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The use of remote storage has become prevalent both by organizations and individuals. By relying on third-party storage,

such as cloud or peer-to-peer storage services, availability, fault tolerance, and low access latency can be attained in a

cost-eicient manner. Unfortunately, storage providers may misbehave and violate Service-Level Agreements (SLAs). In this

paper, we propose a new Proof of Timely-Retrievability (PoTR) that aims at assessing whether a provider is able to retrieve data

objects with a latency lower than some SLA-speciic threshold � . We have implemented the PoTR and evaluated two distinct

conigurations of the proof, one tailored to estimate the average latency experience by clients and the other tailored to assess

its variance. We leverage Trusted Execution Environments (e.g., Intel SGX) to ensure that the proof is produced by the node

being audited and to reduce the communication between the auditor and the audited node. We have experimentally evaluated

our prototypes considering a challenging edge computing setting, where storage services are provided by resource-constrained

fog nodes, and the distance between the auditor and the audited node can be large. Despite the noise introduced by edge

network delays, we show that the auditor is able to efectively detect SLA violations.

CCS Concepts: · Security and privacy→ Database and storage security; Distributed systems security.
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1 Introduction

Today, there are many scenarios in which end users, or organizations, store data in machines run by third parties,
either to ensure durability and availability, or to ensure that customers can access data with low latency. Relevant
examples include cloud storage (e.g., Dropbox, iCloud, and Google Drive), peer-to-peer storage (e.g., Filecoin [21],
IPFS [12], and Swarm [35]), content distribution networks (e.g., Akamai [3] and Cloudlare [16]), and, more
recently, edge storage [3, 36]. In this emerging edge computing environment, the latency for data access will
become a crucial constrain and challenge for any data placement algorithm, due to the highly distributed and
zero-trust environment [10].
Despite signiicant advances in storage systems, trust in providers has remained unchanged [24]. Customers

require mechanisms to verify that QoS (Quality of Service) is being respected. Relevant QoS aspects include the
guarantee that the third party will not discard or corrupt the stored data, that the data is stored on multiple distinct
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Systems Data
Locality

Eicient/Cheap
Execution

Challenge Delegation
Protection

Timer Delay
Protection

Single Remote Auditor

PoTR ✓ ✓ ✓ ✓

PDP (2007) [9] ✗ ✓ ✗ ✓

PoRet (2016) [8] ✗ ✓ ✗ ✓

Benet et al. (2017) [13] ✗ ✓ ✗ ✓

Li et al. (2020) [26] ✗ ✓ ✗ ✓

Filecoin [21] ✗ ✓ ✗ ✓

Multiple Auditors

Benson et al. (2011) [14] ✓ ✗ ✗ ✓

Gondree et al. (2013) [22] ✓ ✗ ✗ ✓

Local Auditor Relying on TEE Clocks

Dang et al. (2017) [18]* ✓ ✓ ✓ ✗

EnclavePoSt (2022) [39] ✓ ✓ ✓ ✗

Multiple Auditors and Reliance on TEE Clocks

ReliableBox (2021) [25]* ✗ ✗ ✗ ✗

* deprecated since Intel excluded trusted time from SGX Linux PSW [5].
Table 1. PoTR properties compared with the related work

machines, in speciic geographic locations, and that users are served with some bounded delay. Unfortunately,
a misbehaving provider may opt to avoid complying with the agreement if it can gain some beneits and pass
unnoticed. For example, the provider may keep the data in fewer locations than agreed with the customer,
assuming that it may be impossible for the customer to audit how many replicas are used or where these replicas
are placed. This threat has motivated the development of auditing techniques that are capable of extracting
storage proofs, that is, evidence that the third party is complying with (or violating) the deined quality of
service [13, 14, 18, 22, 26].
In this paper, we present a mechanism that aims at assessing whether a given server node is able to retrieve

data objects with a latency lower than some SLA-speciic threshold � . By estimating an upper bound on the data
access latency, we can also determine if the data is placed where expected. Namely, when the SLA threshold � is
small, it is possible to verify if data is being stored at the audited node or elsewhere. Our new proof mechanism,
named Proof of Timely-Retrievability (PoTR), takes advantage of the existence of Trusted Execution Environments
(TEEs) [19, 28, 30] (concretely, Intel SGX enclaves[6]) to ensure that the challenge is executed by the node being
audited [28], not by some other remote node. By using TEEs, we can also avoid prematurely revealing the data to
be accessed during an audit, while keeping the communication between the auditor and the audited node to a
single request-reply exchange. PoTR has been carefully designed to mitigate the noise introduced by this single
message exchange. Our approach minimizes the network impact on our challenge accuracy, eliminating the need
to rely on vulnerable and discontinued TEE clocks [5, 7], in contrast with recent related work, listed in Table 1.
Compared with previous work [18, 25, 39], we take a step forward and evaluate our proof in the highly

challenging edge computing environment. When auditing edge services, the auditor may be located far away
from the audited node and the communication network may exhibit large delays and jitter that can afect the
accuracy of the proof. Edge computing relies on placing resources physically close to end users, such that
applications can ofer a latency lower than some SLA-speciic threshold � . By setting the SLA threshold � to a
small value that can only be satisied by the provider if data is kept locally, we use PoTR to distinguish the case
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(b) Dishonest Edge Provider.

Fig. 1. PoTR auditing scenarios.

where the edge node stores data locally (Figure 1a) from the case where it keeps the data in some remote node or
in the cloud (Figure 1b). Although we illustrate PoTR in the context of edge computing, our proof is general and
can be applied to other contexts.
We show that our PoTR can be conigured and used in diferent ways to extract two relevant related metrics.

The irst coniguration of PoTR, that we have called Proof of Average Timely-Retrievability (PoATR), allows to

estimate accurately the average data access latency (this can be achieved by coniguring appropriately the duration
of the challenge). The second coniguration of PoTR, that we have called Proof of Uniform Timely-Retrievability
(PoUTR), allows to assess the variance in the data access latency (this can be achieved by running multiple,
independent, shorter challenges). PoUTR is useful to determine if the audited node is able to serve data with
uniform latency or if it serves data with latency spikes that cannot be revealed by PoATR alone.

We have experimentally evaluated the accuracy of both conigurations, for average latency and variance, with
nodes placed in two diferent university campuses and in the cloud. The results demonstrate that our PoTR can be
efectively conigured to distinguish between a fog node that respects the latency SLA and one that does not. We
found that even in scenarios where a dishonest node stores the ile in a nearby fog node (resulting in a latency
diference of less than 1.5��), our PoTR can accurately pinpoint the misbehaviour. Finally, we have explored
various alternatives to reduce the overhead on fog nodes during the execution of the proof, including varying the
block size and using SGX switchless calls [37].

2 Background and Related Work

This section provides the essential background for our work.

2.1 Distributed Edge Data Storage

Resorting to third-party storage services provides clients with interesting beneits and challenges, especially in
the highly demanding edge computing environment.

2.1.1 Edge Storage Benefits. Many applications strive to reduce their loading times (e.g., social media, enter-
tainment, e-commerce, advertising, and gaming), knowing that even a small diference in milliseconds can
signiicantly impact their revenue [2]. In recent years, a growing number of applications have relied on content
delivery networks (CDN) [23], such as Akamai, Amazon, or Verizon, to store static content closer to end users,
achieving lower access latencies. In recent years, edge computing has emerged to ofer storage and computation
even closer to end users, supporting applications for face or object recognition[34], real-time databases [3], and
just-in-time video indexing[32], which demand response times below 5-30 milliseconds [31], something that
cannot be guaranteed with cloud storage alone or CDNs. The intelligent and resource-aware edge computing
environment is composed of a large number of resource-constrained servers known as fog nodes or cloudlets.
Where the self-adapting data placement algorithms will need to consider both the limited resources and the
access latency that edge clients sufer, within the distributed and zero-trust environment [10, 20, 27, 33].
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2.1.2 Edge Storage Challenges. Fog nodes are managed bymany local providers, and due to their limited resources,
they cannot store copies of all objects stored in the cloud [17]. Instead, they typically keep copies of items that
are required by local applications. Moreover, due to their limited storage capacity, edge storage providers may
be tempted to oversell their storage and hide this behaviour by fetching, on-demand, data from the cloud or
from other servers, instead of serving them from local (edge), resulting in increased latency for data users. One
efective approach to address and detect such misbehaviour is through auditing mechanisms. These mechanisms
can enhance the intelligent edge environment by providing real measurements to build trust autonomously
between the local entities (e.g., through rating schemes) or to penalize non-compliant providers.

Filecoin storage [21] is a concrete example of an auditing mechanism, where a node that fails to prove its ability
to store data as required will no longer receive inancial rewards and may be expelled from the network. In cloud
or edge storage, providers can be compelled to compensate their customers for violations of the deined contract,
known as the SLA. Is essecnial to audit that the SLA is being delivered in edge applications such as: 1) Web,
EdgeKV [4] (similar to CDNs) charge their clients to store data near clients and reduce latency; 2) Augmented
reality apps, they need low-latency access to data to be shown to the user; 3) Autonomous vehicles, they need
low-latency access to maps, directions, etc.

2.2 Auditing Third-Party Storage Services

When a storage provider is subject to an audit, it must provide a proof that it is applying the storage policies
speciied in the SLA. This proof is generically called a proof of storage[13]. Moreover, since an SLA may cover
diferent aspects of storage implementation, such as the target number of replicas, the location of those replicas,
or the latency observed by users when accessing data, it is possible to deine diferent proofs.

2.2.1 Proofs of Storage. The literature is rich in techniques for obtaining proofs of storage, mostly focused on
cloud storage, the most relevant ones are Proofs of Data Possession (PDP)[9] and Proofs of Retrievability (PoRet)[8]
that aim to check if the storage provider keeps at least some copies of the stored data; Proofs of Replication[13, 26]
that assess if the storage provider has � copies of a data item (they may be placed on the same machine); and
Proofs of Geographic Replication[14, 22] that test if the provider keeps � data copies on diferent machines, in
distinct geographic locations. Each of these proofs is issued as a response to a challenge[26], that is sent to the
storage provider by one or more auditing entities. Typically, a challenge requires the provider to execute a set
of reading operations over a subset of the stored data, and return on-time a value that proves the access of the
correct data items (e.g. a cryptographic hash of the audited data).

2.2.2 Structure of a Challenge. A simple way to verify if a storage provider keeps a given data item would be to
request that item and then check its integrity. Although this method could, in fact, ofer a PoRet, it has several
limitations.

First, this approach is ineicient, as it requires the auditor to consume a large amount of bandwidth to obtain
the proof. Therefore, to save bandwidth, most challenges require the storage provider to read a subset of the
stored data items and compute a cryptographic hash of them. Typically, the response has to be issued within a
predeined deadline, determined by the auditor [13, 14, 18, 26]. Furthermore, when sending the challenge, the
data items should be revealed interactively to prevent the storage provider from downloading missing items on
demand [26]. If the provider cannot guess in advance the data items to be accessed, it has to keep all items within
the constraint access time to build a correct and timely proof.

Second, a single request for data items cannot verify some of the service requirements. For example, it cannot
assess whether the storage provider keeps just one or several replicas of the data items. A typical solution is to
encode each ile with a distinct secret key[13]. Unfortunately, this does not prevent a provider from keeping all
replicas in the same machine, which may compromise availability. An option is to design the challenge so that it
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is impossible to respond on time if all replicas are kept on the same machine, although it can be feasible if the
proof is built in parallel[26].
These mechanisms are not enough to guarantee that the proof was generated by the target node. For this

purpose, it is possible to leverage a TEE to interactively reveal the challenge and ensure that the operations
essential to the proof construction are executed in a given machine[18].

2.3 Trusted Execution Environments

A processor with a TEE has two execution modes: normal mode, where the operating system and applications
run, and secure mode, an isolated environment which ensures the integrity and conidentiality of data and code
inside [19, 28, 30], even in the presence of an untrusted operating system.
There is a set of diferent TEE architectures[30], for example, Intel Software Guard Extensions (SGX), ARM

TrustZone, AMD Secure Memory Encryption (SME) and AMD Secure Encrypted Virtualization (SEV). We resort
to Intel SGX technology, as it is available in Intel systems (PCs and servers), and we use Intel machines in our
experimental setup.

Trusted Part

(Enclave)

Untrusted Part

OCAll ECAll

Fig. 2. Intel SGX components and execution mode switching calls.

Intel SGX splits the computing environment in two parts: the secure mode known as enclaves, and the normal
mode known as the untrusted part. Furthermore, since the processor core can only execute one environment
at a time, the exchange of environments occurs through hardware calls, more precisely ECalls and OCalls. In
addition to code and data security, Intel SGX provides security guarantees regarding machine identiication.
Figure 2 provides an overview of Intel SGX components and the calls executed for the exchange of execution
modes. In other words, an external machine that communicates with the enclave can get a guarantee that it is
communicating with a real enclave, through the attestation process[17, 28].

2.4 Discussion

We now discuss the limitations of the related work in auditing storage systems, summarized in Table 1.
Eicient Execution. Both PDP[9] and PoRet[8] are designed to ofer eicient cryptographic mechanisms to

verify the integrity of cloud-stored data. Benet et al.[13] present a mechanism capable of verifying if there are a
certain number of copies of a ile, while Li et al.[26] audit if such copies are stored on diferent physical machines.
These proofs depend on a single remote auditor, requiring low cost for deployment and execution. Filecoin [21]
ofers blockchain-based cooperative digital storage, which requires expensive cryptographic operations. These
proofs cannot estimate data location or access latency, making them unsuitable for testing if a provider stores the
required data in a speciic node.

Data Locality. Triangulation mechanisms are one way to estimate data location. Gondree et al.[22] and Benson
et al. [14] follow this approach by relying on multiple auditors/landmarks for the estimation. Unfortunately,
triangulation can be expensive since it requires the intervention of multiple landmarks for each proof execution,
and the accuracy of this mechanism depends on the proximity of the landmarks to the audited node. In this paper,
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we take a diferent approach, where we decouple geolocation from data locality. An auditor can irst geolocate a
node (using techniques as in [22]) and then run our PoTR to check if the iles are stored locally at that node. This
approach has the advantage that the accuracy of the locality proof no longer depends on the landmarks, and
exclusively relies on a single parameter that afects the proof duration, making it practical, particularly in edge
environments.

Delegation Attack. Despite the use of triangulation, none of these systems is capable of enforcing the proof
to be executed on a given machine; this is a critical obstacle when attempting to audit speciic nodes, particularly
in an edge storage environment. A storage provider, which controls the infrastructure, may capture the challenge
request and delegate the production of the response to the remote storage: such behavior may be diicult to
detect. Dang et al.[18], and EnclavePoS[39] resort to a TEE to execute their challenge on the correct machine to
prevent this attack but, unfortunately, are still vulnerable to a clock delay attack.

Delay Attack. Using a TEE to trivially implement the auditor alone is not enough to ensure the generation of
correct and honest proofs. These systems assume that the SGX clock can be trusted to measure the duration of
the challenge at the audited node [18, 25, 39], but recent research has shown that the enclave cannot read an
accurate and reliable system clock, due to the following issues[7]: (1) the storage node system clock is vulnerable
to manipulations by the untrusted part; (2) the operation to read trusted timers, such as those provided by SGX

or, TPM (Trusted Platform Module), has a large overhead, penalizing the proof accuracy; and (3) the untrusted part
can maliciously delay trusted timer messages, to fetch remote data blocks on demand, and thus escape detection.
Additionally, since 2020, Intel has excluded SGX trusted time from Linux PSW, leaving Dang et al. [18] and
ReliableBox [25] deprecated. As a result, it is not practical to use the enclave for time measurements. Furthermore,
as discussed below, ReliableBox focus on the triangulation task and is unable to verify if the audited node keeps
the iles locally or remotely.
Geolocation of the Node Being Audited. Some applications may require the geolocation of the machine

being audited. The geolocation problem is orthogonal to the problem of timely retrievability and we advocate that
these problems must be addressed by diferent, complementary, mechanisms. Geolocation typically requires the
use of multiple auditors (namely, to perform triangulation) while, as we show in this paper, timely retrievability can
be achieved using a single auditor. This separation allows performing the proof of geolocation only sporadically
(for instance, when the machine boots) and then run a proof of locality more often.

One way to perform triangulation is by leveraging One-Way Delay (OWD) estimation. ReliableBox [25]
measures the duration of the challenge both at a set of remote auditors and inside the enclave. It then computes
the time diference between these two measurements to estimate the Round-trip time (RTT) between the auditors
and the server, performing geolocation via triangulation. Unfortunately, ReliableBox only captures the network
delays and is unable to assess accurately the duration of the proof construction at the audited node. This means
that the response to the challenge can take an arbitrarily long duration (e.g. when data is stored in a remote node)
without afecting the operation of ReliableBox: triangulation would still be accurate but the result of the challenge
cannot guarantee data locality or any other properties. To provide both geolocation and timely retrievability,
schemes such as ReliableBox need to be combined with schemes such as the one proposed in this paper.

3 System Architecture

We now present our system architecture in the context of edge computing that includes an auditor, a set of fog
nodes, and a set of remote storage systems connected to the fog nodes (see Figure 3). Our proof, presented in the
next section, is computed by a fog node to prove that it can access data with a latency lower than a given agreed
threshold � .
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Fig. 3. System architecture.

3.1 Assumptions

The protocol for obtaining a proof is executed between two nodes: the auditor and the audited fog node. A fog
node is said to be correct if it can retrieve the iles assigned to it with a latency lower than some given threshold � .
Any fog node that cannot satisfy this requirement is denoted faulty. The value of � is application speciic, but can
be small and, in some cases, can only be satisied if data is stored in a storage device directly connected to the fog
node. Providers should ofer SLAs that deine � based on their capacity to maintain consistent performance under
varying workloads. If a provider cannot meet � latency under under high loads, they should consider ofering an
SLA with higher latency.

Our proof requires the audited node to read a conigurable number � of data blocks. � can be conservatively
selected to mask worst-case errors that may result from the variability of access to local storage and the variability
in round-trip times. We also show that knowledge of the distribution of network delays and the distribution of
storage access delays can be used to optimize the value of� when auditing honest nodes, discussed in Section 6.3.1.
Interestingly, these optimizations cannot be exploited by a rational provider to evade auditing.

We assume that each fog node has a processor with Intel SGX, as we rely on the guarantees provided by a TEE
(our solution may be adapted to use other trusted environments, but the current prototype and evaluation is
based on SGX). We assume that the auditor has the guarantee that it communicates with the expected enclave,
due to the attestation process [17, 28], and also that the integrity and conidentiality of the data and code inside
the enclave are guaranteed [17]. As explained in Section 2.4, the enclave cannot read a reliable system clock [5, 7].
However, the enclave can provide us with the guarantee that the proof is efectively built at the audited node,
which is the property we leverage in the solution [28].

We assume that a correct provider keeps all data łlocallyž, i.e., in the local machine or in a nearby storage that
allows it to serve data access requests with a latency smaller than the threshold � deined by the SLA. A faulty
provider may store parts of the data locally and parts (or all) of the data in one or more łremotež sites, i.e., in a
remote machine or in a remote storage where it can only be served with a latency higher than � , violating the
SLA.

We assume that the auditor has previous knowledge of the average network delay between the auditor and the
audited node but that it cannot measure the exact round-trip time of any particular interaction with the enclave,
as the actual network delay is subject to variance. The variance of the network delay afects the coniguration of
our proof, as it will be explained later in the text. We do not require the exact distribution of the network delays
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to be known, as the proof can be tuned to observed network variance in a calibration phase that will also be
explained later in the text.

Finally, we assume that it is not feasible for a faulty edge storage provider to reallocate enough objects in less
than � at the beginning of the audit, from a remote storage location. As it will be seen, our audit executes quickly
(under 500ms), limiting the number of iles that can be downloaded in time, even if the edge node has a high
bandwidth link.

3.2 Threat Model

In our system, we assume that the following two entities are trusted: the auditor and the code running within the
enclave. When necessary, the auditor can establish a secure channel, via TLS, to the enclave. In our challenge,
we leverage the SHA-256 hash function and AES in GCM mode with 128-bit keys, both of which are currently
considered secure [11]. The choice of the hash function is due to its security guarantees, such as a high degree of
diiculty in inding a collision, and its deterministic and unpredictable output. Hash functions based on SHA
are very popular and heavily scrutinized, providing a high level of conidence that they can maintain these
properties. Note that other alternatives, such as secure random generators, have similar complexity, as secure
random generators typically also resort to secure hash functions or other cryptographic mechanisms.

The edge provider owns the fog node being audited and controls both the local storage device and the network
at the audited nodes. This means the provider may attempt to tamper with the local data or change its location.
Additionally, the provider can delay messages arriving at or leaving the fog node by adding delays to manipulate
the network variance.

3.3 Fog Node Storage Organization

The edge storage provider is responsible for storing the iles in the fog layer and ensuring that the iles are stored
in such a way that they can be retrieved with a latency lower than � , the SLA deined threshold.
In each fog node with Intel SGX, local documents are kept in the untrusted part, as the storage capacity

of the enclave is limited[17]. Thus, if the processor is running inside the enclave, there must be an exchange
between execution environments to read a data item (from the enclave to the untrusted part). Even if the data
item is remote, there is also an exchange of execution environments, as the untrusted part is responsible for
communicating with remote machines[17].

The set of auditable iles is known to both the auditor and audited node and sorted in a deterministic manner.
Thus, both parties can use the index of a ile in the sorted list as a mutually agreed short unique identiier for that
ile. We denote this index by set index. However, agreeing on the set of iles and supporting ile modiications is
beyond the scope of this work. For simplicity, iles assigned to a fog node, including their content, do not change.
The modiication of iles can be trivially supported using versioning.

3.4 Enclave Geolocation

The goal of PoTR is to check whether a given node stores data locally. When an enclave is attested, it is possible
to uniquely identify the speciic enclave, but attestation does not reveal its location. Therefore, PoTR alone
cannot ensure that data is stored at a given target location; for that, one also needs to geolocate the node. Several
geolocation techniques have been proposed in the literature [1, 15, 38] and any of them can be combined with
PoTR to ensure data locality and geolocation. Although geolocation proofs are orthogonal to our work, we briely
sketch two methods to discover the location of the enclave: 1) Proximity Attestation ś the auditor physically
launches the enclave in the local machine at the correct location and exchanges a certiicate with that enclave for
later authenticating the same speciic machine/enclave; 2) Triangulation ś any technique of triangulation can be
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applied without requiring heavy cryptographic operations (the goal is to geolocate the machine and not data), so
the accuracy is not compromised in any way by the storage proof.

4 Proof of Timely-Retrievability

In this work, we introduce the Proof of Timely-Retrievability (PoTR) mechanism: a storage proof that aims to
assess whether a storage node can access stored data with a latency smaller than some speciic threshold � . The
auditor can select the value of the � parameter based on the speciic requirements of a given application, but it is
typically small and, in some cases, can only be satisied if the audited (edge) node keeps the data locally. With
the goal of applying the proof in edge computing scenarios, we assume small values of � , in the order of the
time required to read a data block from the local disk. By supporting such strict values of � , PoTR is capable of
distinguishing the case in which the fog node stores the data locally (Figure 1a) from the case it keeps it in some
remote node or cloud (Figure 1b).

The PoTR is obtained by the storage node in response to an audit, so our solution requires a machine with auditing
capabilities. We do not restrict the placement of these auditing machines, as there may be many geographically
distributed fog nodes[29]. Therefore, our proof was designed to be obtainable from an audit machine anywhere
on the Internet. This property ofers a lot of lexibility regarding the deployment of the auditor and allows a
single auditor to perform audits on a large number of fog nodes.
An alternative could be to ask clients to report the latency they observe and use this information to perform

the audit. However, this approach raises many privacy challenges, an attacker could infer the client’s location
given its latency to a fog node. If a PoTR can be extracted independently of the auditor location, we avoid these
vulnerabilities.

4.1 Challenges

In the design of our PoTR, we face some obstacles, namely: i) the timing information provided by the audited
node cannot be trusted[7], thus the time to produce the proof must be measured by the auditor; ii) the network
between the auditor and the audited node is subject to variance that introduces errors when estimating the time
the audited node took to produce the proof; iii) storage/fog nodes are heterogeneous [29], and the time they
require to perform computations and read data (even if the data is local) is not constant, so the proof should be
based on average values from multiple readings; and iv) the audited node may attempt to delegate the generation
of the proof to another node that has faster access to the data than the audited node itself, so it is required to
ensure the proof is produced by the audited node, and not delegated.

4.2 Design of the Challenge

The challenge requires the untrusted part of the fog node to access a given number of data objects, in a certain
sequence, and return, at the end, a value related to these data objects. The delay the fog node takes to read these

data blocks, and to compute the inal value, is used by the auditor to estimate the reading delay observed at the

audited node and to check if it matches the target threshold � .

Each challenge (implicitly) speciies a sequence of iles that must be accessed by the audited node, and each
ile is uniquely identiied by a set index. For eiciency reasons, the fog node for each ile reads a data block of size
�� , instead of the entire ile. In practice, the block size should be a multiple of the block size used by the fog node
ile system.
In each challenge � , the fog node has to read a pseudorandom and unpredictable sequence of � data blocks

(each of size �� ), and return a cryptographic hash of the concatenation of all data blocks accessed. The number
� of data blocks is a coniguration parameter that inluences the accuracy and eiciency of the challenge: the
higher the value � , the more accurate but less eicient the proof. The approach to conigure this parameter is
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explained through PoATR in Section 5, and if the user is unable to conigure �� , it is still possible to execute our
challenge deining only � , as discussed in Section 6.3.1.
The pseudorandom sequence of the data blocks is determined by a nonce �� (unique per challenge, and

generated by the auditor) and the content of the data blocks. For each challenge, the auditor sends the nonce
(encrypted with a symmetric key), the number � of data blocks and the size �� of a block to the enclave. To
ensure that the nonce �� is not disclosed to the untrusted part, the nonce never leaves the enclave. The untrusted
part only has access to a cryptographic hash of the nonce, we denote this hash as #index. With the #index, the
untrusted part is able to determine the set index of the irst ile to be accessed. The set index is determined by
applying the modulo function (mod) to the hash with the total size of the set of iles, i.e., the set index is the
remainder of the division of the hash by the number of iles.

Since the fog node has to read a data block of size �� , and not the entire ile, the auditor sends to the enclave a
second nonce ��

�
that will determine a data block inside the ile, with the computed set index. The enclave, in

turn, computes the cryptographic hash of this second nonce and forwards the result to the untrusted part. Both
nonces are hashed by the enclave, to ensure that the untrusted part does not know them in plain text. Otherwise,
the untrusted part could maliciously predetermine the � data blocks. Now, with the hashed ��

�
, and the total

size of the ile to be accessed, the untrusted part can determine the data block, with size �� , inside the ile to be
retrieved, by applying the modulo function.
When the untrusted part receives the irst #index from the enclave, it proceeds to determine and read the

corresponding initial data block. It then calculates a cryptographic hash of the data block’s content, combined
with the #index, resulting in result_hash. Subsequently, the untrusted part returns the value of result_hash to
the enclave. The enclave, in turn, computes a new #index by hashing the response result_hash together with the
nonce �� . This newly generated #index is then forwarded to the untrusted part, which uses it to identify the next
ile.

For each subsequent hash, the untrusted part repeats the execution of the modulo function to obtain the next
set index and the index of the data block within the identiied ile. It reads the corresponding data block and
calculates its cryptographic hash together with the ile #index, yielding result_hash that is returned to the enclave.
The enclave computes two new hashes (block and ile index), and this process continues until all � data blocks
are read. Note that each new #index is computed using the hash of the previously retrieved data blocks. Finally,
the enclave computes a inal hash using �� and sends the result back to the auditor as the conclusive proof. The
auditor, upon receiving the inal hash, repeats all the aforementioned computations to construct a veriiable
version and verify the correctness of the proof. If both computations match, the issued proof is deemed correct. In
Figure 4, we present in detail all the steps of our communication protocol in the execution of our PoTR challenge.
We separate the steps on the auditor’s side between the untrusted part and the enclave, where the sensitive parts
of our challenge, such as the nonce, are always securely stored inside the enclave.

Security Guarantees: Each challenge requires two unique nonces that will determine in a sequential and pseudo-
randomly faction which � data blocks the untrusted part must read. This interaction with the enclave ensures
that the fog node is unable to retrieve the � data blocks in parallel from neighboring nodes. Instead, it must
retrieve one block at a time to determine the next block it needs. Additionally, the dependency between data
blocks, since the next block index depends on the content of the previous one, ensures that the fog node cannot
reuse outputs from previous challenges, thus maintaining challenge freshness. The constant exchange between
execution environments (enclave to untrusted part and vice versa) guarantees that the fog node cannot rely on a
remote machine for the entire proof computation. The proof is computed solely on the expected machine [28]. It
is important to note that through the veriication of proof correctness, the auditor can assess the integrity of the
stored documents. Any modiication to a ile will render the proof invalid.
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Fig. 4. PoTR challenge execution. ���_������ is the index of a file, and �����_������ is the index of a data block with size ��
inside � ���� . ������ is the read data block. �� is a secret key between the auditor and the enclave. #����� is a hash.

4.3 Reading Delay � at the Audited Node

In addition to checking proof correctness, the auditor has to check the proof timeliness. When the challenge is sent
to the enclave of the audited node, the auditor starts a timer that is stopped when the proof is received. A proof
is valid if it is correct and the reading delay estimation, for a single data block, is acceptable to the auditor.

Having �� as the time elapsed between the auditor sending the challenge � and receiving the response from the
fog node, �� can be decomposed into diferent factors, namely:

�� = rtt� + �1
� + . . . + ��

� + �1� + . . . + ��� + � (1)

where rtt� is the network round trip time for challenge-response messages, � the number of data blocks to be

accessed, �
�
� the delay observed at the fog node to compute the cryptographic hash of a given data block � and

compute the index of the next block, �
�
� the delay observed to read a data block � , and a small constant delay � to

account for the cold start of the challenge. Note that for suiciently large values of � , we will have the following:

�1
� + . . . + ��

�

�
= �� ≈ �

�1� + . . . + ���
�

= �� ≈ � ,
�

�
≈ 0 (2)

However, the auditor is unable to measure accurate values for rtt� , �� and �� , as they are diferent and variable

in each challenge � and the auditor is only able to measure the total delay �� . Therefore, to estimate � , i.e., the
actual mean delay a fog node takes to read a data object, in our work we resort to mean values:

�� = ��� + �� + �� (3)
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�estimate =
�� − rtt − ��

�
(4)

Therefore, the estimate error for a given challenge � will depend on how far the observed values are from
the mean values. As noted in Section 3.1, we assume that ��� is known a priori by the auditor, based on the
expected location of the audited node. Experimentally, we veriied that the � values are subject to a negligibly
small variance, whereby we assumed �� = � , i.e., we ignore the error introduced by � sampling. Therefore, the

error of the estimate �estimate depends on two factors: i) the reading error �� when estimating � (which depends
on the sample size, i.e., the number of data blocks accessed) and ii) the variance between the observed network
round-trip time (���� ) and the expected mean value (��� ), divided by the number � of data blocks, as Equation 5
describes:

�rtt =

�

�rtt� − rtt
�

�

�
=

Δ
���

�
(5)

4.4 Variance of the Network Delay

Our proof is capable of inding the correct �estimate, as long as ��� is known, even if delay distributions are
unknown, by choosing worst-case default values that can be used conservatively (see Section 6.3.1). However,
during a calibration stage, it is possible to leverage information regarding the observed network delay variance

to select a more eicient � value, ensuring that the sum of both errors remains below a target value of ��max.
We demonstrate this in the concrete edge node scenario in Section 6.3.2. The choice of an eicient � , based
on measuring network behavior, is safe and cannot be exploited by a malicious provider. Note that, during
calibration, a faulty node could attempt to add delays to the messages used in the calibration to inluence the
variance observed by the auditor. We argue that artiicially increasing or decreasing the variance observed by the
audiotr (with regard to the real network variance) brings no beneit to a faulty node:

• Increasing the observed network variance: If the attacker tries to inject delays to increase the network variance,
this would result in much larger values for � (from Equation 5). As our evaluation shows, increasing �

provides more accuracy in estimating � at the cost of a longer challenge. Therefore, this option ofers no
advantage to the attacker since the challenge would be tuned to tolerate the added variance at the cost of
forcing the audited node to run more expensive challenges.

• Reducing the observed network variance: If the attacker injects well-precised network delays that negatively
correlate with the real network variance, they could reduce the measured variance during calibration. This
would result in a smaller � variable, meaning that challenges will be shorter and more likely to trigger
false positives in face of the real network variance. This provides no advantage to the attacker, as it would
increase the chances to be lagged, even when behaving correctly (i.e., while keeping all ile locally).

5 Configuring the Proof of Timely-Retrievability

As previously mentioned, it is possible to deploy two diferent conigurations of the PoTR, one aimed at assessing
the average data access latency and the other aimed at assessing the data access latency variance, that we have
named PoATR and PoUTR respectively. The PoATR is based on executing a single challenge and by setting the

value of the � variable large enough to ensure that the challenge returns an accurate estimation of � . The PoUTR
is based on executing multiple challenges, each with a smaller value of the � variable, such that it can better
captures the variance in accessing diferent sets of data objects. Both the PoATR and the PoUTR are instances of
the general PoTR formulation described above, but they feature distinct conigurations to fulill speciic objectives.
The following section ofers details on each coniguration.
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Fig. 5. PoUTR auditing scenarios.

5.1 Proof of Average Timely-Retrievability

The PoATR challenge is strategically conigured to control the error in estimating � , thereby enhancing the
accuracy of the average data access latency calculation. The challenge can be conigured by providing two

parameters: the maximum error ��max that he is willing to tolerate, when estimating � , and the reliability of the

challenge � , a parameter speciied by the auditor that captures the probability of estimating � with an error lower

than ��max (in practice we use the 99.99 percentile). As noted before, the error of the estimate ��max results from the

variance of local reads experienced by the audited node (���max) and by the variance of the network delays (�rttmax),

i.e., ��max = ���max + �rttmax. For both sources, the error diminishes with the number of samples � , thus, � should be

chosen so that �rttmax + ���max < ��max.

Let ��
�

� be the diference between the average access latency � and the latency observed when reading block �

during the execution of challenge � . The error caused by the variance of storage access in a given challenge � is
given by:

��� =

∑�
�=1 �

�
�

�

�

Given � , the expected value of ��max can be derived from the distribution of the access delays. Similarly, with the
Inverse Cumulative Distribution Function (ICDF) of the network distribution, we can also calculate the expected
maximum diference between the observed value ���� and the expected mean ��� that matches � . Section 6.3
evaluates experimentally the PoATR coniguration.

5.2 Proof of Uniform Timely-Retrievability

A faulty storage node may opt to keep part of the data locally and part of the data remotely, as depicted in
Figure 5. If the fraction of data that is stored remotely is small, this can pass undetected by the PoATR because
the resulting average access delay can still be below the designated threshold � . However, in this scenario, some
clients will experience acceptable delays but others, that access data stored remotely, will experience delays that
violate the SLA. The Proof of Uniform Timely-Retrievability is a coniguration of the PoTR aimed at estimating if
clients can assess all data with a uniform delay.

The PoUTR is based on analyzing the variance across several smaller challenges to identify if there’s a portion
of data stored remotely. This coniguration employs the standard variance calculation method, utilizing multiple
� measurements to provide a more comprehensive analysis of the audited node behaviour. Namely, PoUTR
computes �2

�2
=

∑�
�=1 (�� − �)2

� − 1
;� > 1 (6)
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which is the sample variance derived from � samples, each executing our challenge to measure �� .
In Section 6.4.1, we show that the � required for each �� challenge can be small while still achieving suicient

accuracy to detect misbehaviour in the challenging scenarios where only a small fraction of the data is stored
remotely. Note that reducing the value for N breaks the assumptions from Equation 2, impacting PoUTR ability to

accurately estimate the latency � . Therefore, PoATR should always be used for estimating averages, and PoUTR
only for estimating variance.

6 Evaluation

We now present our evaluation of both PoTR conigurations, PoATR and PoUTR. We begin by describing our
experimental setup and the diferent benchmark scenarios. Subsequently, we experimentally evaluate and conig-
ure each coniguration separately. For the PoATR coniguration, we demonstrate that our proof is efective even
without prior knowledge of the network distribution. We then discuss how to optimally conigure the challenge,
focusing on the block size and the number of � samples. Upon determining the appropriate coniguration for
PoATR, we assess its performance across diferent scenarios. Our experimental results show that PoATR can
accurately distinguish between a misbehaving server and a compliant one in the context of edge computing.
Additionally, we explore various alternatives to mitigate the impact of PoATR on the audited node. For the PoUTR,
we begin by establishing the necessity for this second coniguration of the proof by introducing scenarios where
only parts of the data are placed remotely and showing that measuring the average access latency is not enough
to detect this type of misbehaviour. We then discuss how to conigure the PoUTR parameters, selecting a smaller
number of � samples and evaluate the proof’s performance in relation to the amount of samples taken by it. The
results show that the variance of a challenge with only 40 samples can accurately identify nodes with multiple
sources, even for remote percentages as low as 10%.

6.1 Experimental Setup

We resorted to two diferent types of machines: 1) Intel NUCs to represent fog nodes, and 2) virtual machines in
the Windows Azure cloud to represent remote entities. For NUCs, we have resorted to the Intel NUC10i7FNB, it
has an Intel i7-10710U CPU that supports Intel SGX, 16GB RAM, 240GB SSD M.2, and Ubuntu 20.04 LTS. We run
the Intel SGX SDK Linux 2.13 Release and OpenSSL 1.1.1k. An Intel NUC is an example of what a fog node might
be, as it possesses modest computational resources but is relatively inexpensive for large-scale deployments.
For the cloud deployment in Azure, we resort to Standard D2s v3 with two vcpus, 8 GB RAM, 256 GB SSD, and
Ubuntu 22.04 LTS in west Europe (Netherlands) the closest data center to our laboratory; our laboratory is located
in a European capital. We leverage these two types of deployment to create diferent scenarios and evaluate our
storage proof; we explain our scenarios in more detail in the next section.
For the stored data that our proof is responsible for auditing, we generated 150GB with random data divided

into iles of 1GB, our proof leverages a hash function to choose the next block to be accessed; this ofers uniform
distribution access over the 150GB of data. In our code implementation, we used the SHA-256 function as a
cryptographic hash function and AES in GCM mode with 128 bit keys to cipher the nonces, both currently
considered secure [11].

To simulate real world usage, all nodes run a local client that performs random read accesses on its stored data.
We experimentally measure the required load for the read rate to plateau, and run the tests with 50% of such load
on the background. On some occasions, results of tests performed without load will be presented for comparison.
Our code is publicly available at: https://github.com/claudio-correia/potr
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Fig. 6. Overview of PoATR � estimative without network knowledge, picking a large N value of 3000, 64KB block size.

6.2 Evaluation Scenarios

In our experiments, we leverage three diferent entities to evaluate our PoTR storage proof: an auditor; the
audited node, which represents a fog node that stores data; and the remaining one is the remote storage node,
which is used by the audited node to access data in conigurations where it does not store the iles locally. In the
irst part of the evaluation (Section 6.3) we consider the case where the audited node stores all data at a single
location (that can be either local or remote). In this case we focus on the performance of PoATR in accurately
extracting the observed average access delay. In the second part of the evaluation (Section 6.4) we consider the
case where the audited node stores part of the data locally and part of the data remotely. In this case we focus on
the performance of PoUTR in detecting this scenario using the variance in the access delay.

We deployed four diferent scenarios to evaluate PoTR; the diference between the scenarios is the location of
the remote storage node, since the closer the remote storage is to the audited node, the more diicult it is to detect
malicious behavior. The irst scenario is represented in Figure 1a: the fog node has honest behavior and stores all
data locally. Figure 1b presents the malicious behavior that the edge provider can adopt by resorting to remote
storage. Figure 1b represents the three remaining scenarios in which we vary the location of the remote storage
from: a) a virtual machine on the Azure cloud; b) a NUC on a diferent campus of our university; c) a NUC located
in our laboratory and connected through a switch to the audited node, with a mean network delay of 0.1�� .
Regardless of the scenario, both the auditor and the fog node/audited node do not change their location, the
auditor is running in the Azure cloud, and the audited node in an NUC at our laboratory. By deploying diferent
machines at diferent geographic locations, we capture the diferent variations and delays of wide-area links.

6.3 PoATR

We now present the experimental coniguration of PoATR, where we conigure PoTR to accurately estimate �
while keeping � small to reduce the cost of the audit procedure.

6.3.1 PoATR Without Network Knowledge. As stated in Section 3.1, the eiciency of PoTR can be improved
given knowledge on the distribution of network delays and access delays. When executing PoATR without this
knowledge, a large default value for � should be used, enough to compensate worst-case network variance; we
show that a default value � = 3000 can be safely used in most scenarios. We have selected this default value
based on latency measurements from our laboratory to the farthest Azure datacenter1, the Australia Central
2. We have observed an average RTT of ≈ 286�� and a maximum latency of ≈ 1143�� . When considering a
network variance with this order of magnitude in Equation 5, by setting � = 3000 we can reduce �rtt to ≈ 0.28�� .
In this scenario, the variance in storage access delay is negligible compared to the network variance.

Figure 6 shows the results of running PoATR using the default value of � = 3000 in diferent scenarios. We can
observe that it is possible to set the SLA threshold to a small value such as � = 2.5�� , to ensure that the audited

1We leveraged this website: https://cloudpingtest.com/azure
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Fig. 8. PoATR experimental error for diferent scenarios and block size, EOE is Experimentally Observed Error.

node has the data stored locally (the local delay to read a data block is ≈ 1.7��), and that our �estimate achieves
high accuracy in both scenarios.
However, with � = 3000 our challenge takes approximately 5.2� to execute. When the challenge is executed

using more stable networks, it is possible to ine-tune the value of � to achieve similar accuracy with a lower
cost for the audited node. In the next section, we demonstrate results for various values of � . For instance, with
� = 500, we achieve accurate results with a challenge executed in just 0.9� .

6.3.2 PoATR Configuration. We now derive, based on experimental results, the best coniguration for our storage
proof, by setting the block size and the � value for PoATR. Note that in a situation where the user is unable to
conigure the block size, they can simply use a high value for � , as demonstrated in the previous Section 6.3.1.

- Negligible impact from � . In Figure 7, we demonstrate experimentally that the � variance has a negligible
efect on our challenge, which is why we ignore the error introduced by � sampling in Equation 5. Figure 7
shows that the standard deviation of the � samples is just 0.05, even for � = 500. This is minimal compared to
the standard deviation of more than 20 for our challenge.

- Selecting the appropriate Block Size. To ind the appropriate value for the size of the block to use in our
challenge, we evaluated the performance of the challenge with diferent block sizes and diferent � values. The
results are presented in Figure 8. We executed our challenge to estimate the � value and calculated the error
relative to the real reading delay in the fog node, we present the results for the honest fog node scenario in
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Figure 8(a) and for the nearby fog storage scenario in Figure 8(b). We observe that for small values of � the results
obtained exhibit a large variance and only by increasing � do we obtain more accurate results. In both scenarios,
we observe that the size of the block has a relatively smaller impact on the accuracy of the result than the value
of � . Still, it is possible observe that, when using larger block sizes one can obtain more accurate results. This
is clearly noticeable in the scenario where iles are stored in a nearby fog node, where the coniguration using
blocks of 4KB takes longer to converge than conigurations with larger block sizes. Furthermore, in Figure 8(b), it
is possible to observe that when the � value goes above 100, blocks of 64KB ofers a slightly smaller error than
blocks of 16KB. For these reasons, we opted to set our challenge with blocks of 64KB.

- Finding the appropriate value for � . As described in Section 5, the value � can be determined by providing

��max, which depends both on the network error and the reading error, this network knowledge allows us to ind
an optimal value for � . Figure 9 presents the estimated error for our challenge under diferent percentile values,

of the reliability � , for each error �rtt and ��� (these two were measured experimentally). Note that ��max decreases
as we increase the value � , this results from the impact that � has on �rtt reducing its efect on the challenge, on

the other hand, ��� has a negligible impact on ��max, �
�� is mostly below 1�� reaching at most 5�� . Figure 9 also

presents the measured error of our challenge in real experiments in the four diferent scenarios presented earlier.
We observe that the error increases when we also increase the distance between the data and the audited node.

Both � values of 100�ℎ and 99.99�ℎ percentiles are able to predominantly capture the real observed error of our
challenge. We use the estimated error to choose a desirable value for � ; in this case, we chose � = 250 since this
is where we observe the last most signiicant reduction in the estimated error of −6.1�� , versus the increase in
the value of � , of 150. As expected, increasing the value of � also improves the accuracy of our challenge, for
� = 10 we obtain an error of ≈ 5�� , which can be undesirable for edge environments, while for � = 250 the

observed error is only ≈ 0.1�� , such a small error can provide a �estimate with high reliability.

6.3.3 PoATR Accuracy. Using the coniguration parameters derived from the previous analysis, i.e., using a block
size of 64KB and by setting the number of samples � to 250, we have executed our challenge in multiple scenarios
and captured the distribution of the data access latency estimated by our challenge. We compare the estimated
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Fig. 10. Distribution and correspondent averages for reading delay � , in milliseconds, for diferent scenarios where PoATR is
configured with � = 250 and 64KB block size.
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Fig. 11. Distribution and correspondent averages for reading delay � , in milliseconds, for diferent scenarios where PoATR is
configured with � = 250 and 64KB block size, without background load on audited node.

values with the real values, observed at the audited node itself. The results are depicted in Figure 10. Each point

in the igure represents either the real latency to access a data block or the �estimate to access a block resulting
from the execution of our challenge.
It is possible to observe that our challenge estimate closely approximates the real value with a small error,

as discussed in Section 6.3.2. The error between the real value and �estimate increases as the audited data move
further from the audited node. This happens because the farther away the audited node is, the more likely the
network delay exhibits a larger variance. Nonetheless, our challenge can still distinguish whether the data is local
to the fog node or at a remote site. The accuracy of the PoATR is suicient to diferentiate between scenarios
where iles are stored locally or at a nearby fog node. Even with a latency diference of less than 1.5�� , our PoATR
accurately identiies the coniguration used by the audited node.
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Fig. 12. Challenge impact on concurrent reads.

Looking at the results in Figure 10, our PoATR enables the establishment of a threshold to accurately diferentiate
between a correct node (storing all iles locally) and a faulty node that stores iles elsewhere (even if they are
kept in nearby nodes). This threshold is determined by setting a strict value for � in the SLA, such as below the
irst reading delays measured at the nearby fog storage node. This threshold, located at 45.2�� , corresponds to
3% false positives and 0% false negatives (we deine as positive the detection of malicious behavior of the audited
node).

As a point of comparison, the experiment was repeated without background load generation. The results can
be seen in Figure 11, severely reducing the variance of the honest audited node. With this coniguration, the same
threshold as before becomes able to perfectly lag all malicious nodes, with 0% false negatives or positives. In real
world deployments, the performance would be in between the two.

6.3.4 Overhead Imposed by a PoATR Challenge. We now assess the overhead imposed on the audited node while
it responds to a challenge. For this, we run a local client that performs read/write access to the data stored on the
edge node, and then we measure the loss in throughput of that client during challenge execution. The results are
shown in Figure 12.

The throughput of the concurrent client decreases by approximately 57% during the processing of the challenge
by the audited node. This is expected as our resource-constrained edge nodes need to access multiple iles and
compute their digest to respond to the challenge. Despite this non-negligible overhead, we argue that its impact
on the overall operation of an edge node is not signiicant in practice. The challenge typically takes less than
500�� to complete, and auditing occurs sporadically in most scenarios (e.g., once per day). Nonetheless, in the
next section, we discuss and evaluate strategies to further reduce this overhead.

6.3.5 Strategies to Reduce PoATR Overhead . We considered three complementary avenues to attempt to reduce
the overhead of running a challenge in an audited node. The irst was to1modify the implementation, taking
advantage of switchless calls [37] that reduce the ECall/OCall overhead. The second was to use blocks size smaller
than 64K. As discussed earlier, smaller sizes can reduce the accuracy of the test but can have an impact on the
overhead. Finally, one can simply reduce the number of samples � . By reducing the number of samples, one
would reduce the challenge duration and therefore, the period during which clients would be afected by the
concurrent execution of a challenge. However, as we show in this section, using switchless calls or reducing the
size of the blocks has a minor impact on the overhead.

Figure 13 shows how the use of switchless calls, diferent block sizes, and diferent values of � , afect the drop
in throughput observed by clients during the execution of the challenge and also the duration of the challenge.
It is clear from Figure 13a that the drop in throughput during the execution of the challenge is roughly the

same regardless of the block size used or the use of switchless calls. Switchless calls ofered a small performance
improvement, just a latency reduction of ≈ 1.6% in the best case. When considering block size, the largest
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Fig. 14. False positive and negative rates of PoATR under diferent N values for honest and nearby fog node scenarios.

diference is observable from 256KB block size, with a throughput reduction of −55%, versus 4KB block size
alternative, with a reduction of −38%, relative to the parallel client. This is not a large improvement considering
that the 256KB block size is 64 times the 4KB block size. This is because, during the execution of our challenge,
our disk access is continuous, independently of the block size, and therefore the impact on other clients will be
similar; however, our challenge duration may vary. Additionally, as discussed in Section 6.3.2, having a very
small block size can still afect our storage proof error.
These results suggest that the only efective way to reduce the overhead of the challenge is to reduce its

duration. Figure 13b shows that, although block size has some impact on the duration of challenge executions,
its impact is relatively minor compared to the efect of reducing the number of samples � . This indicates that
the most efective strategy to reduce the overhead of the challenge is to reduce the number of samples, as this
reduces the duration of the period in which clients are afected. Of course, as discussed before, reducing the value
of � will degrade the accuracy of the test, increasing the chances of producing false positives and false negatives.
Figure 14 shows the efect of � on both false positive and false negative rates when using the threshold

� = 45.2�� , as discussed in Section 6.3.3. In this analysis, we consider the scenario where a faulty node stores data
at the nearby fog storage, as this is the scenario where it is most challenging to accurately detect a misbehavior,
given the small diference between the latency ofered by correct and faulty nodes. It is interesting to observe
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that our PoATR ofers a false negative rate close to 0% for most values of � . Therefore, even where the values of
� are smaller than 250 (the required to obtain the best accuracy), our PoATR will detect a misbehaving client.
Unfortunately, the true positive rate can increase signiicantly when using low values of � , risking identifying
a correct node as faulty. More precisely, the false positive rate increases slowly as we decrease the number of
samples from 250 to 100 (at this point, our PoATR ofers a false positive rate of approximately 1%), but then
increases sharply. For values of � smaller than 100 the challenge no longer provides acceptable values for the
false positive rate.
In summary, by tolerating a small fraction of false positives, the auditor can reduce the challenge overhead

by decreasing the number of samples from 250 to 100. This roughly halves the period during which clients are
afected by our challenge.

6.3.6 Combining Multiple PoATR Configurations. As seen in the previous section, using a reduced number of
samples, 100 instead of 250, our challenge imposes signiicantly less overhead while still obtaining a negligible
false negative rate and a very small positive rate (≈ 1%). Faced with these observations, we conclude that in some
deployments the auditor should combine diferent conigurations of the PoATR: one that is cheaper and works
99% of the time; another that is more expensive but provides extreme accurate results.

For example, the auditor might use � = 100 to challenge the audited node. If the node was lagged as malicious
(a positive), the auditor could then launch a second challenge with � = 250, to ilter out false positives. Note
that in such a case, the combined challenge would read on average 102.5 (0.01 × 100 + 0.01 × 250 + 0.99 × 100)
blocks instead of the 250 in the normal auditor, a reduction of 41% on average for the number of blocks required
to execute our challenge. Notice that, as hinted before, for � = 85 this strategy would no longer be worth it since
it would require reading 257.5 (0.69 × 85 + 0.69 × 250 + 0.31 × 85) blocks on average, which is larger than the 250
required by the normal auditor solution.

6.4 PoUTR

We now present the experimental coniguration of PoUTR, where we conigure PoTR to estimate the variance of
the access delay � in order to detect scenarios where the audited node stores parts of the data locally and parts of
the data remotely.

To experimentally evaluate the PoUTR coniguration we consider a scenario where a faulty providers divides
its data into two slices, where one slide with �% of the data is stored remotely and the other slide with (1 − �)%
of the data is stored locally. The data in each slice is selected at random (note that the randomized nature of the
PoTR challenge voids any attempt to optimize placement to evade auditing). In the experiments reported in this
section, the local slice is stored in the fog node (an Intel NUC deployed in our laboratory) and both the remote
slice storage server and the auditor are hosted in a remote cloud, namely in the Windows Azure cloud virtual
machines described in Section 6.1.

The irst subplot of Figure 15 portrays the distribution of PoATR estimations of � for nodes with all storage in
the same location. The other two subplots showcase mixed conigurations where small percentages of the data
are stored remotely in the cloud. Naturally, when a fraction of the data is stored remotely, the average access time
increases. However, the average � , albeit larger, can still be below the threshold and, therefore, a misbehaved
storage node cannot be detected using the PoATR alone.

This is illustrated by Table 2. When the SLA is ixed to � = 44.8�� , PoATR is able to lag all faulty storage nodes
storing 25% of its data remotely. However, for a smaller share of 10%, PoATR alone can no longer fully detect the
misbehaved nodes, since the average access delay is below the threshold for 10% of the PoATR executions. This
motivates the need to use PoUTR.

Form. Asp. Comput.



22 • C. Correia et al.

0.0%

2.5%

5.0%

7.5%

10.0%

41
.0

 m
s

51
.3

 m
s

0.0%

2.5%

5.0%

7.5%

10.0%

Pe
rc

en
ta

ge
 o

f C
ha

lle
ng

es
 (%

)

47
.4

 m
s

30 35 40 45 50 55 60 65 70
Reading Delay  (ms)

0.0%

2.5%

5.0%

7.5%

10.0%

57
.5

 m
s

Honest
Different Campus Storage

10% Remote Cloud Storage + 90% Local Storage
25% Remote Cloud Storage + 75% Local Storage

Fig. 15. Distribution and correspondent averages for reading delay � , in milliseconds, for nodes with storage in a single
location versus nodes with mixed local and remote cloud storage.

� threshold � = 10% � = 25%

44.8ms 90% 100%

Table 2. PoATR detection rate for diferent percentages �% of remote data

6.4.1 PoUTR Configuration. When coniguring the Proof of Uniform Timely-Retrievabilty, the focus shifts from

the prior emphasis on minimizing the error ��max in PoATR. Instead, our goal with PoUTR is to directly analyze
the variance among multiple samples of the challenge.
As such, a new value for � must be experimentally determined to align with the speciic goals of PoUTR.

The experimental process involves varying the challenge size � and observing how this parameter afects the
standard deviation across � = 200 executions of the challenge on nodes using diferent values of � . The results
are presented in Figure 16. As expected, nodes conigured with 50% remote storage exhibit the most pronounced
standard deviation. Then it progressively diminishes as the coniguration approaches either a single-source
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Fig. 17. Accuracy when using � = 6.8�� standard deviation threshold on nodes with 10% remote storage, for various values
of � and number of challenges � .

scenario with fully local or remote storage. PoUTR can be conigured to achieve good performance for nodes
with as little as 10% and 25% remote storage. To discern between honest and malicious nodes at these minimal
remote storage percentages, opting for smaller � values is necessary. We will assess the accuracy achieved when
using values diferent values of � .

6.4.2 PoUTR Accuracy. To assess the accuracy of PoUTR, an evaluation encompassing 100 sets of challenges was
conducted. These sets varied in size, ranging from 5 to 40 challenges per set. Across the range, the experiment

was performed for � values of 20, 30 and 40. Furthermore, 100 PoATR challenges were ran to provide the � to
be used when calculating the standard deviation. We have experimentally determined � = 6.8�� to be a good
upper limit for the standard deviation of an honest node. The results of combining PoATR and PoUTR when
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Fig. 18. Accuracy when using � = 6.8�� standard deviation threshold on nodes with 10% remote storage, for various values
of � and number of challenges � , without background load on audited node.

using this value are presented in Figure 17, where it can be seen that a value of � = 40 outperforms the other
two conigurations, with 93% malicious nodes being detected with just � = 35 samples.
Since PoUTR is expected to be run in combination with PoATR, we leverage the results from the irst test to

improve PoUTR results, by using the more precise � calculation in the standard deviation formula. The improved
results can be seen in the dashed lines from Figure 17, reducing false negatives from 7% to 3%, while keeping
false positives at 2% in the � = 40, � = 35 coniguration.
Therefore, combining PoATR with PoUTR provides a signiicant improvement over running PoATR alone,

reducing the false negative rate from 10%, as presented in Table 2, to just 3%.
When the background load generation is disabled, similar results can be obtained for even smaller shares of

remote data, as can be seen in Figure 18. In particular, with just 5% of the data remote, the lighter � = 30, � = 15
coniguration can achieve 3% false negatives and 1% false positives.

7 Conclusions

We present a novel auditing mechanism that is capable of extracting a proof of timely-retrievability, that is, a proof
that a given storage node is able to serve requests without violating some given data access latency constraint � .
We have implemented and evaluated two distinct conigurations of the proof, one tailored to estimate the average
latency experience by clients and the other tailored to assess its variance. The proof is designed in a way that, if
the storage node does not store locally a signiicant fraction of the objects, it will be unable to respond in time.
We enforce our proof to be executed in the audited node by leveraging SGX enclaves, for iteratively revealing the
next data block to be read to the untrusted part. Our evaluation shows that our proof can accurately detect a
node that cannot satisfy the target latency constraint � under diferent edge computing scenarios, resulting in
the detection of a misbehaving storage provider, including sophisticated attackers that only store parts of the
data remotely.
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