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Abstract—The use of remote storage has become prevalent
both by organizations and individuals. By relying on third-
party storage, such as cloud or peer-to-peer storage services,
availability, fault tolerance, and low access latency can be attained
in a cost-efficient manner. Unfortunately, storage providers may
misbehave and violate Service-Level Agreements (SLAs). In this
paper, we propose, implement and evaluate a new Proof of Timely-
Retrievability (PoTR) that aims at assessing whether a provider is
able to retrieve data objects with a latency lower than some SLA-
specific threshold δ. We leverage Trusted Execution Environ-
ments (e.g., Intel SGX) to ensure that the proof is produced by the
node being audited and to reduce the communication between the
auditor and the audited node. We have experimentally evaluated
our design considering a challenging edge computing setting,
where storage services are provided by resource-constrained fog
nodes, and the distance between the auditor and the audited node
can be large. Despite the variance in edge network delays, we
show that the auditor is able to effectively detect SLA violations.

Index Terms—edge storage, SLA violations, auditing, proofs
of storage

I. INTRODUCTION

Today, there are many scenarios in which end users, or

organizations, store data in machines run by third parties,

either to ensure durability and availability, or to ensure that

customers can access data with low latency. Relevant examples

include cloud storage (e.g., Dropbox, iCloud, and Google

Drive), peer-to-peer storage (e.g., Filecoin [1], IPFS [2], and

Swarm [3]), content distribution networks (e.g., Akamai [4]

and Cloudflare [5]), and, more recently, edge storage [4], [6].

In this emerging edge computing environment, the latency for

data access will become a crucial constrain and challenge for

any data placement algorithm, due to the highly distributed

and zero-trust environment [7].

Despite significant advances in storage systems, trust in

providers has remained unchanged [8]. Customers require

mechanisms to verify that QoS (Quality of Service) is being

respected. Relevant QoS aspects include the guarantee that

the third party will not discard or corrupt the stored data, that

the data is stored on multiple distinct machines, in specific

geographic locations, and that users are served with some

bounded delay. Unfortunately, a misbehaving provider may
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Single Remote Auditor
PoTR � � � �
PDP (2007) [14] � � � �
PoRet (2016) [15] � � � �
Benet et al. (2017) [12] � � � �
Li et al. (2020) [13] � � � �
Filecoin [1] � � � �

Multiple Auditors
Benson et al. (2011) [9] � � � �
Gondree et al. (2013) [10] � � � �

Local Auditor Relying on TEE Clocks
Dang et al. (2017) [11]* � � � �
EnclavePoSt (2022) [16] � � � �

Multiple Auditors and Reliance on TEE Clocks
ReliableBox (2021) [17]* � � � �

* deprecated since Intel excluded trusted time from SGX Linux PSW [18].

TABLE I: PoTR properties compared with the related work

opt to avoid complying with the agreement if it can gain

some benefits and pass unnoticed. For example, the provider

may keep the data in fewer locations than agreed with the

customer, assuming that it may be impossible for the customer

to audit how many replicas are used or where these replicas are

placed. This threat has motivated the development of auditing

techniques that are capable of extracting storage proofs, that is,

evidence that the third party is complying with (or violating)

the defined quality of service [9]–[13].

In this paper, we present a mechanism that aims at assessing

whether a given server node is able to retrieve data objects

with a latency lower than some SLA-specific threshold δ. By

estimating an upper bound on the data access latency, we can

also determine if the data is placed where expected. Namely,

when the SLA threshold δ is small, it is possible to verify

if data is being stored at the audited node or elsewhere. Our

new proof mechanism, named Proof of Timely-Retrievability
(PoTR), takes advantage of the existence of Trusted Execu-

tion Environments (TEEs) [19]–[21] (concretely, Intel SGX

enclaves [22]) to ensure that the challenge is executed by the

node being audited [20], not by some other remote node.

By using TEEs, we can also avoid prematurely revealing

the data to be accessed during an audit, while keeping the

communication between the auditor and the audited node to

a single request-reply exchange. PoTR has been carefully de-

signed to mitigate the noise introduced by this single message
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(a) Honest Edge Provider.
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(b) Dishonest Edge Provider.

Fig. 1: PoTR auditing scenarios.

exchange. Our approach minimizes the network impact on our

challenge accuracy, eliminating the need to rely on vulnerable

and discontinued TEE clocks [18], [23], in contrast with recent

related work, listed in Table I.

Compared with previous work [11], [16], [17], we take a

step forward and evaluate our proof in the highly challenging

edge computing environment. When auditing edge services,

the auditor may be located far away from the audited node

and the communication network may exhibit large delays and

jitter that can affect the accuracy of the proof. Edge computing

relies on placing resources physically close to end users, such

that applications can offer a latency lower than some SLA-

specific threshold δ. By setting the SLA threshold δ to a small

value that can only be satisfied by the provider if data is kept

locally, we use PoTR to distinguish the case where the edge

node stores data locally (Figure 1a) from the case where it

keeps the data in some remote node or in the cloud (Figure 1b).

Although we illustrate PoTR in the context of edge computing,

our proof is general and can be applied to other contexts.

We have experimentally evaluated the accuracy provided

by our proof with nodes placed in two different university

campuses and in the cloud. The results show that our proof can

be configured to effectively distinguish a fog node that respects

the latency SLA from a fog node that does not. We show that,

even in the case where the dishonest node stores the file in a

nearby fog node (and the observed latency differs by less than

1.5ms) our PoTR can accurately pinpoint the misbehaviour.

Finally, we have experimentally evaluated different alternatives

to reduce the overhead induced at fog nodes while executing

the proof, by varying the block size and using SGX switchless

calls [24].

II. BACKGROUND AND RELATED WORK

This section provides the essential background for our work.

A. Distributed Edge Data Storage

Resorting to third-party storage services provides clients

with interesting benefits and challenges, especially in the

highly demanding edge computing environment.

1) Edge Storage Benefits: Many applications strive to re-

duce their loading times (e.g., social media, entertainment,

e-commerce, advertising, and gaming), knowing that even a

small difference in milliseconds can significantly impact their

revenue [25]. In recent years, a growing number of applica-

tions have relied on content delivery networks (CDN) [26],

such as Akamai, Amazon, or Verizon, to store static content

closer to end users, achieving lower access latencies. In recent

years, edge computing has emerged to offer storage and

computation even closer to end users, supporting applications

for face or object recognition [27], real-time databases [4],

and just-in-time video indexing [28], which demand response

times below 5-30 milliseconds [29], something that cannot be

guaranteed with cloud storage alone or CDNs. The intelligent

and resource-aware edge computing environment is composed

of a large number of resource-constrained servers known as

fog nodes or cloudlets. Where the self-adapting data placement

algorithms will need to consider both the limited resources

and the access latency that edge clients suffer, within the

distributed and zero-trust environment [7], [30]–[32].

2) Edge Storage Challenges: Fog nodes are managed by

many local providers, and due to their limited resources, they

cannot store copies of all objects stored in the cloud [33].

Instead, they typically keep copies of items that are required

by local applications. Moreover, due to their limited storage

capacity, edge storage providers may be tempted to oversell

their storage and hide this behaviour by fetching, on-demand,

data from the cloud or from other servers, instead of serving

them from local (edge), resulting in increased latency for

data users. One effective approach to address and detect

such misbehaviour is through auditing mechanisms. These

mechanisms can enhance the intelligent edge environment

by providing real measurements to build trust autonomously

between the local entities (e.g., through rating schemes) or to

penalize non-compliant providers.

Filecoin storage [1] is a concrete example of an auditing

mechanism, where a node that fails to prove its ability to store

data as required will no longer receive financial rewards and

may be expelled from the network. In cloud or edge storage,

providers can be compelled to compensate their customers

for violations of the defined contract, known as the SLA.

Is essecnial to audit that the SLA is being delivered in

edge applications such as: 1) Web, EdgeKV [34] (similar

to CDNs) charge their clients to store data near clients and

reduce latency; 2) Augmented reality apps, they need low-

latency access to data to be shown to the user; 3) Autonomous

vehicles, they need low-latency access to maps, directions, etc.

B. Auditing Third-Party Storage Services

When a storage provider is subject to an audit, it must

provide a proof that it is applying the storage policies specified

in the SLA. This proof is generically called a proof of storage
[12]. Moreover, since an SLA may cover different aspects of

storage implementation, such as the target number of replicas,

the location of those replicas, or the latency observed by users

when accessing data, it is possible to define different proofs.

1) Proofs of Storage: The literature is rich in techniques for

obtaining proofs of storage, mostly focused on cloud storage,

the most relevant ones are Proofs of Data Possession (PDP)

[14] and Proofs of Retrievability (PoRet) [15] that aim to

check if the storage provider keeps at least some copies of

the stored data; Proofs of Replication [12], [13] that assess if

the storage provider has n copies of a data item (they may

be placed on the same machine); and Proofs of Geographic
Replication [9], [10] that test if the provider keeps n data

copies on different machines, in distinct geographic locations.
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Each of these proofs is issued as a response to a challenge [13],

that is sent to the storage provider by one or more auditing

entities. Typically, a challenge requires the provider to execute

a set of reading operations over a subset of the stored data,

and return on-time a value that proves the access of the correct

data items (e.g. a cryptographic hash of the audited data).

2) Structure of a Challenge: A simple way to verify if a

storage provider keeps a given data item would be to request

that item and then check its integrity. Although this method

could, in fact, offer a PoRet, it has several limitations.

First, this approach is inefficient, as it requires the auditor

to consume a large amount of bandwidth to obtain the proof.

Therefore, to save bandwidth, most challenges require the

storage provider to read a subset of the stored data items and

compute a cryptographic hash of them. Typically, the response

has to be issued within a predefined deadline, determined

by the auditor [9], [11]–[13]. Furthermore, when sending the

challenge, the data items should be revealed interactively to

prevent the storage provider from downloading missing items

on demand [13]. If the provider cannot guess in advance the

data items to be accessed, it has to keep all items within the

constraint access time to build a correct and timely proof.

Second, a single request for data items cannot verify some

of the service requirements. For example, it cannot assess

whether the storage provider keeps just one or several replicas

of the data items. A typical solution is to encode each file with

a distinct secret key [12]. Unfortunately, this does not prevent

a provider from keeping all replicas in the same machine,

which may compromise availability. An option is to design

the challenge so that it is impossible to respond on time if

all replicas are kept on the same machine, although it can be

feasible if the proof is built in parallel [13].

These mechanisms are not enough to guarantee that the

proof was generated by the target node. For this purpose,

it is possible to leverage a TEE to interactively reveal the

challenge and ensure that the operations essential to the proof

construction are executed in a given machine [11].

C. Trusted Execution Environments

A processor with a TEE has two execution modes: normal
mode, where the operating system and applications run, and

secure mode, an isolated environment which ensures the

integrity and confidentiality of data and code inside [19]–[21],

even in the presence of an untrusted operating system.

There is a set of different TEE architectures [21], for

example, Intel Software Guard Extensions (SGX), ARM Trust-

Zone, AMD Secure Memory Encryption (SME) and AMD

Secure Encrypted Virtualization (SEV). We resort to Intel SGX
technology, as it is available in Intel systems (PCs and servers),

and we use Intel machines in our experimental setup.

Intel SGX splits the computing environment in two parts:

the secure mode known as enclaves, and the normal mode

known as the untrusted part. Furthermore, since the processor

core can only execute one environment at a time, the exchange

of environments occurs through hardware calls, more precisely

ECalls and OCalls. In addition to code and data security, Intel

SGX provides security guarantees regarding machine identifi-

cation. In other words, an external machine that communicates

with the enclave can get a guarantee that it is communicating

with a real enclave, through the attestation process [20], [33].

D. Discussion

We now discuss the limitations of the related work in

auditing storage systems, summarized in Table I.

Efficient Execution. Both PDP [14] and PoRet [15] are

designed to offer efficient cryptographic mechanisms to verify

the integrity of cloud-stored data. Benet et al. [12] present

a mechanism capable of verifying if there are a certain

number of copies of a file, while Li et al. [13] audit if

such copies are stored on different physical machines. These

proofs depend on a single remote auditor, requiring low cost

for deployment and execution. Filecoin [1] offers blockchain-

based cooperative digital storage, which requires expensive

cryptographic operations. These proofs cannot estimate data

location or access latency, making them unsuitable for testing

if a provider stores the required data in a specific node.

Data Locality. Triangulation mechanisms are one way to

estimate data location. Gondree et al. [10] and Benson et al. [9]

follow this approach by relying on multiple auditors/landmarks

for the estimation. Unfortunately, triangulation can be expen-

sive since it requires the intervention of multiple landmarks

for each proof execution, and the accuracy of this mechanism

depends on the proximity of the landmarks to the audited node.

In this paper, we take a different approach, where we decouple

geolocation from data locality. An auditor can first geolocate

a node (using techniques as in [10]) and then run our PoTR to

check if the files are stored locally at that node. This approach

has the advantage that the accuracy of the locality proof no

longer depends on the landmarks, and exclusively relies on

a single parameter that affects the proof duration, making it

practical, particularly in edge environments.

Delegation Attack. Despite the use of triangulation, none

of these systems is capable of enforcing the proof to be

executed on a given machine; this is a critical obstacle when

attempting to audit specific nodes, particularly in an edge

storage environment. A storage provider, which controls the

infrastructure, may capture the challenge request and delegate

the production of the response to the remote storage: such

behavior may be difficult to detect. Dang et al. [11], and

EnclavePoS [16] resort to a TEE to execute their challenge on

the correct machine to prevent this attack but, unfortunately,

are still vulnerable to a clock delay attack.

Delay Attack. Using a TEE to trivially implement the

auditor alone is not enough to ensure the generation of correct

and honest proofs. These systems assume that the SGX clock

can be trusted to measure the duration of the challenge at the

audited node [11], [16], [17], but recent research has shown

that the enclave cannot read an accurate and reliable system

clock, due to the following issues [23]: (1) the storage node

system clock is vulnerable to manipulations by the untrusted

part; (2) the operation to read trusted timers, such as those

provided by SGX or, TPM (Trusted Platform Module), has
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Fig. 2: System architecture.

a large overhead, penalizing the proof accuracy; and (3) the

untrusted part can maliciously delay trusted timer messages,

to fetch remote data blocks on demand, and thus escape

detection. Additionally, since 2020, Intel has excluded SGX

trusted time from Linux PSW, leaving Dang et al. [11] and

ReliableBox [17] deprecated. As a result, it is not practical

to use the enclave for time measurements. Furthermore, as

discussed below, ReliableBox focus on the triangulation task

and is unable to verify if the audited node keeps the files

locally or remotely.

Geolocation of the Node Being Audited. Some appli-

cations may require the geolocation of the machine being

audited. The geolocation problem is orthogonal to the problem

of timely retrievability and we advocate that these problems

must be addressed by different, complementary, mechanisms.

Geolocation typically requires the use of multiple auditors

(namely, to perform triangulation) while, as we show in this

paper, timely retrievability can be achieved using a single audi-

tor. This separation allows performing the proof of geolocation

only sporadically (for instance, when the machine boots) and

then run a proof of locality more often.

One way to perform triangulation is by leveraging One-

Way Delay (OWD) estimation. ReliableBox [17] measures

the duration of the challenge both at a set of remote auditors

and inside the enclave. It then computes the time difference

between these two measurements to estimate the Round-trip

time (RTT) between the auditors and the server, performing

geolocation via triangulation. Unfortunately, ReliableBox only

captures the network delays and is unable to assess accurately

the duration of the proof construction at the audited node. This

means that the response to the challenge can take an arbitrarily

long duration (e.g. when data is stored in a remote node)

without affecting the operation of ReliableBox: triangulation

would still be accurate but the result of the challenge cannot

guarantee data locality or any other properties. To provide

both geolocation and timely retrievability, schemes such as

ReliableBox need to be combined with schemes such as the

one proposed in this paper.

III. SYSTEM ARCHITECTURE

We now present our system architecture in the context of

edge computing that includes an auditor, a set of fog nodes,

and a set of remote storage systems connected to the fog nodes

(see Figure 2). Our proof, presented in the next section, is

computed by a fog node to prove that it can access data with

a latency lower than a given agreed threshold δ.

A. Assumptions

The protocol for obtaining a proof is executed between two

nodes: the auditor and the audited fog node. A fog node is

said to be correct if it can retrieve the files assigned to it

with a latency lower than some given threshold δ. Any fog

node that cannot satisfy this requirement is denoted faulty.

The value of δ is application specific, but can be small and,

in some cases, can only be satisfied if data is stored in a

storage device directly connected to the fog node. Providers

should offer SLAs that define δ based on their capacity to

maintain consistent performance under varying workloads. If

a provider cannot meet δ latency under under high loads, they

should consider offering an SLA with higher latency.

Our proof requires the audited node to read a configurable

number N of data blocks. N can be conservatively selected

to mask worst-case errors that may result from the variability

of access to local storage and the variability in round-trip

times. We also show that knowledge of the distribution of

network delays and the distribution of storage access delays

can be used to optimize the value of N when auditing honest

nodes. Interestingly, these optimizations cannot be exploited

by a rational provider to evade auditing. The configuration of

PoTR is discussed in Section V-C.

We assume that each fog node has a processor with Intel
SGX, as we rely on the guarantees provided by a TEE. We

assume that the auditor has the guarantee that it communicates

with the expected enclave, due to the attestation process [20],

[33], and also that the integrity and confidentiality of the data

and code inside the enclave are guaranteed [33]. As explained

in Section II-D, the enclave cannot read a reliable system

clock [18], [23]. However, the enclave can provide us with

the guarantee that the proof is effectively built at the audited

node, which is the property we leverage in the solution [20].

Finally, we assume that it is not feasible for the edge storage

provider to reallocate enough objects in less than δ at the

beginning of the audit, from a remote storage location. As

it will be seen, our audit executes quickly (under 500ms),

limiting the number of files that can be downloaded in time,

even if the edge node has a high bandwidth link.

B. Fog Node Storage Organization

The edge storage provider is responsible for storing the files

in the fog layer and ensuring that the files are stored in such

a way that they can be retrieved with a latency lower than δ,

the SLA defined threshold.

In each fog node with Intel SGX, local documents are

kept in the untrusted part, as the storage capacity of the

enclave is limited [33]. Thus, if the processor is running inside

the enclave, there must be an exchange between execution

environments to read a data item (from the enclave to the

untrusted part). Even if the data item is remote, there is also

an exchange of execution environments, as the untrusted part

is responsible for communicating with remote machines [33].
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The set of auditable files is known to both the auditor and

audited node and sorted in a deterministic manner. Thus, both

parties can use the index of a file in the sorted list as a

mutually agreed short unique identifier for that file. We denote

this index by set index. However, agreeing on the set of files

and supporting file modifications is beyond the scope of this

work. For simplicity, files assigned to a fog node, including

their content, do not change. The modification of files can be

trivially supported using versioning.

C. Enclave Geolocation

The goal of PoTR is to check whether a given node stores

data locally. When an enclave is attested, it is possible to

uniquely identify the specific enclave, but attestation does not

reveal its location. Therefore, PoTR alone cannot ensure that

data is stored at a given target location; for that, one also

needs to geolocate the node. Several geolocation techniques

have been proposed in the literature [35]–[37] and any of

them can be combined with PoTR to ensure data locality

and geolocation. Although geolocation proofs are orthogonal

to our work, we briefly sketch two methods to discover the

location of the enclave: 1) Proximity Attestation – the auditor

physically launches the enclave in the local machine at the

correct location and exchanges a certificate with that enclave

for later authenticating the same specific machine/enclave; 2)

Triangulation – any technique of triangulation can be applied

without requiring heavy cryptographic operations (the goal is

to geolocate the machine and not data), so the accuracy is not

compromised in any way by the storage proof.

IV. PROOF OF TIMELY-RETRIEVABILITY

In this work, we introduce the Proof of Timely-Retrievability
(PoTR) mechanism: a storage proof that aims to assess

whether a storage node can access stored data with a latency

smaller than some specific threshold δ. The auditor can select

the value of the δ parameter based on the specific requirements

of a given application, but it is typically small and, in some

cases, can only be satisfied if the audited (edge) node keeps

the data locally. With the goal of applying the proof in edge

computing scenarios, we assume small values of δ, in the order

of the time required to read a data block from the local disk.

By supporting such strict values of δ, PoTR is capable of

distinguishing the case in which the fog node stores the data

locally (Figure 1a) from the case it keeps it in some remote

node or cloud (Figure 1b).

The PoTR is obtained by the storage node in response to
an audit, so our solution requires a machine with auditing

capabilities. We do not restrict the placement of these auditing

machines, as there may be many geographically distributed fog

nodes [38]. Therefore, our proof was designed to be obtainable

from an audit machine anywhere on the Internet. This property

offers a lot of flexibility regarding the deployment of the

auditor and allows a single auditor to perform audits on a

large number of fog nodes.

An alternative could be to ask clients to report the latency

they observe and use this information to perform the audit.

However, this approach raises many privacy challenges, an

attacker could infer the client’s location given its latency to

a fog node. If a PoTR can be extracted independently of the

auditor location, we avoid these vulnerabilities.

A. Challenges

In the design of our PoTR, we face some obstacles, namely:

i) the timing information provided by the audited node cannot

be trusted [23], thus the time to produce the proof must be

measured by the auditor; ii) the network between the auditor

and the audited node is subject to variance that introduces er-

rors when estimating the time the audited node took to produce

the proof; iii) storage/fog nodes are heterogeneous [38], and

the time they require to perform computations and read data

(even if the data is local) is not constant, so the proof should

be based on average values from multiple readings; and iv)

the audited node may attempt to delegate the generation of

the proof to another node that has faster access to the data

than the audited node itself, so it is required to ensure the

proof is produced by the audited node, and not delegated.

B. Design of the Challenge

The challenge requires the untrusted part of the fog node to

access a given number of data objects, in a certain sequence,

and return, at the end, a value related to these data objects.

The delay the fog node takes to read these data blocks, and
to compute the final value, is used by the auditor to estimate
the reading delay observed at the audited node and to check
if it matches the target threshold δ.

Each challenge (implicitly) specifies a sequence of files that

must be accessed by the audited node, and each file is uniquely

identified by a set index. For efficiency reasons, the fog node

for each file reads a data block of size sb, instead of the entire

file. In practice, the block size should be a multiple of the

block size used by the fog node file system.

In each challenge c, the fog node has to read a pseudoran-

dom and unpredictable sequence of N data blocks (each of

size sb), and return a cryptographic hash of the concatenation

of all data blocks accessed. The number N of data blocks

is a configuration parameter that influences the accuracy and

efficiency of the challenge: the higher the value N , the more

accurate but less efficient the proof. The approach to configure

this parameter is explained in Section IV-D, and if the user

is unable to configure sb, it is still possible to execute our

challenge defining only N , as discussed in Section V-C.

The pseudorandom sequence of the data blocks is deter-

mined by a nonce ηc (unique per challenge, and generated

by the auditor) and the content of the data blocks. For each

challenge, the auditor sends the nonce (encrypted with a

symmetric key), the number N of data blocks and the size

sb of a block to the enclave. To ensure that the nonce ηc is

not disclosed to the untrusted part, the nonce never leaves the

enclave. The untrusted part only has access to a cryptographic

hash of the nonce, we denote this hash as #index. With the

#index, the untrusted part is able to determine the set index

of the first file to be accessed. The set index is determined by
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applying the modulo function (mod) to the hash with the total

size of the set of files, i.e., the set index is the remainder of

the division of the hash by the number of files.

Since the fog node has to read a data block of size sb, and

not the entire file, the auditor sends to the enclave a second

nonce ηcb that will determine a data block inside the file, with

the computed set index. The enclave, in turn, computes the

cryptographic hash of this second nonce and forwards the

result to the untrusted part. Both nonces are hashed by the

enclave, to ensure that the untrusted part does not know them

in plain text. Otherwise, the untrusted part could maliciously

predetermine the N data blocks. Now, with the hashed ηcb , and

the total size of the file to be accessed, the untrusted part can

determine the data block, with size sb, inside the file to be

retrieved, by applying the modulo function.

When the untrusted part receives the first #index from the

enclave, it proceeds to determine and read the corresponding

initial data block. It then calculates a cryptographic hash of the

data block’s content, combined with the #index, resulting in

result hash. Subsequently, the untrusted part returns the value

of result hash to the enclave. The enclave, in turn, computes a

new #index by hashing the response result hash together with

the nonce ηc. This newly generated #index is then forwarded

to the untrusted part, which uses it to identify the next file.

For each subsequent hash, the untrusted part repeats the ex-

ecution of the modulo function to obtain the next set index and

the index of the data block within the identified file. It reads

the corresponding data block and calculates its cryptographic

hash together with the file #index, yielding result hash that is

returned to the enclave. The enclave computes two new hashes

(block and file index), and this process continues until all N
data blocks are read. Note that each new #index is computed

using the hash of the previously retrieved data blocks. Finally,

the enclave computes a final hash using ηc and sends the

result back to the auditor as the conclusive proof. The auditor,

upon receiving the final hash, repeats all the aforementioned

computations to construct a verifiable version and verify the

correctness of the proof. If both computations match, the

issued proof is deemed correct. Figure 10 in Appendix A

provides an overview of the sequential steps involved in the

execution of our challenge.

Security Guarantees: Each challenge requires two unique

nonces that will determine in a sequential and pseudo-

randomly faction which N data blocks the untrusted part

must read. This interaction with the enclave ensures that the

fog node is unable to retrieve the N data blocks in parallel

from neighboring nodes. Instead, it must retrieve one block

at a time to determine the next block it needs. Additionally,

the dependency between data blocks, since the next block

index depends on the content of the previous one, ensures that

the fog node cannot reuse outputs from previous challenges,

thus maintaining challenge freshness. The constant exchange

between execution environments (enclave to untrusted part and

vice versa) guarantees that the fog node cannot rely on a

remote machine for the entire proof computation. The proof is

computed solely on the expected machine [20]. It is important

to note that through the verification of proof correctness, the

auditor can assess the integrity of the stored documents. Any

modification to a file will render the proof invalid.

C. Reading Delay δ at the Audited Node

In addition to checking proof correctness, the auditor has

to check the proof timeliness. When the challenge is sent to

the enclave of the audited node, the auditor starts a timer that

is stopped when the proof is received. A proof is valid if it

is correct and the reading delay estimation, for a single data

block, is acceptable to the auditor.

Having Ti as the time elapsed between the auditor sending

the challenge i and receiving the response from the fog node,

Ti can be decomposed into different factors, namely:

Ti = rtti + α1
i + . . .+ αN

i + δ1i + . . .+ δNi (1)

where rtti is the network round trip time for challenge-

response messages, N the number of data blocks to be

accessed, αj
i the delay observed at the fog node to compute

the cryptographic hash of a given data block j and compute

the index of the next block, and δji the delay observed to read

a data block j. Note that for sufficiently large values of N ,

we will have the following:

α1
i + . . .+ αN

i

N
= αi ≈ α

δ1i + . . .+ δNi
N

= δi ≈ δ (2)

However, the auditor is unable to measure accurate values

for rtti, αi and δi, as they are different and variable in each

challenge i and the auditor is only able to measure the total

delay Ti. Therefore, to estimate δ, i.e., the actual mean delay

a fog node takes to read a data object, in our work we resort

to mean values:

Ti = rtt+Nα+Nδ (3)

δestimate =
Ti − rtt −Nα

N
(4)

Therefore, the estimate error for a given challenge i will

depend on how far the observed values are from the mean

values. The rtt is calculated independently of our challenge,

being obtained by measuring several network samples and

dividing them by the number of samples. Experimentally, we

verified that the α values are subject to a negligibly small

variance, whereby we assumed αi = α, i.e., we ignore the

error introduced by α sampling. Therefore, the error of the

estimate δestimate depends on two factors: i) the reading error εδ

when estimating δ (which depends on the sample size, i.e., the

number of data blocks accessed) and ii) the variance between

the observed network round-trip time (rtti) and the expected

mean value (rtt), divided by the number N of data blocks, as

Equation 5 describes:

εrtt =
|rtti − rtt|

N
=

Δrtt

N
(5)
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D. Configuring the Challenge

The challenge can be configured by providing two param-

eters: the maximum error εδmax that he is willing to tolerate,

when estimating δ, and the reliability of the challenge φ, a

parameter specified by the auditor that captures the probability

of estimating δ with an error lower than εδmax (in practice

we use the 99.99 percentile). As noted before, the error of

the estimate εδmax results from the variance of local reads

experienced by the audited node (εδimax) and by the variance of

the network delays (εrtt
max), i.e., εδmax = εδimax + εrtt

max. For both

sources, the error diminishes with the number of samples N ,

thus, N should be chosen so that εrtt
max + εδimax < εδmax.

Let εδ
j
i be the difference between the average access latency

δ and the latency observed when reading block j during the

execution of challenge i. The error caused by the variance of

storage access in a given challenge i is given by:

εδi =

∑N
j=1 ε

δji

N

Given φ, the expected value of εδmax can be derived from the

distribution of the access delays. Similarly, with the inverse

cumulative distribution function (ICDF) of the network distri-

bution, we can also calculate the expected maximum difference

between the observed value rtti and the expected mean rtt
that matches φ.

E. Network Delay Distribution

Our proof is capable of finding the correct δestimate even if

delay distributions are unknown, by choosing worst-case de-

fault values that can be used conservatively (see Section V-C).

However, it is possible to leverage information regarding the

network delay distribution to select a more efficient N value

such that the sum of both errors is kept below a target value

of εδmax. We show this in the concrete edge node scenario in

Section V-D2. This optimization, based on measuring network

behavior, is safe and cannot be exploited by a malicious

provider. The provider can introduce artificial delays when

replying to the auditor, but this will not reduce the variance

that is introduced by the network itself; on the contrary, it may

only increase the variance. In turn, this may force the auditor

to use larger values of N than strictly required, increasing

the accuracy of the proof at an extra cost to the malicious

provider. Therefore, it is always beneficial for the adversary

to be honest when the network behavior is measured.

V. EVALUATION

We now present our proof evaluation. We begin by de-

scribing our experimental setup and the different benchmark

scenarios. Then we show that our proof works even without

knowledge of network distribution. Afterward, we discuss how

the challenge should be configured, for the block size, and N
samples. After finding the correct configuration, we evaluate

the performance of the challenge in the different scenarios and

show experimentally that our proof can accurately distinguish

a misbehaving server from a correct server, in the context of

edge computing. Finally, we evaluated different alternatives to

reduce the impact of our proof on the audited node.

A. Experimental Setup

We resorted to two different types of machines: 1) Intel

NUCs to represent fog nodes, and 2) virtual machines in the

Windows Azure cloud to represent remote entities. For NUCs,

we have resorted to the Intel NUC10i7FNB, it has an Intel i7-

10710U CPU that supports Intel SGX, 16GB RAM, 240GB

SSD M.2, and Ubuntu 20.04 LTS. We run the Intel SGX SDK

Linux 2.13 Release and OpenSSL 1.1.1k. An Intel NUC is an

example of what a fog node might be, as it possesses modest

computational resources but is relatively inexpensive for large-

scale deployments. For the cloud deployment in Azure, we

resort to Standard D2ads v5 with two vcpus, and 8 GB RAM

in west Europe (Netherlands) the closest data center to our

laboratory; our laboratory is located in a European capital.

We leverage these two types of deployment to create different

scenarios and evaluate our storage proof; we explain our

scenarios in more detail in the next section.

For the stored data that our proof is responsible for auditing,

we generated 150GB with random data divided into files of

1GB, our proof leverages a hash function to choose the next

block to be accessed; this offers uniform distribution access

over the 150GB of data. In our code implementation, we used

the SHA-256 function as a cryptographic hash function and

AES in GCM mode with 128 bit keys to cipher the nonces,

both currently considered secure [39].

B. Evaluation Scenarios

In our experiments, we leverage three different entities to

evaluate our PoTR storage proof: an auditor; the audited node,

which represents a fog node that stores data; and the remaining

one is the remote storage node, which is used by the audited

node to access data in configurations where it does not store

the files locally. In our experiments, the fog node stores all

files at the same location, i.e., all files are stored locally, or

all files are stored in the remote node.

We deployed four different scenarios to evaluate PoTR;

the difference between the scenarios is the location of the

remote storage node, since the closer the remote storage is

to the audited node, the more difficult it is to detect malicious

behavior. The first scenario is represented in Figure 1a: the fog

node has honest behavior and stores all data locally. Figure 1b

presents the malicious behavior that the edge provider can

adopt by resorting to remote storage. Figure 1b represents the

three remaining scenarios in which we vary the location of

the remote storage from: a) a virtual machine on the Azure

cloud; b) a NUC on a different campus of our university;

c) a NUC located in our laboratory and connected through

a switch to the audited node, with a mean network delay of

0.1ms. Regardless of the scenario, both the auditor and the fog

node/audited node do not change their location, the auditor is

running in the Azure cloud, and the audited node in an NUC

at our laboratory. By deploying different machines at different
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Fig. 3: Overview of PoTR δ estimative without network

knowledge, picking a large N value of 3000, 64KB block size.

geographic locations, we capture the different variations and

delays of wide-area links.

C. PoTR Without Network Knowledge

As stated in Section III-A, the efficiency of PoTR can

be improved given knowledge on the distribution of network

delays and access delays. When executing PoTR without this

knowledge, a large default value for N should be used, enough

to compensate worst-case network variance; we show that a

default value N = 3000 can be safely used in most scenarios.

We have selected this default value based on latency measure-

ments from our laboratory to the farthest Azure datacenter1,

the Australia Central 2. We have observed an average RTT

of ≈ 286ms and a maximum latency of ≈ 1143ms. When

considering a network variance with this order of magnitude

in Equation 5, by setting N = 3000 we can reduce εrtt to

≈ 0.28ms. In this scenario, the variance in storage access

delay is negligible compared to the network variance.

Figure 3 shows the results of running PoTR using the default

value of N = 3000 in different scenarios. We can observe that

it is possible to set the SLA threshold to a small value such as

δ = 2.5ms, to ensure that the audited node has the data stored

locally (the local delay to read a data block is ≈ 1.7ms), and

that our δestimate achieves high accuracy in both scenarios.

However, with N = 3000 our challenge takes approxi-

mately 5.2s to execute. When the challenge is executed using

more stable networks, it is possible to fine-tune the value of N
to achieve similar accuracy with a lower cost for the audited

node. In the next section, we demonstrate results for various

values of N . For instance, with N = 500, we achieve accurate

results with a challenge executed in just 0.9s.

D. PoTR Configuration

We now derive, based on experimental results, the best

configuration for our storage proof, by setting the block size

and the N value for PoTR. Note that in a situation where the

user is unable to configure the block size, they can simply use a

high value for N , as demonstrated in the previous Section V-C.

1) Selecting the appropriate Block Size: To find the appro-

priate value for the size of the block to use in our challenge,

we evaluated the performance of the challenge with different

block sizes and different N values. The results are presented

in Figure 4. We executed our challenge to estimate the δ value

and calculated the error relative to the real reading delay in

the fog node, we present the results for the honest fog node

scenario in Figure 4(a) and for the nearby fog storage scenario

1We leveraged this website: https://cloudpingtest.com/azure

(a) Honest Fog Node. (b) Nearby Fog Storage.

Fig. 4: PoTR experimental error for different scenarios and

block size, EOE is Experimentally Observed Error.

Fig. 5: Theoretical and experimental error for the PoTR

challenge (EOE means Experimentally Observed Error).

in Figure 4(b). We observe that for small values of N the

results obtained exhibit a large variance and only by increasing

N do we obtain more accurate results. In both scenarios, we

observe that the size of the block has a relatively smaller

impact on the accuracy of the result than the value of N . Still,

it is possible observe that, when using larger block sizes one

can obtain more accurate results. This is clearly noticeable in

the scenario where files are stored in a nearby fog node, where

the configuration using blocks of 4KB takes longer to converge

than configurations with larger block sizes. Furthermore, in

Figure 4(b), it is possible to observe that when the N value

goes above 100, blocks of 64KB offers a slightly smaller error

than blocks of 16KB. For these reasons, we opted to set our

challenge with blocks of 64KB.

2) Finding the appropriate value for N : As described in

Section IV-D, the value N can be determined by providing

εδmax, which depends both on the network error and the reading

error, this network knowledge allows us to find an optimal

value for N . Figure 5 presents the estimated error for our

challenge under different percentile values, of the reliability

φ, for each error εrtt and εδi (these two were measured

experimentally). Note that εδmax decreases as we increase the

value N , this results from the impact that N has on εrtt

reducing its effect on the challenge, on the other hand, εδi

has a negligible impact on εδmax, εδi is mostly below 1ms
reaching at most 5ms. Figure 5 also presents the measured

error of our challenge in real experiments in the four different

scenarios presented earlier. We observe that the error increases

when we also increase the distance between the data and the

audited node.

Both φ values of 100th and 99.99th percentiles are able to

predominantly capture the real observed error of our challenge.
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We use the estimated error to choose a desirable value for

N ; in this case, we chose N = 250 since this is where we

observe the last most significant reduction in the estimated

error of −6.1ms, versus the increase in the value of N , of

150. As expected, increasing the value of N also improves

the accuracy of our challenge, for N = 10 we obtain an error

of ≈ 5ms, which can be undesirable for edge environments,

while for N = 250 the observed error is only ≈ 0.1ms, such

a small error can provide a δestimate with high reliability.

E. PoTR Accuracy

Using the configuration parameters derived from the previ-

ous analysis, i.e., using a block size of 64KB and by setting the

number of samples N to 250, we have executed our challenge

in multiple scenarios and captured the distribution of the data

access latency estimated by our challenge. We compare the

estimated values with the real values, observed at the audited

node itself. The results are depicted in Figure 6. Each point

in the figure represents either the real latency to access a

data block or the δestimate to access a block resulting from

the execution of our challenge.

It is possible to observe that our challenge estimate closely

approximates the real value with a small error, as discussed

in Section V-D. The error between the real value and δestimate

increases as the audited data move further from the audited

node. This happens because the farther away the audited node

is, the more likely the network delay exhibits a larger variance.

Nonetheless, our challenge can still distinguish whether the

data is local to the fog node or at a remote site. The accuracy of

the PoTR is sufficient to differentiate between scenarios where

files are stored locally or at a nearby fog node. Even with a

latency difference of less than 1.5ms, our PoTR accurately

identifies the configuration used by the audited node.

Looking at the results in Figure 6, our PoTR enables the

establishment of a threshold to accurately differentiate between

a correct node (storing all files locally) and a faulty node that

stores files elsewhere (even if they are kept in nearby nodes).

This threshold is determined by setting a very strict value

for δ in the SLA, such as the 100th percentile for reading

delays measured locally at the fog node. The 100th percentile

line, located at 2.2ms, corresponds to 0.005% false positives

and 0% false negatives (we define as positive the detection of

malicious behavior of the audited node).

F. Overhead Imposed by a PoTR Challenge

We now assess the overhead imposed on the audited node

while it responds to a challenge. For this, we run a local client

that performs read/write access to the data stored on the edge

node, and then we measure the loss in throughput of that client

during challenge execution. The results are shown in Figure 7.

The throughput of the concurrent client decreases by ap-

proximately 57% during the processing of the challenge by

the audited node. This is expected as our resource-constrained

edge nodes need to access multiple files and compute their

digest to respond to the challenge. Despite this non-negligible

overhead, we argue that its impact on the overall operation

of an edge node is not significant in practice. The challenge

typically takes less than 500ms to complete, and auditing

occurs sporadically in most scenarios (e.g., once per day).

Nonetheless, in the next section, we discuss and evaluate

strategies to further reduce this overhead.

G. Strategies to Reduce PoTR Overhead

We considered three complementary avenues to attempt to

reduce the overhead of running a challenge in an audited node.

The first was to1modify the implementation, taking advantage

of switchless calls [24] that reduce the ECall/OCall overhead.

The second was to use blocks size smaller than 64K. As

discussed earlier, smaller sizes can reduce the accuracy of the

test but can have an impact on the overhead. Finally, one can

simply reduce the number of samples N . By reducing the

number of samples, one would reduce the challenge duration

and therefore, the period during which clients would be

affected by the concurrent execution of a challenge. However,

as we show in this section, using switchless calls or reducing

the size of the blocks has a minor impact on the overhead.

Figure 8 shows how the use of switchless calls, different

block sizes, and different values of N , affect the drop in

throughput observed by clients during the execution of the

challenge and also the duration of the challenge.

It is clear from Figure 8a that the drop in throughput during

the execution of the challenge is roughly the same regardless

of the block size used or the use of switchless calls. Switchless

calls offered a small performance improvement, just a latency

reduction of ≈ 1.6% in the best case. When considering block

size, the largest difference is observable from 256KB block

size, with a throughput reduction of −55%, versus 4KB block

size alternative, with a reduction of −38%, relative to the

parallel client. This is not a large improvement considering

that the 256KB block size is 64 times the 4KB block size.

This is because, during the execution of our challenge, our

disk access is continuous, independently of the block size, and

therefore the impact on other clients will be similar; however,

our challenge duration may vary. Additionally, as discussed in

Section V-D1, having a very small block size can still affect

our storage proof error.

These results suggest that the only effective way to reduce

the overhead of the challenge is to reduce its duration. Fig-

ure 8b shows that, although block size has some impact on the

duration of challenge executions, its impact is relatively minor

compared to the effect of reducing the number of samples N .

This indicates that the most effective strategy to reduce the

overhead of the challenge is to reduce the number of samples,

as this reduces the duration of the period in which clients are

affected. Of course, as discussed before, reducing the value of

N will degrade the accuracy of the test, increasing the chances

of producing false positives and false negatives.

Figure 9 shows the effect of N on both false positive and

false negative rates when using the threshold δ = 2.2ms, as

discussed in Section V-E. In this analysis, we consider the

scenario where a faulty node stores data at the nearby fog

storage, as this is the scenario where it is most challenging
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Fig. 6: Distribution and correspondent averages for reading delay δ, in milliseconds, for different scenarios where PoTR is

configured with N = 250 and 64KB block size.

Fig. 7: Challenge impact on concurrent reads.

(a) Throughput Impact. (b) Challenge Duration.

Fig. 8: PoTR duration and throughput impact on concurrent

reads, Blk is block, and Sw is switchless.

to accurately detect a misbehavior, given the small difference

between the latency offered by correct and faulty nodes. It is

interesting to observe that our PoTR offers a false negative

rate close to 0% for most values of N . Therefore, even where

the values of N are smaller than 250 (the required to obtain

the best accuracy), our PoTR will detect a misbehaving client.

Unfortunately, the true positive rate can increase significantly

when using low values of N , risking identifying a correct

node as faulty. More precisely, the false positive rate increases

slowly as we decrease the number of samples from 250 to

100 (at this point, our PoTR offers a false positive rate of

approximately 1%), but then increases sharply. For values of N
smaller than 100 the challenge no longer provides acceptable

values for the false positive rate.

In summary, by tolerating a small fraction of false positives,

the auditor can reduce the challenge overhead by decreasing

the number of samples from 250 to 100. This roughly halves

the period during which clients are affected by our challenge.

H. Combining Multiple PoTR Configurations

As seen in the previous section, using a reduced number

of samples, 100 instead of 250, our challenge imposes sig-

nificantly less overhead while still obtaining a negligible false

negative rate and a very small positive rate (≈ 1%). Faced with

these observations, we conclude that in some deployments the

auditor should combine different configurations of the PoTR:

Fig. 9: False positive and negative rates of PoTR under

different N values for honest and nearby fog node scenarios.

one that is cheaper and works 99% of the time; another that

is more expensive but provides extreme accurate results.

For example, the auditor might use N = 100 to challenge

the audited node. If the node was flagged as malicious (a

positive), the auditor could then launch a second challenge

with N = 250, to filter out false positives. Note that in such

a case, the combined challenge would read on average 102.5

(0.01 × 100 + 0.01 × 250 + 0.99 × 100) blocks instead of

the 250 in the normal auditor, a reduction of 41% on average

for the number of blocks required to execute our challenge.

Notice that, as hinted before, for N = 85 this strategy would

no longer be worth it since it would require reading 257.5

(0.69×85+0.69×250+0.31×85) blocks on average, which

is larger than the 250 required by the normal auditor solution.

VI. CONCLUSIONS

We present a novel auditing mechanism that is capable of

extracting a proof of timely-retrievability, that is, a proof that

a given storage node is able to serve requests without violating

some given data access latency constraint δ. The proof is

designed in a way that, if the storage node does not store

locally a significant fraction of the objects, it will be unable

to respond in time. We enforce our proof to be executed in

the audited node by leveraging SGX enclaves, for iteratively

revealing the next data block to be read to the untrusted part.

Our evaluation shows that our proof can accurately detect a

node that cannot satisfy the target latency constraint δ under

different edge computing scenarios, resulting in the detection

of a misbehaving storage provider.

Next, we aim to extend our evaluation to demonstrate the

behavior of our proof with a more sophisticated attacker who

varies the percentage of data stored remotely (i.e. some of the

files are stored locally, and some are stored remotely), and

introduce adjustments to our proof if necessary.
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APPENDIX A

POTR COMMUNICATION PROTOCOL

In Figure 10, we present in detail all the steps of our

communication protocol in the execution of our PoTR chal-

lenge. We separate the steps on the auditor’s side between the

untrusted part and the enclave, where the sensitive parts of

our challenge, such as the nonce, are always securely stored

inside the enclave.
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Fig. 10: PoTR challenge execution. set indexi is the index of a file, and block indexi is the index of a data block with size

sb inside filei. blocki is the read data block. sk is a secret key between the auditor and the enclave. #index is a hash.
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