain the client), and it is only valid for the locally
presented RL. This solution ensures system availability and is flexible. However, this solution
has only been applied with NZNPs [19, 181], where clients prove that their pseudonym is not in
the presented RL. Unfortunately, the use of NZNPs requires clients to construct complex proofs,
in the authentication instant, suffering a high latency and computation cost.

In this chapter, we present a novel solution that shares the same security properties as a
non-revocation proof based on NZNPs, but our solution is solely based on public key encryption,
avoiding heavy cryptographic operations.

5.2.2 Backward Unlinkability

When providing revocation auditability, we want to continue to ensure that all authentications
performed by a user in the past remain anonymous after revocation, i.e., we want to continue to
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provide backward unlinkability [96]. Both our RRPs and the related scheme of Haas et al. [95]
aim to achieve backward unlinkability in pseudonym schemes. Both solutions follow a similar
approach in which time is divided into large epochs and then further subdivided into smaller
time intervals known as slots. This time division allows either locking pseudonyms (Haas et
al.) or cryptographic proofs (RRPs) to specific time slots. During revocation, only information
related to future time slots is used in RLs, and no information relative to past time slots is used,
thus achieving backward unlinkability.

RL

CapabilityPseudonym

Client Verifier
(a) Authentication in RRP, client is not aware of its revocation status.

RL

+ seed

+ seed

Client Verifier

(non-revocation proof)
Token

(b) Authentication in Privacy Keeper, proof is generated based on the RL.

Figure 5.1: Difference overview between authentication from Privacy Keeper and RRPs. RL
mean revocation list.

Both of these schemes provided contributions in achieving backward unlinkability in the
pseudonyms domain. Privacy Keeper takes a step forward and provides backward unlinkability
without resorting to time slots. This simple difference is crucial, as in both previous schemes,
the level of privacy achieved depends on the size of the time slots. In other words, the smaller
the slots, the higher the level of privacy. However, this has consequences for the amount of
information required for the system’s operation. For instance, in RRPs, the smaller the time
slots, the larger the size of the authentication proofs/capabilities. In Figure 5.1, we present a
simplified illustration of how authentication is carried out in RRPs, where the client sends the
pseudonym and a capability generated from the pseudonym at the moment of authentication.
The size of this capability is directly related to the slot dimensions. In contrast to RRPs, Privacy
Keeper does not use time slots, resulting in constant size proofs and instant revocation. The
only disadvantage is the need to download the RL, and only in the case of the client having an
outdated RL. Finally, since our proofs are generated uniquely for each RL, we achieve perfect
backward unlinkability, because, previously used authentication data will never be found in
future RLs.

5.3 Privacy Keeper

We now introduce our scheme for anonymous authentication, Privacy Keeper, the first
system to offer perfect revocation auditability and backward unlinkability simultaneously in
a pseudonymous domain. We use the term “perfect” because both of these properties are
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fully achieved, without trade-offs, unlike RRPs and Haas et al., where the size of time slots
compromises the quality of backward unlinkability provided. Furthermore, our solution enables
immediate revocation, letting the new RL be published without delay, while systems based on
time slots must wait for the slot to end to publish the RL.

In Privacy Keeper, the authentication is performed against a Revocation List (RL). A RL
includes a unique seed and an encoded set of revoked access tokens. Revoked access tokens are
encoded in an RL using a secure one-way function: it is possible to check if a token is in the set
but impossible to extract tokens from the set. The authentication requires the client to transmit
a pseudonym and an access token that is not included in the set of revoked access tokens. This
token proofs that the given pseudonym was not revoked; this is conceptually similar to the
non-revocation proofs used in NZNPs [19, 181], as illustrated in Fig. 5.1b. By using access tokens,
our scheme enables client revocation without disclosing pseudonyms. Tokens have a similar
purpose to the capabilities found in RRPs; we use a distinct name to prevent any confusion.
To achieve auditability, we require tokens to be uniquely linked to a givenRL, similarly to the
non-revocation proofs used in NZNPs. To accomplish this, clients request a RL from the verifier
at the time of authentication and generate their token exclusively for that RL. Our scheme
achieves this by letting access tokens for a given RL be a function of the unique seed of that
RL. Clients then generate the token using this seed, establishing a unique connection between
the token and the presented RL, as depicted in Fig. 5.1b. The verifier is then responsible for
cryptographically checking that all the presented information has been correctly constructed, for
instance, verifying that the presented token corresponds to the RL seed. In this work, we follow
the same system and threat model as RRPs, presented in Section 4.3.

5.3.1 Implementation

We will now describe in more detail how the tokens used for authentication and revocation
are constructed.

Entities: In Privacy Keeper we have the same three entities as those introduced in RRPs in
Section 4.3.1, where clients store pseudonyms and authenticate towards verifiers. We also assume
the presence of a trusted entity, such as a Certificate Authority (CA) that operates within a
Trust Execution Environment (TEE) to securely store and perform computations on sensitive
data.

Nomenclature: We assume ⟨K+,K−⟩ is a pair of public and private asymmetric keys, respec-
tively. A digital signature is defined by {digest(a)}K−

, where the private key K− is used to sign
the digest of the content of a.

Time: In this scheme, time is divided into epoch periods with a duration of e. These epochs are
relatively long time intervals, such as one year or one month. Each pseudonym is associated with
a specific epoch period. This is crucial to restrict the number of pseudonyms that exist at any
given moment. It’s important to emphasize that epochs are lengthy time intervals, in contrast to
the time slots in RRPs, which, for example, can have a duration of just one minute.

Client Storage: We assume that a client has performed some initial setup and stores locally
multiple pseudonyms valid for the current epoch. Each pseudonym p has a public and private
key pair, ⟨K+

p ,K−
p ⟩, and the pseudonym is defined by its public key and a digital signature from
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a CA, p = ⟨K+
p , {K+

p }K
−
CA⟩. The client holds a number I of valid pseudonyms for the current

epoch.

Access Token: An access token σRLz
x in Privacy Keeper is always cryptographically bounded to

a pseudonym px and a unique seedz. The token is used to proof that some selected pseudonym,
px = ⟨K+

px , {K
+
px}

K−
CA⟩, x ∈ [1, I], has not been revoked in the given revocation list RLz. The

next paragraph explains how RLz is uniquely bounded to seedz. The construction of our token is
quite straightforward. It involves generating a digital signature using the private key associated
with px over the digest of the provided seedz. Therefore, σ

RLz
x is defined as {digest(seedz)}K

−
px .

For authentication, the client forwards both the selected pseudonym and the corresponding token,
denoted as ⟨px, σRLz

x ⟩, as depicted in Fig. 5.1b.

Revocation Lists: In Privacy Keeper, the RLs include an unique seed and an encoded set of
revoked access tokens. Each RL is constructed by a trusted entity, the CA running inside a TEE,
similarly to RRPs. This CA has the capability to generate all the access tokens that can be
ties to any given RL. The generation of RLs is the only aspect of our scheme that has some
computational impact because each RL is dependent on a distinct seed. Therefore, when the CA
needs to revoke a client at a specific time t, it first generates a random value, which becomes the
seedz associated with a new revocation list, RLz. It then retrieves each pseudonym of the recently
revoked client, along with all other pseudonyms that were revoked in the current epoch, from
other previously revoked clients. Subsequently, it calculates the digest of the seed and generates

each token using all the revoked pseudonyms, resulting in ⟨{digest(seedz)}K
−
pi ⟩,∀i ∈ Rset, where

Rset is the set of all revoked pseudonyms in the current epoch. Each of these tokens is encoded
in the RL’s set of revoked access tokens using a secure one-way function. We denote the resulting
encoded set of revoked access tokens esratz. Finally, the CA creates a final digital signature
covering both the RL and the seed together, denoted as {digest(esratz ∥ seedz)}K

−
CA . The CA

can then immediately publish these three elements: the seed, the encoded set of revoked access
tokens, and the signature, which define the new RL.

In our scheme we ensure the verifier cannot provide a fake RLz by leveraging digital signa-
tures for authenticity. However, similar to related work, a malicious verifier might provide an
old RL, misleading a revoked client into a successful authentication attempt. Such scenarios
undermine revocation auditability in schemes like RRPs, where verifiers could exploit authenti-
cation information against newer RLs, potentially violating privacy of a revoked client. Unlike
these schemes, Privacy Keeper does not suffer from this vulnerability and preserves revocation
auditability. Our scheme uniquely binds the authentication information with the provided RL
(through the seed), rendering it useless to test across different or newer RL versions, regardless
of the user’s revocation status. Next, we explain how our unique token can still provide proof of
non-revocation.

Non-Revocation proof: For authentication, the client must provide a pseudonym and a
non-revocation proof that this pseudonym is valid. The proof is provided by presenting a valid
access token, associated with the given pseudonym and to the unique seed of the RL that is not
included in the RL’s set of revoked access tokens. In detail, the process to demonstrate that the
given pseudonym px is not revoked is as follows.

In the first step, the client must obtain a revocation list RLz and its associated seedz from the
verifier. Subsequently, the client validates the signature, generated by the CA, on the revocation
list. This validation confirms the integrity and authenticity of both the revocation list and the



5.3. PRIVACY KEEPER 85

seed. After this verification, the client generates a token σRLz
x for a selected pseudonym px, as

described earlier. It is important to note that this access token is only applicable for testing
against RLz and it is not valid to be tested against any other RL. Additionally, as previously
mentioned, the verifier cannot provide a fake RLz.

Consequently, it is the verifier’s responsibility to validate σRLz
x by ensuring that it has been

correctly constructed, that it corresponds to the presented pseudonym px, and that it has not
yet been revoked. To achieve this, the verifier first checks if the pseudonym has a valid signature
from the CA. Subsequently, it uses the provided pseudonym’s public key, K+

px , to verify the

digital signature within σRLz
x . This signature must be correctly constructed using K−

px and must
correspond to the correct seedz from RLz. If this is confirmed, it indicates that the proof has
been correctly constructed and corresponds to the presented pseudonym px. The next step for
the verifier is to ascertain whether the access token σRLz

x can be found in the encoded set of
revoked access tokens of RLz. If this access token belongs to the encoded set of revoked access
tokens, the pseudonym has been revoked; otherwise, the access token provides proof that this
pseudonym has not been revoked and is valid.

Authentication: At a high level, authentication begins with the client downloading the RL from
the local verifier. Then, the client selects a pseudonym and generates am access token for the seed
associated with RL, using the private key of this pseudonym. Next, the client checks whether
it has been revoked by testing if the token is found in the RL’s encoded set of revoked access
tokens. If not, both the access token and pseudonym are sent to the verifier, which authenticates
the token and tests it against the same RL. If the token is found in the RL’s encoded set of
revoked access tokens, the client is considered revoked; otherwise, they it is deemed valid, and the
authentication is accepted. The step of downloading the list is necessary to ensure auditability,
enabling the client to verify his status. It is important to note that even if the verifier presents
an older RL, the proof generated by the client is only valid for that specific RL (unlike RRPs),
thus guaranteeing revocation auditability.

5.3.2 Optimization

We now introduce two enhancements designed to optimize the performance and facilitate
the adoption of our Privacy Keeper

RL based on Bloom Filter: Our scheme requires encoding all revoked access tokens using
a one-way hash function to prevent direct access to the inserted data. Only when the client
provides a token, can the verifier ascertain if it belongs to encoded set of revoked access tokens.
To construct the encoded set of revoked access tokens we use Bloom Filters [59, 95]. Bloom
Filters enable data compression, occupying less space, and offering constant-time check.

Precomputed RLs: Since the most resource-intensive part of our system is the construction of
the RL from scratch every time a new client is revoked, we have implemented an optimization
to accelerate this process. This optimization hinges on the CA consistently maintaining a
precomputed RL. In other words, the CA consistently prepares in advance a new version of the
RL, selecting a random seed and generating all the revoked access tokens associated with that
RL for all previously revoked users. When there is a need to revoke a new client, it is merely
a matter of generating the revoked access tokens for the new client and inserting them into
the encoded set of revoked access tokens. This precomputation significantly reduces the time
required to generate a new RL and to publish it, making revocation more effective.
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5.4 Security Proof

In this section, we first present a proof that Privacy Keeper preserves unlinkability, and
afterward we prove that Privacy Keeper is also capable of offering auditability.

5.4.1 Unlikability

We now provide a proof that Privacy Keeper offers full unlinkability, meaning that revocation
information cannot be linked to the information used by clients when authenticating before and
after the revocation. This proof is simpler than the one presented in Section 4.5 for the RRPs,
since the scheme is also relatively simpler. Our scheme provides unlinkability because access
tokens are only valid for a specific RL and, therefore, the revoked access tokens that are encoded
in different RLs are necessarily distinct.

Assumption 4. There is a secure one-way function.

We assume the availability of a secure collision-resistant hash function h(), such as SHA256,
that is easy to compute on every input, but not possible to invert given the output.

Assumption 5. Only the client and the CA can access pseudonyms.

We assume that both the client and the CA will securely store the secret private key of each
pseudonym and never disclose it. The CA is responsible for generating different pseudonyms for
a client. The cryptographic keys ⟨K−,K+⟩ of a pseudonym are randomly generated by the CA
using a secure cryptographic scheme.

Assumption 6. There is a secure deterministic digital signature scheme.

We assume the availability of a secure deterministic digital signature scheme, such as
Ed25519 [33], which ensures the usual authentication, integrity, and non-repudiation properties.
A deterministic signature is generated by {h(a)}K−

using K− to sign the digest of the content
of a, and can be verified with K+.

Assumption 7. The client picks an unused pseudonym to authenticate.

For each authentication, the client chooses a pseudonym that has never been used. If it runs
out of pseudonyms to use, it requests more from the CA.

Assumption 8. Given a revocation list RLz, the client only proceeds with authentication with a
pseudonym px if px has not been added to the RLz’s encoded set of revoked access tokens.

When performing authentication, the client requests the current RLz from the verifier, and
checks if pseudonym px has been revoked RLz. We recall that px has been revoked RLz if
σRLz
x belongs to the RL’s encoded set of revoked access tokens. If the client finds that p has

been revoked in RL, it stops from using the service and does not provide any more information;
otherwise, it continues with the authentication.

Definition 10. A valid pseudonym px is defined as:

px = ⟨K−
x ,K+

x , {h(K+
x )}K

−
CA⟩
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Where (K−
x ,K+

x ) represent the private and public key of the pseudonyms respectively, and

{h(K+
x )}K

−
CA is a digital signature of the CA over the public key to provide authenticity for the

pseudonym. From Assumption 5, the CA provides the pseudonyms to clients with the respective
signature.

Remark 1. A valid token σ for revocation list RL is a unique digital signature over the RL’s
seed.

A token σRLz
x represents the unique bond of a pseudonym px to a given revocation list RLz.

This bond is implemented by a digital signature performed over the unique seedz that accompanies
the list, where σRLz

x = {h(seedz)}K
−
x . By using the private key K−

x of the pseudonym (from
Definition 10), we enforce authentication, integrity, and non-repudiation of the token (from
Assumption 6).

Remark 2. A RL is immutable, unique, and cannot be tempered with.

All the revocation lists are generated and published by the CA. For a new RLz, the CA
generates a unique and random seedz, then computes a revoked access token for each revoked

pseudonym as σRLz
i = {h(seedz)}K

−
pi (from Remark 1) and then encodes each revoked access

token using a one-way hash function as h(σRLz
i ) (from Assumption 4). The encoded set of

revoked access tokens esratz is then bound to the seedz through a digital signature that proves its

authenticity, resulting in {h(esratz ∥ seedz)}K
−
CA . Any atempt to tamper the RL will invalidate

its signature. The CA will never reuse the same seed, making each encoded set of revoked access
tokens unique and immutable.

Remark 3. A valid authentication request is defined as:

⟨x, σRLz
x ⟩

When autenticating the client must provide the authentication request where x is defined as
the public information of some pseudonym px, specifically the public key and the CA signature
⟨K+

px , {h(K
+
px)}

K−
CA⟩. Before presenting this information towards the verifier, the client requests

the current revocation list RLz and generates σRLz
x from Remark 1. Following Assumption 8, if

the client does not find σRLz
x in the encoded set of revoked access tokens for RLz, it proceeds

with the authentication by sending the authentication request ⟨x, σRLz
x ⟩ to the verifier.

Theorem 3. Two different authentications cannot be linked to the same client.

Proof. Consider an authentication from client c that provides an authentication request ⟨x, σRLi
x ⟩

for pseudonym x ∈ pc in face of some revocation list RLi. Consider another authentication from

client c′ that provides the request ⟨y, σRLj
y ⟩ for pseudonym y ∈ pc′ in face of some revocation list

RLj . For an attacker to successfully link the two authentications, it needs to infer that c = c′.

There are two ways for an attacker to achieve this goal.

One is to assert that x and y belong to the same client, i.e.:

assert(∃c,Pc , x ∈ pc ∧ y ∈ pc) (5.1)
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This condition holds true when x and y belong to the same pseudonym pc, and according
to Remark 3, this would require x and y to share the same public key K+

pc . However, by
Assumption 7, the client never uses the same pseudonym twice. Additionally, according to
Assumption 5, the CA generates all the public and private keys of each pseudonym using a
secure, random, and invertible cryptographic scheme, this will result in unlinkable and random
pseudonyms by construction. Therefore, an attacker will always observe x ̸= y and never be able
to assert Equation 5.1 as true.

The other way is to use the information in some other revocation list RLk to link pseudonyms
x and y. Let us use RL.esrat to denote the encoded set of revoked access tokens of revocation
list RL.

assert(∃RLk
, h(σRLk

x ) ∈ RLk.esrat ∧ h(σRLk
y ) ∈ RLk.esrat) (5.2)

This condition holds true if the attacker can verify that exist a list RLk that contains encoded
tokens for both pseudonyms x and y. Because tokens are encoded by secure one-way functions,
the attacker cannot extract σRLk

x and σRLk
y from RLk or RLk.esrat and therefore these must

be provided by the client. By construction (Assumption 8), the client will not provide σRLk
x if

h(σRLk
x ) ∈ RLk.esrat. Thus, the attacker can only have access to σRLk

x if there is some other

RLk′ such that σRLk
x = σ

RLk′
x , however, by Remark 2, this is impossible, because tokens are

unique, given that they depend cryptographically on different seeds. Therefore, the attacker is
not able use some public revocation list to assert Equation 5.2 as true.

Therefore, we can conclude that the attacker is incapable of leveraging the available informa-
tion to assert either Condition 5.1 or 5.2 as true. This implies that the attacker cannot infer
whether c = c′. Consequently, an attacker is unable to link two different authentication attempts
to a single client.

5.4.2 Auditability

We now provide a proof that Privacy Keeper offers full auditability.

Lemma 4. After a pseudonym px is revoked, any RL presented to clients must encode σRLz
x in

the RL’s encoded set of revoked tokens.

Proof. A client authenticates against a given RL by selecting a pseudonym px and presenting
⟨x, σRLz

x ⟩. Authentication is granted if σRLz
x has not been added to the RL’s encoded set of

revoked tokens. Thus, for revocation of pseudonym px to succeed, σRLz
x must be added to the

RL’s encoded set of revoked tokens of all RL presented to a client after revocation.

Lemma 5. A client authenticates using pseudonym px only if, when presented with a revocation
RL, it cannot find σRLz

x in the RL’s encoded set of revoked tokens.

Proof. A client authenticates against a given RL by selecting a pseudonym px and presenting
⟨x, σRLz

x ⟩. By construction (see Assumption 8) a client will only authenticate using px if it cannot
find σRLz

x in the RL’s encoded set of revoked tokens.
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Theorem 4. Privacy Keeper ensures auditability

Proof. The proof, is by contradition. A client is not guaranteed auditability if it attempts to
authenticate with a pseudonym px that has been revoked. Let px be a pseudonym used by some
client to perform authentication against some revocation list RL. By Lemma 4, if pseudonym px
has been revoked σRLz

x must be encoded in the RL’s encoded set of revoked tokens. By Remark 2
RLs are immutable and cannot be tempered with by the verifier. By Lemma 5, if the client
authenticates, it cannot find σRLz

x in the RL’s encoded set of revoked tokens. A contradiction.

5.5 Evaluation

We evaluated our system against the two main solutions that offer backward unlinkability in
public key encryption, namely Haas et al. and RRPs, despite the fact that these systems do not
provide revocation auditability, a distinctive feature that Privacy Keeper uniquely introduces.
For our evaluation, we followed a similar assessment as in RRPs, taking advantage of an Intel
NUC10i7FNB, with an Intel i7-10710U CPU with Intel SGX, 16GB RAM, and Ubuntu 20.04
LTS. Additionally, to ensure a fair comparison, we selected the ideal parameters for RRPs, an
epoch of one month and a time slot of one minute. This means that for Haas et al. it requires at
least one different pseudonym for each minute of the month.
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Figure 5.2: Comparison of the revocation lists size and creation latency, between blacklisting
systems based on pseudonyms. RL is revocation list.

In the evaluation, we aimed to compare the critical aspects of our solution: the time required
to generate a new version of the RL and the size this list can reach. Figure 5.2 illustrates both of
these experiments, demonstrating the latency required to create a new version of the RL for the
first revoked user (1º), the one-hundredth (100º), and the one-thousandth (1000º) while varying
the number of pseudonyms each client possesses. It’s important to note that our basic Privacy
Keeper solution implies that with each new revocation, we need to recreate the RL from scratch
and generate the necessary information for all previously revoked clients. Therefore, the more
clients have been revoked, the longer the latency to create an RL will be.
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However, our optimization to precompute the RL has latency similar to Haas et al., with a
worst-case time of just under 10 seconds to generate. Another visible advantage of our system is
that the size of the RL is much more efficient, maintaining the same flexible properties as RRPs.
In our scheme, clients store only the desired number of pseudonyms, and the revocation only
requires a single token per pseudonym, while RRPs need log( epochslot ) of revocation data in the
RL per pseudonym. It’s worth noting that although Haas et al. is more efficient, it offers fewer
security properties and flexibility, as it forces clients to carry many pseudonyms, even if they
don’t need them.

Summary

We have introduced Privacy Keeper, a novel scheme for anonymous authentication based
on pseudonyms, offering perfect revocation auditability. While our previous scheme, RRPs,
could only provide backward unlinkability, Privacy Keeper deliverers both of these properties,
alongside immediate revocation, and in a significantly more efficient manner compared to previous
systems. The use of access tokens that act as non-revocation proofs, constructed using public
key encryption, represent the first scheme to offer both revocation auditability and backward
unlinkability, a feat previously achieved solely through resource-intensive ZKPs. One drawback
of our Privacy Keeper solution is that at the moment of authentication, the client needs to
download the revocation lists, something that can impact the crucial authentication latency.

This was the last of the three main contributions of the thesis. The next chapter discusses
additional contributions that emerged from the work previously presented in the thesis, and that
were achieved through collaborations and concludes the thesis.
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6
Conclusions and Future Work

This chapter closes the thesis. Section 6.1 summarizes the main results and answers the
questions posed in Chapter 1. The final section, Section 6.2, concludes by outlining future
research directions.

6.1 Conclusions

In this thesis, we have explored the benefits and security vulnerabilities arising from the
novel edge computing model. A key finding in our research is the critical need for robust security
features in services operating on the edge, with a particular focus on storage systems and how to
respect the low latency requirements. Having edge storage replicated on exposed fog nodes poses
a significant risk to storage services, potentially hindering the adoption and deployment of edge
storage solutions. We have conducted a survey of cutting-edge techniques in distributed storage
system design, highlighting the benefits of leveraging TEEs and cryptographic protocols. While
TEEs offer a reliable foundation for trust at the edge, relying solely on TEEs is insufficient to
safeguard storage services against the full spectrum of vulnerabilities present in edge computing.

Building upon our analysis of vulnerabilities in edge storage systems, this thesis progresses in
two complementary directions: (i) the design and implementation of a cryptographically secure
and accurate auditing tool for edge replicated storage systems (Chapter 3), and (ii) the design
and implementation of a distributed anonymous authentication scheme for edge environments
(Chapters 4 and 5). We now draw conclusions from these three major outcomes of this thesis.

Firstly, we created a cryptographically secure and precise auditing tool for edge replicated
storage systems. This tool is designed to pinpoint the location of data on edge machines, ensuring
that the data is replicated and accessed with minimal latency, thus benefiting edge services
and clients. Our solution leverages local TEEs on the machine to guarantee that the proof
is physically executed on the audited machine, while configuring the challenge duration’s for
optimal performance and precision. As outlined in our experimental results, we achieved an
accuracy level sufficient to ascertain whether data is local to a machine, thereby achieving locality
auditing capability. This initial contribution addresses the first question posed in Section 1.2 by
introducing an auditing scheme capable of verifying data locality in edge storage.

Secondly, we introduce an anonymous authentication scheme that effectively ensures backward
unlinkability. Respecting user privacy at the edge is imperative, especially since authentication,
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crucial for all services including storage systems, can compromise client privacy due to its
geographic proximity to the infrastructure, potentially exposing sensitive information. To
mitigate this, we have developed a distributed anonymous authentication scheme for the edge.
This scheme provides authentication whit low latency while providing backwards unlinkability,
surpassing existing solutions, and also reduces storage costs for both client and verifier. By
utilizing TEE to generate client credentials at the edge, we establish a trustworthy foundation.
This contribution has taught us that complete anonymity in authentication requires more than just
backward unlinkability; revocation auditability is equally vital, presenting a complex challenge
when relying exclusively on public key encryption.

Thirdly, we have developed an anonymous authentication scheme that ensures both backward
unlinkability and revocation auditability. The insights from our previous contribution highlighted
the importance of revocation auditability, as lack thereof could lead to privacy vulnerabilities,
especially if an attacker has control over the infrastructure. Consequently, we devised a new
scheme that successfully provides backward unlinkability and revocation auditability. While this
scheme offers complete anonymity in authentication, it encounters challenges, particularly in
downloading the revocation list at each authentication instant, which can markedly increase
latency. This two last contributions address the second question posed in Section 1.2 by
introducing an anonymous authentication scheme specifically designed for the challenges of edge
computing.

The insights gained through this thesis may pave the way for future development in edge
storage systems, suggesting that such systems should be designed with TEEs as fundamental
components to establish varying trust levels at the edge. It is imperative for all edge services,
including storage systems, to secure their data, especially when operating on vulnerable fog
nodes. Our contributions may lay the groundwork for creating a secure edge environment.

6.2 Future Work

Throughout the work presented in this thesis, numerous decisions were made, leading to
certain paths and questions that remained unexplored and unanswered. In this section, we
discuss potential research directions, where some are currently under active development. These
directions are directly related to the two main focuses of this thesis. We now provide motivation
for these directions and offer a brief introduction to them.

Auditing partial remote storage

In the first contribution of this thesis, we introduced PoTR, our auditing tool designed to
detect if an edge provider is using remote storage. Our experimental tests primarily focused
on scenarios with data being completely remote or local. A key area for future research is to
evaluate PoTR’s effectiveness when the proportion of remote data varies. Our initial findings
indicate a struggle in identifying scenarios with a small percentage of remote data, especially
when only 5% is remote and 95% is local. PoTR’s method of measuring an average δ value
limits its ability to detect blocks with higher latency. An intriguing research direction would
be to refine the proof, possibly through multiple, smaller executions, to assess the variance in
latency for accessing data blocks. Shifting the focus from average latency to latency variance
could enable detection of more complex and potentially malicious behaviors by edge providers.
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Selective download for RLs

As previously noted, this thesis’s third contribution, the Privacy Keeper, requires clients
to download the revocation list at each authentication instance, potentially increasing latency
for edge authentication. Addressing this latency challenge is crucial for edge applications. A
direction for further research involves utilizing redactable signatures [109] in conjunction with
Bloom filters. Redactable signatures enables the clients to request only a portion of the Bloom
filters while preserving the capability to verify the filter integrity. In the case of the Privacy
Keeper, clients would only need to download the entries that the client needs to check, requiring
only to be transfer a few bytes in the network, drastically reducing the latency for authentication.

Another exploration avenue involves leveraging multiparty computation for the Pseudonym
Manager/CA implementation. Implementing the revocation-capable entity across different TEEs
simultaneously ensures trust isn’t confined to one type of TEE. By using multiparty in this
context, a client revocation requires consensus among all TEEs, protecting the system if a
TEE is compromised. It would also be interesting to explore the use of Butterfly keys [168] for
pseudonym generation and complementing this with cryptographic accumulators to efficiently
transfer all this pseudonyms in the network.



96 CHAPTER 6. CONCLUSIONS AND FUTURE WORK



Bibliography

[1] Abdou, A., Matrawy, A., and van Oorschot, P. Accurate one-way delay estimation

with reduced client-trustworthiness. IEEE Communications Letters 19, 5 (2015), 735–738.

[2] Afonso, N., Bravo, M., and Rodrigues, L. Combining high throughput and low migration

latency for consistent data storage on the edge. In Proceedings of International Conference

on Computer Communications and Networks (Honolulu, HI, USA, Aug. 2020).

[3] Ahmed, E., and Rehmani, M. Mobile edge computing: Opportunities, solutions, and

challenges. Pervasive Computing 70 (2017).

[4] Ahmed, R., Zaheer, Z., Li, R., and Ricci, R. Harpocrates: Giving out your secrets

and keeping them too. In Proceedings of the ACM/IEEE Symposium on Edge Computing

(Bellevue, WA, USA, Oct. 2018).

[5] Akamai. Online retail performance report: Milliseconds are critical. https:

//www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-

of-online-retail-performance-report, 2017. Accessed: 2023-12-12.

[6] Akamai. Real time key value store for edge computing. https://www.akamai.com/

products/edgekv, 2021. Accessed: 2023-12-12.

[7] Alder, F., Scopelliti, G., Van, J., and Mühlberg, J. About time: On the challenges of
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