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ABSTRACT
In this paper we propose a novel abstraction that we have named

Range-Revocable Pseudonyms (RRPs). RRPs are a new class of

pseudonyms whose validity can be revoked for any time-range

within its original validity period. The key feature of RRPs is that

the information provided to revoke a pseudonym for a given time-

range cannot be linked with the information provided when using

the pseudonym outside the revoked range. We provide an algorithm

to implement RRPs using efficient cryptographic primitives where

the space complexity of the pseudonym is constant, regardless of

the granularity of the revocation range, and the space complexity

of the revocation information only grows logarithmically with the

granularity; this makes the use of RRPs far more efficient than the

use of many short-lived pseudonyms. We have used RRPs to design

EDGAR, an access control system for VANET scenarios that offers

backward unlinkability. The experimental evaluation of EDGAR

shows that, when using RRPs, the revocation can be performed

efficiently (even when using time slots as small as 1 second) and

that users can authenticate with low latency (0.5 − 3.5 ms).
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• Security and privacy→ Access control; Distributed systems
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1 INTRODUCTION
Anonymous authentication offers both accountability and privacy,

protecting clients from curious application providers while en-

suring that only authorized participants are able to use the ap-

plication [40, 42, 59, 65]. The number and relevance of applica-

tions that require anonymous authentication are increasing. Ex-

amples include crowdsensing [33, 56, 64] and Vehicular Networks

(VANETs) [6, 32, 60], where clients voluntarily share information

about their environment for the common good. Client authentica-

tion is a crucial mechanism to provide accountability for malicious

and erroneous activity, ensuring the reliability of these applica-

tions [33, 58]. Unfortunately, authentication can compromise user
privacy, as it may be associated with sensitive information, such

as location [56]. This is exacerbated by the fact that, in most of

these applications, clients are mobile and may need to authenticate
frequently, e.g., when they move to the range of a different base

station or cell. Multiple authentications may be linked to extract

additional information such as daily routines [33] or health sta-

tus [45] for financial gain [3, 51, 69]. Anonymous authentication

can be achieved using Group Signatures (GS) schemes [9, 64] or

pseudonym certificates [48].

A challenging task in this context is to support revocation with-

out violating privacy. Revocation aims to prevent some clients from

further authenticating in the system. Client revocation may be re-

quired in the event of credential misuse, sensor malfunctioning,

change in client privileges, stolen secret keys, or when a client

leaves voluntarily. Client revocation can be implemented in differ-

ent ways. We distinguish two main classes of revocation strategies,

namely, global client revocation and verifier local revocation.
Strategies based on global client revocation require all clients to

obtain new credentials (or update their credentials) every time a

single client is revoked. Examples of this strategy include Ateniese

et al. [2] (where the group public key is renewed at each revocation)

and Ohara et al. [55] (where a small public membership message is

broadcast at each revocation). These approaches make revocation

very onerous in scenarios with many clients (e.g., consider vehicle

numbers in VANETS) and impractical in mobile settings, where

clients may become temporarily disconnected from the network.

Strategies based on Verifier Local Revocation (VLR) [9, 11] do

not require that all clients are contacted when a given client is

revoked. Instead, only the nodes that perform authentication (often

called the signature verifiers) have to be informed about the revoked

clients [40, 62, 64, 65]. In systems that use pseudonyms, this involves

sending to the verifiers a Certificate Revocation List (CRL) with

the pseudonyms of the revoked client. In systems based on group
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signatures, this involves sending a cryptographic token that can be

used to trace the digital signatures of the revoked client.

A problem with both approaches is that, if one or more creden-

tials have been used before revocation, an attacker can cross-check

the information used for revocation with the information collected

when those pseudonyms were used to break the privacy of the

client. Ideally, client revocation should not allow linking creden-

tials that have been used prior to the revocation, a property known

as Backward Unlinkability (BU) [34, 40, 42, 53]. Previous strategies
to provide BU assign credentials that are valid only during a given

time slot of a certain duration [34, 42, 59, 64]. Then, when a client

is revoked, only the credentials for future time slots are revoked

and no information is disclosed regarding credentials used prior

to revocation. One can divide these recent strategies as GS with

time-bounded keys [15, 24] or pseudonyms with time slots [34, 42].

However, these schemes require the use of revocation lists whose

size grows linearly with the number of time slots which, in practice,

preclude the use of fine-grain time slots.

Revoking only the credentials for future time avoids backward

linkability but, unfortunately, if time slots are large, it may be un-

acceptable to let revoked clients continue accessing resources until

the current slot expires. For this reason, many systems immediately

revoke the credentials for the current time slot, at the expense of

exposing the client’s privacy during that period [34, 40, 42, 53]. Our

new class of pseudonyms supports efficient revocation even when

fine-grain time slots are used, avoiding this dilemma.

This paper contributes to designing anonymous authentication

systems for edge computing scenarios, like VANETs, that offer

revocation and BU. We make two key contributions in this context:

Contribution 1: We propose a novel abstraction named Range-

Revocable Pseudonyms (RRPs). RRPs are pseudonyms that can be

revoked for any time-range within their original validity period.

Clients hold a number of RRPs that is proportional to the number

of authentication actions they need to perform, regardless of the

granularity of the linkability window. Each RRP should be used

at most once during its lifetime. In runtime, the RRP can be used

to generate a capability that is only valid for the specific time slot

where the RRP is being used. The key feature of RRPs is that the in-

formation provided to revoke a pseudonym for a given time-range

cannot be linked with the information provided when using the

pseudonym outside the revoked range. In particular, if a pseudonym

is revoked at some point in time, it is impossible for an attacker

to find out if that pseudonym has been used before that time. We

provide an algorithm to implement RRPs where the space complex-

ity of the pseudonym is constant, regardless of the granularity of

the revocation range, and the space complexity of the revocation

information only grows logarithmically with the granularity; this

supports the use of fine-grain slots and makes the use of RRPs far

more efficient than the use of many short-lived pseudonyms. We

show that RRPs can be used to solve efficiently the BU problem for

anonymous authentication.

Contribution 2: We propose an access control system for VANET

scenarios [6, 32, 60] that uses RRPs to offer BU. Our access con-

trol system, named EDGAR, illustrates how one can leverage RRPs

to enforce authentication and revocation. In EDGAR, we deploy

Pseudonym Manager (PM) servers that run on the edge of the net-

work, serving clients with new RRPs. Since a PM server holds sensi-

tive information, and the edge infrastructure in VANETS is known

to be exposed to attacks [74], we have designed the PM server to be

executed with the support of a Trust Execution Environment (TEE),

such as Intel SGX enclaves [17]. This allows the server to provide

new RRPs to clients without disclosing their identities, even if the

untrusted environment is compromised.

EDGAR paves the way for arbitrarily small time slots with min-

imal overhead. Consider a client who during the day goes to the

hospital and before that to a nearby shop. When using EDGAR,

clients only need a number of pseudonyms proportional to the num-

ber of resources they need to access (in this example, 2 resources),

and not proportional to the granularity of the time slots. With pre-

vious work, if the two events above could occur within 20 minutes

of each other, a client would require 72 pseudonyms; if the events

could occur within 5 minutes of each other, previous works could

require 288 pseudonyms. Also, with RRPs the cost of revocation

is logarithmic with granularity: only 12 credentials would need to

be revoked with a 20 minute granularity and only 16 credentials

would need to be revoked with a 5 minute granularity.

Our prototype uses SGX-enabled Intel NUC (Next Unit of Com-

puting) nodes that can be configured to serve as verifiers or a PM

server. We measured the latency experienced by clients. Our results

show that EDGAR can authenticate clients with low latency, in

the order of 0.5 − 3.5 ms, which satisfies the requirements of most

latency-sensitive applications, such as augmented reality [49] and

safety applications [36]. We also compared EDGAR with a related

work [34] using a real data set of vehicle traces. We show that

EDGAR achieves multiple orders of magnitude in storage savings

and that the revocation can be performed efficiently, even when

using time slots as small as 1 second.

2 RELATEDWORK

Backward Unlinkability has been defined in previous work [34,

40, 42, 53] as follows: when a revocation occurs, the signatures pro-
duced by the client before the revocation interval remain anonymous.
The notion of unlinkability captures the inability of an adversarial

server to link a revocation phase of the protocol to any individ-

ual signing phase. We are interested in non-blocking approaches

such as VLR [9, 11], where the credential of non-revoked clients

remain valid, and only the verifiers need to be informed about the

credentials of revoked clients. As discussed next, the most pop-

ular anonymous authentication schemes that offer BU are based

on GS or pseudonyms. In both cases, solutions typically consist of

assigning different credentials to different time intervals and then

revoking only the credentials for future intervals. Unfortunately, in

these previous works, the cost of revocation grows linearly with

the granularity of the intervals. Note that if intervals are large, it

may be unacceptable to wait for the next interval to revoke the

credentials: in this case, it may also be necessary to revoke the cre-

dentials for the current interval. Unfortunately, this makes all the

credentials used in the current interval vulnerable to being linked.

Anonymous Blacklisting is a term used to describe techniques

that are able to safeguard the privacy of revoked clients. Techniques
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to ensure this goal include the use of pseudonyms [68], group signa-

tures [63], accumulators [4], and zero-knowledge proofs (ZKPs) [67].

Most systems that aim to offer anonymous blacklisting also aim at

offering BU [35], but either use computationally expensive cryp-

tographic operations or also incur a cost that is linear with the

granularity of the linkability window. For example, BLAC [67] re-

lies on inherently computationally expensive ZKPs [35]. We avoid

the use of ZKPs to implement RRPs due to their high cost; instead,

we explore more efficient approaches.

Accumulators, Symmetric Keys, and IBE: Cryptographic accu-
mulators [13] may be vulnerable to linkability [63], i.e., the previ-

ously performed operations become linkable when a user is revoked.

These solutions also lack VLR since clients need to update their

witness at each revocation [4]. Credentials based on symmetric

keys [6] require a high level of trust in the verifier and are suscepti-

ble to identity theft if the verifier is compromised [37]. Nymble [68]

achieves BU but requires a central manager to share a symmetric

key with every verifier. Credentials based on Identity Based En-

cryption (IBE) [8] do not provide anonymity (as they consider the

user’s identity as the public key) and incur considerable overhead

due to expensive cryptographic operations.

Group Signatures with Time-Bound Keys: GS [9] allow differ-

ent signatures produced by different group members to be verified

using a common group public key, achieving anonymity in the set

formed by the group members. GS schemes have been augmented

with mechanisms to support VLR, as suggested by Brickell [10]

and formalized by Boneh and Shacham [9]. Unfortunately, in this

scheme, the revocation is performed by publishing a cryptographic

token that links all the signatures produced from a revoked mem-

ber, compromising the anonymity of signatures produced before

the revocation. Nakanishi and Funabiki [53] extend [9] to offer BU

while preserving VLR. Their approach divides the time into slots

and locks a different secret key for each slot, revoking only the keys

for current and future slots. Chu et al. [15] introduce the notion
of Time-Bound Keys (TBK) by setting a configurable expiration

date in each key, improving the revocation performance in VLR-GS

schemes. In recent years, different solutions have been proposed,

following a similar path while aiming to reduce the revocation

cost and complexity. LBR [63] requires a trusted online manager to

check revocation. Rahaman et al. [59] embed pseudoIDs in private

key parameters and ties the pseudoID to an epoch, improving the

revocation check complexity to log(𝑅), where 𝑅 is the size of the

revocation list. Emura et al. [24] propose an efficient solution with

a constant signing cost, but clients are required to download expira-

tion information at each time slot. In Sucasas et al. [64], the authors
also achieve BU, yet, their solution prevents clients from partici-

pating in the same task several times. Ishida et al. [40] leverage a
mixture of IBE with GS, generating IBE private keys locked to time

slots. However, their revocation is still based on the GS private key,

also having O(𝑅 𝑇 ) (where 𝑇 is the number of time slots). Despite

the interesting properties of GS schemes, GS solutions are usually

complex and some may require heavy cryptography operations

(such as ZKPs), resulting in few implementations and deployments

in real-world scenarios.

Pseudonyms with Bounded Time Slots: Client anonymity can

also be achieved by using pseudonyms. These can be implemented

using a Public Key Infrastructure (PKI), where clients maintain mul-

tiple keys to represent pseudonyms [6, 61, 62]. Pseudonym-based

solutions also struggle to offer BU. Some solutions invalidate global

information, forcing clients to renew credentials at each revoca-

tion [13, 32], failing to preserve VLR. V-token [62], IFAL [71] and

PRESERVE [26] follow the C2C-CC standard [26], revoking only the

long-term vehicles certificates and letting the pseudonyms expire,

also failing the VLR. PUCA [29] requires the owner of the pseu-

donym to trigger revocation, letting a misbehaving entity evade

revocation. The most common solution is to publish all pseudo-

nyms of the revoked client in a CRL [34, 42, 65, 73], respecting

VRL but failing BU. The challenge of maintaining the unlinkabil-

ity of pseudonyms after revocation was first addressed by Haas

et al. [34], followed by Khodaei et al. [42], and implemented in

SCMS POC [73] and CAMP [14] pilots, supported by Volkswagen,

Mazda, and Nissan. These solutions associate pseudonyms with

time intervals and revoke only pseudonyms of the current and fu-

ture intervals. However, all interactions in the current slot can still

be linked and an adversary can use the revocation information to

break anonymity [34].

Privacy at the Edge: Edge infrastructures [36], supported by nu-

merous fog nodes [70], enable computation near clients. Local au-

thentication within edge resources is vital to meet latency require-

ments and ensure availability. Privacy is amajor concern in VANETs,

where vehicles generate and transmit substantial amounts of data.

Private companies [69] are exploring ways to monetize user data, of-

ten at the expense of privacy, with estimates projecting a worldwide

market value of $750 billion by 2030 [69]. For example, unethical

edge providers [3, 66] may sell user data to insurance companies,

that can subsequently tailor insurance plans based on individual

driving habits [54]. Car-sharing and rental agencies can exploit

user data with the same purpose [30]. An attacker could also gain

access to user data in the edge infrastructure [21], inferring if the

certain individual is out of the household or has been attending the

hospital [50, 69].

To mitigate these problem, pseudonyms are recommended in

the GDPR and by ETSI [27], and are a standard practice in vari-

ous connected vehicle pilot programs of major car manufacturers

(ETSI [25], IEEE [52], NHTSA [54]) such as CAMP [20], New York

City [39], and Canada [1] pilots. According to a study by ETSI on

the use of pseudonyms [26], frequent pseudonym changes enhance

privacy: “the more often an ITS-S1 changes its pseudonym, the higher
its privacy". However, revoking access rights for a client using dif-

ferent pseudonyms can compromise anonymity when an adversary

leverages the revocation information to link the pseudonyms [34].

Approaches that mitigate backward linkability by associating pseu-

donyms with time slots result in increased storage requirements for

pseudonyms at the client side and, consequently, in the CRL [34].

Comparison: Table 1 summarizes the differences between the re-

lated work. We highlight that, with our RRPs implementation, the

size of the revocation information grows only logarithmically with

the number of time slots. Cryptographic accumulators do not offer

1
Intelligent Transport Systems (ITS) refer to network components, including the

On-Board Equipment (OBE) of a vehicle.
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Table 1: Properties and complexity offered by different sys-
tems, we omit O() notation for simplicity.

VLR. Symmetric encryption cannot protect user privacy from the

verifier, and IBE schemes revoke clients by timeout [8] (failing VLR)

or issuing the user identifier in a CRL [23] (breaking anonymity).

When using GS, clients can generate multiple unlikable signatures

with the same secret key, achieving O(1) for the client storage.

Some of these GS schemes revoke clients without providing BU, by

simply publishing a token for all possible signatures [11, 15]. Other

solutions cannot provide the VLR property [55, 63]. Although GS

schemes that offer both BU and VLR simultaneously require the

revocation procedure to manage a number of credentials that is

proportional to the number of time slots O(𝑅 𝑝 𝑇 ) [59, 64] and
O(𝑅 𝑇 ) [24, 40, 53]. Another limitation of GS schemes is that they

rely on complex and heavy cryptographic operations, in particular,

to support revocation; this can induce large latencies when perform-

ing authentication. PKI based schemes are appealing due to their

cryptographic efficiency and wide adoption. Some PKI schemes de-

lay the revocation until all pseudonyms expire [26, 62, 71], breaking

VLR. Previous schemes that provide both VLR and BU suffer from

the same issue as GS scheme [34, 42, 65, 73], by locking pseudonyms

to time slots, they require revocation information that is linear with

the time slots, times each pseudonym, O(𝑅 𝑝 𝑇 ). In addition, these

solutions require the clients to carry pseudonyms for all time slots,

imposing a storage burden of O(𝑝 𝑇 ).

3 SYSTEM MODEL
This section presents preliminaries on RRPs and EDGAR, which is

an edge authentication system based on RRPs. In EDGAR, to per-

form authentication, a client first uses an RRP to obtain a capability.
This capability, which is only valid for a given target time slot, is
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Figure 1: System Overview.

then presented to a verifier. To revoke the use of a RRP during

a range of time slots, the corresponding capabilities are revoked.

There is a level of indirection between the RRPs assigned to clients

and the capabilities used for authentication and revocation that is

the enabler to achieve backward unlinkability.

3.1 Entities
EDGAR is composed of three main types of entities: clients, veri-

fiers, and a (distributed) pseudonym manager service. We follow a

nomenclature similar to previous work [34, 59].

Clients: the application client that generates signatures to perform

authentication against any verifier. Clients are the holders of RRPs

that they use to generate capabilities to ensure anonymity. Clients

are responsible for renewing their RRPs when needed.

Verifiers: the component that performs client authentication before

granting access to a resource. Verifiers are responsible for checking

the capabilities provided by clients before granting access. They

are also responsible for updating their state by fetching the list of

revoked capabilities from the manager servers.

Pseudonym Manager (PM): this component is responsible for

providing new RRPs to clients and, when necessary, revoking capa-

bilities generated from these pseudonyms. PM servers are the only

entity capable of accessing the true identity of a client so, in our

implementation, they run partially inside a TEE, ensuring users’

anonymity even if the device is compromised.

Administrator: a trusted entity responsible for adding clients to

the system and request PMs to revoke clients.

Figure 1 shows the interactions between these entities, where

the PM uses a TEE. The figure represents a typical collective per-

ception scenario, where mobile devices are used to extend human

perception. In this example, mobile devices (the clients) authen-

ticate towards the verifiers, to update or download information.

When required, clients can contact a nearby PM to renew the set of

RRPs used to generate capabilities. Periodically, verifiers will pull

from the PM updated revocation information.

3.2 Fault Model
We assume a partial synchrony model [22]. In this model there

are unstable periods when messages may be arbitrarily delayed,

and stable periods when messages between correct entities arrive

within at most Δ units of time. Additionally, we assume that correct

processes have access to loosely synchronized clocks, which can

differ at most by 𝜖 . We assume that at most 𝑓 server nodes can be

faulty. We do not place constraints on the number of faulty clients.

Furthermore, verifiers and clients are insecure and prone to

Byzantine faults [43]. PM servers are executed (partially) inside

TEEs and are only subject to crash and omission faults. Thus, faulty
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Notation Definition Notation Definition

𝑡/epoch Large time interval 𝑠 Time slot, part of an epoch

𝛿 Duration of a time slot 𝑠 𝑐 Capability

𝐾−, 𝐾+ Private and public key 𝑝 Pseudonym

𝑒𝑠 Node label for the time slot 𝑠 ERCSet/erc Encoded revoked capability sets

𝑙𝑥 Latchkeys for 𝑒𝑠 𝑖 Identifier of pseudonym from a user in an epoch

ℎ Latchkey tree height 𝑀 Extra pseudonyms to circumvent false positives

f Number of faulty nodes cid Client identifier

𝑚 Bloom filter size (bits) 𝑛 Number of items inserted in a Bloom filter

𝑘 Number of hash or index functions 𝑐𝑠 Number of clients in EDGAR

𝑓𝑟 Fraction of pseudonyms to be revoked 𝑑 Branching factor of the latchkey tree

𝑥 False positive rate

𝐼
Maximum number of pseudonyms

a client can possess𝑁 Number of PM replicas

Table 2: Table of notations.

clients may use expired or invalid credentials when contacting

servers, faulty verifiers may arbitrarily deny or grant access to re-

sources, but faulty PMs will never provide faulty information, and

will never renew pseudonyms for revoked clients. EDGAR ensures

liveness during stable periods and offers graceful degradation dur-

ing unstable periods: when the network is unstable and nodes are

unable to receive up-to-date information in a timely manner, they

may stop providing service, but never compromise safety.

3.3 Threat Model
We trust only administrators and PMs. Following related work [34,

62], an administrator is responsible for adding and revoking users

in the system by contacting the PM server. We assume that each

PM has a processor with TEE (e.g., Intel SGX), as shown in Fig-

ure 1. All other entities within the system are considered untrusted

and susceptible to the control of attackers, potentially engaging in

malicious activities. Table 2 provides the notations.

Malicious Client: may attempt to generate pseudonyms or capa-

bilities to impersonate a valid client and access resources to which

it is not authorized. It can also try to use old capabilities and pseu-

donyms after being revoked to authenticate towards verifiers.

Malicious Verifier: if a verifier is compromised, the resource that

the verifier is protecting becomes unprotected, but this is not the

problem we consider in this paper. For example, under a DoS attack,

a verifier may be unable to refresh revocation information and

should enter a “safe-mode” (the safe-mode behaviour is application

specific but may be as simple as halting). The problem we consider

is that a malicious verifier may try to perform linking attacks [62],

by associating (linking) different pseudonyms with a single client,

breaking user anonymity. This attack becomes trivial when revoca-

tion lists that contain all pseudonyms of a client are published [34].

A malicious verifier may collect all the information/data that it

observes, e.g., with the objective of deducing user identity.

Malicious Pseudonym Manager: PM code is split in two parts,

one that runs inside the TEE and one that runs outside the TEE.

The latter can be compromised and engage in malicious behavior,

supporting many of the previously introduced attacks. The un-

trusted part of PM may attempt to modify, delay, block, or read all

messages on the system. This behavior may be done in collusion

with other entities to facilitate Linking Attacks or allow a user to

evade revocation. Furthermore, we assume that a node suffering

from denial of service (DoS) is one of the 𝑓 faulty nodes and that at

most 𝑓 servers can be faulty.

Trust Assumptions: Entities use asymmetric key pairs to estab-

lish secure channels. Clients employ RRPs for authentication, in-

tegrity, and non-repudiation. Both the PM and the administrator

hold unique key pairs, (𝐾−
𝑃𝑀

, 𝐾+
𝑃𝑀
) and (𝐾−

𝑎𝑑𝑚𝑖𝑛
, 𝐾+

𝑎𝑑𝑚𝑖𝑛
), respec-

tively, being both public keys known to all entities. Specifically, the

administrator’s public key 𝐾+
𝑎𝑑𝑚𝑖𝑛

is hard-coded in the enclave’s

source code. We assume that the PM correctly executes our protocol

within the TEE, where 𝐾−
𝑃𝑀

remains securely within the enclave.

The PM will only revoke users if instructed by the trusted and

authenticated administrator, and will generate fresh pseudonyms

for non-revoked and authenticated clients. We assume that there is

no collusion between the trusted PM and the verifiers.

The communication between the administrator and the enclave

is based on a PKI using their keys. We assume a trusted adminis-

trator who only revokes pseudonyms after informing the corre-

sponding clients. Although supporting revocation auditability is

beyond the scope of this paper, we discuss different approaches to

extend EDGAR and ensure revocation auditability in Section 5.10.

Furthermore, both capabilities and revocation information are ac-

companied by a digital signature created using 𝐾−
𝑃𝑀

, confirming

the origin from the PM TEE.

In ourwork, wemake the usual assumptions about the security of

TEEs/enclaves [17] (code/data executed/stored inside the TEE have

integrity and confidentiality guaranteed), about the cryptographic

schemes (they satisfy their security properties) and cryptographic

keys (secret and private keys are never disclosed). In the prototype,

we use Ed25519 to generate digital signatures [7]. As a collision-

resistant hash function, we use SHA-256. We use Intel SGX as our

TEE, although our scheme can be easily adapted to other TEEs. We

use the Intel SGX SDK inside the enclave and OpenSSL outside.

Although side-channel attacks such as Foreshadow and LVI [12]

exist, we consider the defense from these attacks to be orthogonal

to our contribution; possible mitigations are discussed in Bagheret
al. [5]. Correctly synchronizing concurrent data structures can

mitigate exploits against synchronization bugs [72], with the help

of debugging checkers
2
[46].

4 RANGE-REVOCABLE PSEUDONYMS
RRPs are a novel abstraction that provides authentication based

on pseudonyms whose validity can be revoked for any time-range

within their original validity period. Clients hold a number of RRPs

that is proportional to the number of authentication actions they

need to perform. A validity of an RRP is bounded to an epoch. An
epoch is divided into time slots of length 𝛿 . The parameter 𝛿 is

application-specific but can be small, e.g., 1 minute or less. An

epoch is assumed to be much larger than the slot, e.g., 1 day. Each

RRP should be used for authentication at most once. To perform

authentication, a client instantiates a capability that is specific to

target slot. If a client is revoked for a time period, pseudonyms

are not revoked directly; instead, only the capabilities associated

with the time-slots of that period are revoked. We store these ca-

pabilities in an Encoded Revoked Capability Sets (ERCSet). An RRP

can be revoked for a short period, by revoking only the capabili-

ties associated with an interval of time-slots, or permanently, by

2
In EDGAR implementation only a Bloom filter and the current epoch value are

accessed concurrently inside the enclave.
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revoking the capabilities associated with all future time-slots. Since

the revocation information is connected, indirectly, by capabilities,

to pseudonyms, when using RRP, a client is required to carry a

different RRP for each access it needs to perform. However, any

given RRP can be used at any slot of the epoch. Thus, the number

of RRPs a client needs to keep is independent of the granularity

of the time-slots. This contrasts with previous pseudonym-based

solutions, where clients need to carry a number of pseudonyms

that grows linearly with the epoch granularity (i.e., the number of

slots in an epoch).

4.1 Overview
Authentication based on RRPs uses 3 different related objects, namely

(range-revocable) pseudonyms, (time-bound) capabilities, and ERC-

Set. At an abstract level, the operations supported by these objects

are the following:

– 𝑝𝑒𝑝𝑜𝑐ℎ←createRRP(cid, epoch,𝐾−
𝑃𝑀

): used to create a new RRPs,

that can be used by client cid during a target epoch. Only PMs,

using their private key 𝐾−
𝑃𝑀

, can create RRPs.

– 𝑐𝑠 ←getCapability(𝑝𝑒𝑝𝑜𝑐ℎ , 𝑠 , 𝐾−𝑝 ): used to create a capability

associated with an RRP 𝑝𝑒𝑝𝑜𝑐ℎ for time slot 𝑠 (𝑠 must belong

to the epoch for which the pseudonym was created). Only PMs

and the client that owns the pseudonym, and the correspondent

private key 𝐾−𝑝 , can create capabilities.

– boolean ←verifyCapability(𝑐𝑠 , 𝐾+
𝑃𝑀

): To verify if a capabil-

ity was generated from a valid RRPs, used by verifiers during

authentication, requires the PM public key 𝐾+
𝑃𝑀

.

– ERCSet←createERCSet(capabilities): used only by PMs to cre-

ate an ERCSet that encodes one or more given capabilities, using

some one-way function, such that it is unfeasible to extract a ca-

pability from the ERCSet. These capabilities are filtered to ensure

that they do not compromise unlinkability (Section 4.3).

– ERCSet←mergeERCSet(erc1, erc2): used to merge two ERCSets

so that a single ERCSet can be used to capture the revocation of

multiple capabilities. PMs and verifiers can merge ERCSets.

– boolean←isRevoked(erc, capability): used to verify if a capability
is part of an ERCSet. This operation is used by verifiers to check

if a capability has been revoked.

The manager creates RRPs on request from authorized clients.

If later an RRP needs to be revoked for a given range of time slots,

the PM generates the corresponding capabilities and encodes them

in an ERCSet that is sent to the verifiers.

Clients hold a small number of RRPs (e.g., corresponding to the

number of distinct events), and instantiated a short-lived capability

(for the current slot) to authenticate. Then, it presents the capability

to the verifier. The verifier checks if the capability is correctly

constructed, is genuine (i.e., if it was generated from a valid RRPs)

and subsequently check if the capability has not been revoked; only

in this case, the client is granted access to the resource.

To ensure unlinkability, a client must never present two capabil-

ities generated from the same RRP, as capabilities generated from

the same RRP can be linked (cf. Section 4.3). Therefore, clients have

to carry a number of RRPs proportional to the number of resources

they need to access. However, contrary to previous systems, the re-

vocation of an RRP for a time-slot does not expose capabilities that

may have been used in non-revoked time slots: this is guaranteed

by the use of a one-way function to encode revoked capabilities.

4.2 Making Range-Revocation Efficient
A problem with the use of time-bound pseudonyms is that the

number of pseudonyms that need to be revoked grows with the

granularity of the time slots. RRPs are not immune to this problem,

because to revoke the use of an RRP in a range of time slots, all

capabilities associated with those time slots need to be encoded in

the ERCSet. However, our implementation of RRPs uses a mecha-

nism that allows the revocation cost to grow only logarithmically

with the granularity, rather than linearly, as previous approaches.

To achieve this goal, a capability is represented by a sequence

of latchkeys, extracted from a set of latchkeys that are associated

with a given RPP. The latchkeys are organized in a tree of fanout 𝑑 ,

such that there is a leaf latchkey for each individual time slot on

an epoch (in this paper, we use 𝑑 = 2, i.e., binary latchkey trees).

Figure 2 provides a simple example where a binary tree of latchkeys

is associated with an epoch of 1 hour divided in 4 time-slots of 15

minutes. Note that the latchkey tree structure resembles but is not a

Merkle tree: the tree nodes are generated independently (the value

of a parent node does not depend on the value of its children).
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Figure 2: Latchkeys for time slot [0, 15[ of epoch [0, 60[.

A capability for a given time slot is represented by the set of

latchkeys in the path from the root of the tree to the corresponding

leaf node in the tree. Using the example of Figure 2, the capabil-

ity for the first slot would be represented by the following set of

latchkeys: {𝑒, 𝑒0, 𝑒00}. Note that each capability, for each time slot,

is always different, because it contains one unique leaf latchkey.

However, different capabilities may have some latchkeys in com-

mon; in particular, all capabilities include the root latchkey.

A capability is only considered valid if all latchkeys used to

represent it are valid. Therefore, the capabilities can be revoked

by invalidating any of its latchkeys. In particular, a capability for

a given time slot can be revoked by invalidating the leaf latchkey

associated with that slot. However, it is also possible to revoke

multiple latchkeys by invalidating latchkeys that are inner nodes

of the tree: by invalidating an inner node, all the capabilities that

are part of the sub-tree rooted at that inner node are invalidated.

This can also be illustrated using our example. Consider that the

client is revoked at the beginning of the second slot (𝑒01) until the

end of the epoch. At this point, the client may already have used its

pseudonym 𝑝 to generate a capability to access the resource during

the first slot. To prevent linkability, the latchkeys used in the first
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slot cannot be revoked, i.e, the latchkeys 𝑒, 𝑒0 and 𝑒00 cannot be

revealed. To revoke all future capabilities that may be generated

with pseudonym 𝑝 , it suffices to revoke latchkeys 𝑒01 and 𝑒1. Note

that the capabilities generated for the second slot must use 𝑒01, and

the capabilities generated for the third/fourth slots must use 𝑒1.

We use this construction to perform revocation efficiently. ERC-

Sets do not explicitly contain capabilities, but only latchkeys that

belong to those capabilities and a single latchkey can be used to

revoke multiple capabilities. It is easy to show that the number of

latchkeys that need to be revoked is at most log𝑑 with the number

of slots. In fact, for each pseudonym valid in the epoch, the number

of latchkeys will be given by log𝑑 (granularity).

4.3 RRP Implementation
We now describe the construction of RRPs.

Scheme assumptions:We assume that the epoch and time slot size

are publicly known to all parties in the system. This means that any

party can independently and consistently calculate all the labels

from any leaf to the root (i.e., e, 𝑒0, etc.), as illustrated in Figure 2.

There is also a maximum number of pseudonyms 𝐼 that any client

can use in any given epoch.

Cryptographic primitives: We assume there are sources of en-

tropy and a function that allow generating random asymmetric

key pairs (𝐾−, 𝐾+). We assume that there is a function, named

DetKeyGen(seed), to generate asymmetric key pairs determinis-

tically from a seed value. There is also a deterministic signature

scheme that, given some private key 𝐾− and a text as input, will
output a deterministic signature sig = DetSign(𝐾−, text). The out-
put sig can be verified by true/false = VerSign(𝐾+, text, sig). Lastly,
there is a secure one-way function Digest(text) that computes

a digest on the text input and is not possible to invert given the

output.

PM Keys: There is an asymmetric key pair (𝐾−
𝑃𝑀

, 𝐾+
𝑃𝑀
) associated

with every PM. The private key 𝐾−
𝑃𝑀

is only known by the PMs and

is kept in the implementation inside the TEE enclave. The public

key𝐾+
𝑃𝑀

is known to all participants, including clients and verifiers.

RRPs: An RRP is a tuple ⟨cid, epoch, i, 𝐾−𝑝 , 𝐾+𝑝 , 𝑠𝑖𝑔𝑝 ⟩ where cid is the

client identifier (only known by the client and the PM), epoch is

the time windows for which the pseudonym is valid, i is a label
that can be used to distinguish each pseudonym instance generated

for the same epoch, where 𝑖 ∈ [1, 𝐼 ]. The (𝐾−𝑝 , 𝐾+𝑝 ) is a unique

asymmetric key pair associated with the pseudonym, and 𝑠𝑖𝑔𝑝 is

the signature performed with the private key of the PM over the

concatenation of the epoch, and public key of the pseudonym,

sig𝑝 = DetSign(𝐾−
𝑃𝑀

, epoch ∥𝐾+𝑝 ). Note that some fields of an RRP

are secrets known only to the client and PM and never revealed to

a verifier. In particular, only the client and the PM know the secret

key 𝐾−𝑝 associated with a given pseudonym. To obtain an RRP, a

client establishes a secure channel with a PM, presents its client

identifier cid, and obtains one or more RRPs for some given target

epoch. When describing EDGAR, we will discuss for which epochs

clients are allowed to obtain RRPs from a PM.

Generating (𝐾−𝑝 , 𝐾+𝑝 ): The asymmetric key pair associated with

a pseudonym is generated using the DetKeyGen(𝑠𝑒𝑒𝑑) primitive.

We use as seed the tuple ⟨cid, epoch, i⟩, avoiding the need for the PM
to memorize the information associated with all the pseudonyms it

created, as it can always re-create them (as explained below, the key

pair is also needed to perform revocation). Recall that cid is known

only by the client and the PM. This identifier is securely stored

by the PM inside the enclave. Also, DetKeyGen is non-reversible,

thus two different public keys created for different epochs and/or

instances for the same client cannot be linked with the secret cid.

Latchkeys: Latchkeys are unique for each pseudonym and are

obtained by deterministically signing the label of the corresponding

node with the private key 𝐾−𝑝 of the pseudonym. Therefore, the

latchkey 𝑙0 associated with the label node 𝑒0 of an RRP, is generated
as 𝑙0 = DetSign(𝐾−𝑝 , 𝑒0), and can be verified by using the public

key of the pseudonym by performing VerSign(𝐾+𝑝 , 𝑒0, 𝑙0).

Capabilities: A capability 𝑐 for a given time slot 𝑠 is a tuple:

𝑐 = ⟨𝐾+𝑝 , sig𝑝 , 𝑙𝑙𝑒𝑎𝑓 , . . . , 𝑙00, 𝑙0, 𝑙𝑟𝑜𝑜𝑡 ⟩

where 𝐾+𝑝 is the public key of the pseudonym and the latchkeys

correspond to the nodes on the path from the root of the latchkey

tree to the leaf latchkey node associated with the time-slot 𝑠 . Note

that a capability has a number of latchkeys that is logarithmic with

the granularity of the time-slots in the epoch. The latchkeys that

are part of a capability can be generated on demand, when the

capability is created, and are not required to be stored explicitly by

the client. It should also be noted that any two capabilities generated

from the same RRP reveal the same 𝐾+𝑝 and can be linked; therefore,

a client that wants to prevent authorization request to be linked

should always use different RRPs.

To verify a capability, a verifier performs the following steps.

First, it uses the public key of the PM to verify 𝑠𝑖𝑔𝑝 , calculating

VerSign(𝐾+
𝑃𝑀

, epoch ∥ 𝐾+𝑝 , sig𝑝 ). Then, it uses 𝐾+𝑝 to verify if the

latchkeys presented with the capability are in fact associated with

that RRP, by performing VerSign(𝐾+𝑝 , 𝑒𝑥 , 𝑙𝑥 ). If all latchkeys can
be verified using 𝐾+𝑝 and follow a correct path from the current slot

to the root, the capability is genuine. Note that a capability can be

genuine but may have been revoked, as explained next.

ERCSet: an ERCset in an encoding of a set of latchkeys that repre-

sents a set of revoked capabilities. The set of latchkeys encoded in

an ERCset has the following properties: inclusion-of-revoked – if a

capability has been revoked, at least one of its latchkeys is encoded

in the ERCSet; exclusion-of-non-revoked – if a capability has not

been revoked, none of its latchkeys are encoded in the ERSet. Below

we explain how latchkeys are selected to be encoded in the ERSet

to satisfy these properties. Latchkeys are encoded in the ERCSet

using a one-way function, Digest(𝑙𝑥 ) . Thus, verifiers can check if

a given latchkey belongs to an ERCSet but cannot extract latchkeys

from the ERCSet. Different data structures that rely on one-way

functions could be used to implement ERCSet, including SHA256,

or compact data structures such as Cuckoo filters [28], Cascade

filters [44] or Count-min sketch [16]. We use Bloom filters to imple-

ment the ERCSet. Bloom filters are efficient and, as discussed later,

a good fit for the EDGAR architecture. A disadvantage of Bloom

filters is that they can present false positives, but we will explain

later how EDGAR circumvents this limitation.
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Revoking a single capability: To revoke a capability 𝑐𝑝 of a pseu-

donym 𝑝 , the PM encodes in the ERCSet the leaf latchkey 𝑙𝑥 asso-

ciated with 𝑐𝑝 . This trivially satisfies the inclusion-of-revoked and

exclusion-of-non-revoked properties: the encoded latchkey belongs

to the revoked capability but does not belong to any other capability

(each capability is associated with a distinct, unique, leaf latchkey).

Revoking a range of capabilities: Revoking a set of capabilities
of a pseudonym could be trivially achieved by encoding the corre-

sponding set of leaf latchkeys, but this would have a linear cost. The

latchkey hierarchy is used to reduce this cost as follows. Let 𝑑 be

the fanout of the latchkey tree. Any 𝑑 latchkeys that have the same

parent in the latchkey tree can be replaced by their parent. This

also satisfies the inclusion-of-revoked and exclusion-of-non-revoked
properties of ERCSets: 1) the parent of any latchkey is part of the

capability that includes that latchkey and 2) a parent latchkey is not

included in capabilities other than the capabilities that include its

children. The susbtitution of all 𝑑 sibling latchkeys by their parent

latchkey can be applied recursively in the tree. Note that the root

latchkey can only be included in an ERCSet when a pseudonym

is revoked for the entire duration of the epoch, because the root

latchkey belongs to all capabilities for that epoch. Appendix A

provides a precise description of this algorithm with pseudo-code.

Merging ERCSet: An advantage of using Bloom filters is that ERC-

Set can be easily merged by performing bitwise OR operations. This

makes it easy to disseminate revocation lists for many different

RRPs in a single data structure.

Checking if capability revoked: Verifiers receive ERCSets from
PMs, store them, and use them to check if the capabilities presented

by clients have not been revoked. After checking if a capability is

genuine, verifiers test if any of the latchkeys are included in the

most recent ERCSet. If even a single latchkey is in the ERCSet, the

capability is considered revoked.

4.4 RRPs Linkability Analysis
A key problem with previous approaches for performing pseudo-

nym revocation is that the information used for revocation could

be linked with the information used for access control (in partic-

ular, this is obvious when the pseudonym identifier is used both

for authentication and revocation). This allows an adversary to

collect information about the resources that have been accessed

by revoked pseudonyms. When a client has several pseudonyms

that are revoked together, an attacker can link the past usage of

these pseudonyms to break the privacy of the user. RRPs avoid this

problem because the information used for revocation cannot be

linked with the information used for access control. Thus, if a client

used one or more pseudonyms prior to revocation, the use of these

pseudonyms cannot be linked based on the revocation data.

Here we present an argument that RRPs offer unlinkability.

Observation 1. Verifiers cannot generate latchkeys associated
with a pseudonym.

Basis: Latchkeys are generated using the private key 𝐾−𝑝 of the

pseudonym. The private key is generated using the secret cid that

is shared between the PM and the client and never revealed to other

entities. Therefore, verifiers cannot generate latchkeys. □

Observation 2. ERCSets do not include latchkeys used outside
the revocation interval.

Basis: This property is achieved by construction, that ensures the

exclusion-of-non-revoked. As described above, when a PM assem-

bles an ERCSet, it never includes in the ERCSet latchkeys that are

part of capabilities for time-slots outside the revocation interval. □

Argument 1. Revocation information cannot be linked with au-
thorization information used outside of the revocation interval.

Basis: The revoked latchkeys are encoded in an ERCSet using

Digest(𝑙𝑥 ), so verifiers cannot extract latchkeys from an ERCSet.

Verifiers can only test if a given latchkey has been revoked. How-

ever, by Obs. 1, verifiers cannot generate latchkeys, so they can

only test latchkeys that are provided by the client when presenting

a capability. By Obs. 2, latchkeys for capabilities associated with

non-revoked time-slots are not included in an ERCSet. □

Argument 2. Capabilities generated from different pseudonyms
cannot be linked.

Basis: All the information in a capability depends on the asymmetric

key pair associated with the pseudonym. Asymmetric key pairs

for different pseudonyms are different because they are generated

using different seeds (the unique instance number 𝑖 is part of the

seed ⟨cid, epoch, i⟩). Additionally, asymmetric key pairs cannot be

linked to the seed used for generation (this derives directly from

the standard properties of DetKeyGen). □

5 EDGAR
We now present the design of an anonymous authentication system

for the edge that leverages RRPs to offer backward unlinkability. We

have named our system EDGAR: EDGe distributed Access contRol,

targeting the VANET scenario [6, 32, 60]. The goal of EDGAR is

to reduce the linkability window, improving client privacy at the

edge. EDGAR demonstrates how to use our RRPs abstraction and

how to address implementation challenges in a distributed setting.

5.1 EDGAR in VANETs
In the VANET scenario, vehicles continuously broadcast CAM mes-

sages [26] containing various information such as their geolocation,

sensor readings, direction, and speed. This information is crucial

for various edge applications, including enhanced navigation, traf-

fic congestion estimation, remote vehicle diagnostics, autonomous

cars, and others [30]. However, as explained in Section 2, edge

providers can collect and monetize this data, at the expense of users

privacy, highlighting the importance for clients to use anonymous

authentication methods such as EDGAR. We now contextualize the

RRPs entities to the corresponding entities in EDGAR:

Clients: These are vehicles that constantly propagate CAM mes-

sages with location and sensor readings, with the purpose of en-

hancing their safety and that of others.

Verifiers:Mainly compose by Roadside Units (RSUs) [19] that listen

to all CAM messages, aggregate them, and broadcast them in the

network. These devices can be deployed by various local entities

(e.g., municipal authorities) or edge providers to improve traffic

flow, pedestrian safety, and provide services to vehicles such as

infotainment or software updates.
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Figure 3: EDGAR entities and VANETs interaction at the edge.

PM servers: These are fog nodes with the same services as verifiers

but with higher computational capacity and storage, and may be

physically more distant than verifiers. Any fog node with TEEs can

serve as a PM. We assume the same trust level as mentioned in

Section 3.3, where the PM does not share its private key or the client

pseudonyms. However, the PM is controlled by edge providers, who

can access the non-trusted zone outside the TEE.

Administrator: In the context of the edge, the administrator should

be a trusted entity independent of all applications and providers

within the edge. It should work similarly to the current Certificate

Authorities (CAs) in PKI.

Figure 3 illustrates the interactions in the edge environment. In

this example, a vehicle (a client) presents a capability to the RSU

(the verifier). If the capability is valid, the RSU accepts the message

from the client and alerts the vehicles about pedestrians behind

the corner. Authentication is critical to avoid false information that

may cause other drivers to break without justification. The RSU

relies on multiple nearby fog nodes, running edge replicas of the

PM, to update its state. Vehicles can contact a nearby PM replica to

renew the pseudonyms used to generate capabilities, if necessary.

EDGAR prevents the de-anonymization of clients based on the

tracking the RRP usage (i.e., even if edge providers like Verizon, Aka-

mai, and Amazon aggregate data from verifiers and the untrusted

zone of the PM). Our pseudonyms also protect users’ privacy in

case of data leaks from verifiers.

5.2 Revocation in EDGAR
Although RRPs supports the revocation of a pseudonym in any

range of time slots, in EDGARwe assume that clients can be revoked

at a target revocation time slot (RTS), selected by the administrator,

and that all capabilities of that client are revoked for all time slots

after RTS (i.e., the revocation range spans from RTS to the end of the

epoch). Also, after being revoked, clients become unable to obtain

new pseudonyms from edge PMs after some time. In particular,

as we will show later, EDGAR is able to provide the following

guarantee: if a client is revoked in a given epoch 𝑡 , that client may

still attempt to use pseudonyms it has obtained for epoch 𝑡 + 1 but
will not be able to obtain pseudonyms for epoch 𝑡 + 2.

5.3 Epochs, RRPs, and ERCSet
Time is divided in epochs and epochs are divided in time slots. The

length of an epoch and the granularity 𝛿 of the time slot are applica-

tion specific. As we show in the evaluation, the efficient revocation

mechanism of RRPs, based on the latchkey hierarchy, supports

the use of relatively large epochs and fine-grain granularity, for

instance, epochs of one day and time slots of 1 minute.

There is a limit I of the number of pseudonyms that a client can

request for a given epoch. When using RRPs this is not a limitation

because clients only need to have a pseudonym for each access

regardless of the time slot where the pseudonym is used (and not

a different pseudonym for each time slot, as in previous work).

Also, clients are only allowed to obtain pseudonyms for the current

epoch and for the next epoch (we allow clients to obtain in advance

pseudonyms for the next epoch to avoid having PMs to be overload

with a rush of requests whenever an epoch begins). This allows us

to limit the number of pseudonyms that need to be added to ERCSet

when a client is revoked. Also, verifiers only accept requests that

use pseudonyms from the current epoch. This allows to garbage

collect revocation information from previous epochs safely.

Due to the constraints described above, EDGAR is only required

to maintain two ERCSets: one associated with the current epoch

and another associated with the next epoch. When an epoch 𝑡

terminates, the ERCSet associated with epoch 𝑡 can be discarded

and a fresh ERCSet is created for the next future epoch (𝑡 + 2).

5.4 ERCSet dissemination
The revocation of a client is initiated in the central PM. The PM

first generates all possible pseudonyms that the client may have

obtained for the current epoch (i.e., by creating the pseudonyms

for all instances 1 . . . I) and creates an ERCSet that revokes all the

capabilities that may be generated for these pseudonyms in the

range starting from the revocation time slot (RTS) to the end of the

epoch. For this, it uses the algorithm described in Section 4.2. It

then merges this ERCSet into the global ERCSet𝑡 for the current
epoch. The PM then generates all possible pseudonyms that the

client may have obtained for the next epoch and creates an ERCSet

that revokes these pseudonyms for the entire epoch (this is very

efficient, because it suffices to include the root latchkey of each

pseudonym in ERCSet); it then merges this ERCSet in the global

ERCSet𝑡+1.

Disseminating client revocation among the PMs. The updated
values of ERCSet𝑡 and ERCSet𝑡+1 are then disseminated in the sys-

tem using a two-step procedure. First, they are disseminated from

the central PM to all edge replicas of the PM. Then, verifiers pull

these values from their nearest PM replicas. EDGAR implements the

propagation of ERCSets among PM replicas using a gossip-based

broadcast protocol. The central PM first selects 𝑓 + 1 edge PMs at

random and sends them the updated ERCSets. When receiving an

ERCSet from another replica, a PM checks if the ERCSet is differ-

ent from the local version. If the ERCSet is the same, it discards

the redundant update. If the ERCSet is different, it assumes that it

may contain new information and merges it with its own ERCSet,

picks other 𝑓 + 1 edge PMs at random, and sends them the updated

ERCSets. This eager push strategy allows revocation information

to be propagated quickly on the network. Additionally, a PM that

does not receive any updates for more than a predefined gossip

timeout engages in pull-gossip with another random PM. Pull gos-

sip is used to recover from temporary crashes or disconnections.

A PM that is down when a revocation is eagerly propagated will

later obtain the information using pull gossip. Note that the ERCSet

for a given epoch always accumulates new information. Thus, any
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single gossip exchange with an up-to-date server will convey all

the information that a node may have missed while disconnected.

Disseminating latchkey revocations to the verifiers. The edge
will consist of many verifiers placed at different locations. It is not

efficient to have all these PM servers sending the same information

to all verifiers. Therefore, we only use pull-gossip to propagate

ERCSets to each verifier. Each controller periodically picks a PM

at random, pulls ERCSet𝑡 from that server, and merges its content

with a local copy of ERCSet𝑡 . If a verifier fails to execute the pull-
gossip procedure (possibly due to an adversary jamming the PM),

it enters “safe-mode” (the specific behavior varies depending on

the application, but could involve stopping the service to protect

the resource).

5.5 Obtaining New Pseudonyms
Clients can obtain pseudonyms from edge PMs. EDGAR does not

require edge PMs to keep an explicit list of all clients that have been

revoked and of their corresponding revocation time slot as this is
already encoded in the ERCSet. When requesting new pseudonyms,

a client establishes a secure channel with any edge PM and provides

its own cid and a valid capability. If the client has not been revoked,

the PM can provide the requested pseudonyms for the current of

for the next epoch. If the client has been revoked, it will be denied

access to additional pseudonyms.

To check if a client has not been revoked, a PM performs the

following checks: first it verifies if the capability presented by the

client is in fact associated to a pseudonym of that client. This proce-

dure leverages that fact that any PM can create all pseudonyms of

a client, and therefore, can check if the public key included in the

capability corresponds to a public key of one of the valid pseudo-

nyms for that client. Then, it checks if the capability has not been

revoked. If the request passes these tests, the PM generates and

sends the requested pseudonyms to the client.

5.6 Size of ERCSets
EDGAR uses Bloom filters to implement ERCSets. Bloom filters

have𝑂 (1) insertion and query time [47], are space-efficient, and can

be merged easily. However, Bloom filters suffer from false positives

and should be used with care. In fact, there is evidence that, if not

used properly, the false positives generated by Bloom filters can

jeopardize the operation of large-scale systems[44]. We first discuss

how the size of the Bloom filters used to implement ERCSets is

chosen in EDGAR. Later, we discuss how we deal with the fact that

false positives cannot be entirely avoided.

The false positive rate of a Bloom filter depends on the filter size

𝑚 (bits), the number of items to be inserted 𝑛, and the number 𝑘

of hash or index functions used for insertion and search. The false

positive rate can be approximated as described in [34]:

𝑃 (false positive) =
(
1 −

(
1 − 1

𝑚

)𝑘𝑛 )𝑘
(1)

In the case of ERCSets, the average number of items in the Bloom

filter is given by:

𝑛 = 𝑐𝑠 × 𝐼 × 𝑓𝑟 × log𝑑

(
epoch
𝛿

)
(2)

where 𝑐𝑠 is the number of clients, 𝐼 is the average number of pseu-

donyms that each client uses, 𝑓𝑟 is the fraction of pseudonyms that

may need to be revoked, 𝑑 is the branching factor of the latchkey

tree, epoch is the length of an epoch, and 𝛿 is the length of the time

slot. By using Eq. 2 to compute the number of latchkeys that are

expected inserted in an epoch in a Bloom filter, we can use Eq. 1

to select the size of the Bloom filter that limits the probability of

having a false positive to some pre-defined threshold.

Let us assume a scenario with 𝑐𝑠 = 250, 000, 000 clients (the

estimated number of vehicles in the USA), and assume a fraction of

pseudonyms that need to be revoked of 10
−4

per year (from [34]).

If we set the length of an epoch 24ℎ, this provides an average

of revocations per epoch of 𝑓𝑟 = 10
−4/365. Then, if we set the

granularity of the time slots to 𝛿 = 10minutes. This yields 144 time

slots per epoch. If we use a binary tree of latch keys, the average

number of latchkeys used per revocation is log
2
(144). If we assume

that clients need at most 10 pseudonyms per day, the expected

resulting number of items to be added to the Bloom filter is:

𝑛 = 250, 000, 000 × 10 × (10−4/365) × log
2
(144) ≈ 4911

In this scenario, a Bloom filter of 9𝐾𝐵 provides a false positive

rate of 0.1% (from Eq. 1). We can determine the false positive rate

of a capability by: 𝑃𝐹𝑃 (𝐶) = 1 − (1 − 𝑥)ℎ , where 𝑥 is the false

positive rate of the Bloom filter, from Eq. 1, and ℎ is the tree height.

This corresponds to a false positive of 6 in every 1000 capabilities.

Additionally, if one wants to increase the granularity of the time

slot to 𝛿 = 1 minute, the number of time slots per epoch increases

10 times, but the number of latchkeys increases only logarithmi-

cally, thus the size of the ERCSet must increase only by a factor

of log
2
(1, 440)/log

2
(144) = 1.46, i.e, an ERCset of 13𝐾𝐵 will be

enough to maintain the same false positive rate

5.7 Circumventing False Positives
Even if the size of Bloom filters is set appropriately, there is always

some probability of the occurrence of false positives. In EDGAR we

bypass this problem by having clients request𝑀 extra pseudonyms,

in addition to those that are strictly needed to access the resources.

If a false positive occurs, the system automatically picks another

unused pseudonym and resubmits the authorization request to the

verifier. The only perceived effect by the client is an additional

latency in serving the request. We show below that the number of

additional pseudonyms that a client needs to carry to circumvent

the occurrence of false positives is small. Equation 3 describes the

probability that a client will execute all authentication successfully

with the help of the𝑀 extra pseudonyms.

𝑃 (full access) = 1 −
𝑝+𝑀∑︁
𝑗=𝑀+1

𝑝+𝑀𝐶𝑀+1 × (𝑃𝐹𝑃 (𝐶 ) ) 𝑗 × (1 − 𝑃𝐹𝑃 (𝐶 ) )𝑝+𝑀− 𝑗 (3)

When applying Equation 3 to the previous scenario, where 𝛿 =

10 minutes, and setting 𝑀 = 0, it is possible to derive that 1%

of the clients may fail some authentication; this number can be

reduced to 1.9 · 10−12 by setting𝑀 = 4. These extra 4 pseudonyms

will require increasing the filter size from 9𝐾𝐵 to just 13𝐾𝐵 (to

achieve the same probability with 𝑀 = 0 would require increasing

the size of the Bloom filter by 34𝐾𝐵). If each client would require

1000 pseudonyms instead, the probability of a client successfully
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executing all authentication with𝑀 = 0 is just 63% but when using

𝑀 = 15 it increases to 1 − (1.9 · 10−14), with a storage increase

from 883𝐾𝐵 to 896𝐾𝐵 (to achieve the same probability with𝑀 = 0

would require a filter of 3.89𝑀𝐵).

Leveraging𝑀 extra pseudonymous is a space-efficient solution

to make the effect of false positives negligible, even for large-scale

systems such as EDGAR. We could consider alternative encod-

ing techniques that completely eliminate false positives, such as

cascade filters [44]. However, this would require anticipating all

possible false positives in order to create the multiple filter levels;

in a scenario of millions of vehicles with multiple pseudonyms, this

operation would be very expensive and might become infeasible.

5.8 Handling Epoch Changes and Quarantine
When a client is revoked, all future capabilities that can be gen-

erated from the pseudonyms it may have obtained are revoked.

As discussed above, if a client is revoked in epoch 𝑡 , this requires

revoking capabilities for future time slots in epoch 𝑡 and all the

capabilities for epoch 𝑡 + 1. Capabilities for epoch 𝑡 + 2 and other

future epochs do not need to be revoked because EDGAR ensures

that a client that is revoked in epoch 𝑡 cannot obtain pseudonyms

for epoch 𝑡 +2. This property is guaranteed by a coordination phase

that is executed by any PM when it transitions from epoch 𝑡 to

epoch 𝑡 + 1. The purpose of the coordination phase is to ensure that

any PM that enters in epoch 𝑡 + 1 is aware of all revocations per-
formed in epoch 𝑡 and, therefore, will refuse to issue pseudonyms

for epoch 𝑡 + 2 to clients that have been revoked in epoch 𝑡 . During

coordination, a PM enters in a quarantine mode, where it cannot

serve pseudonym requests for epoch 𝑡 + 2.
The coordination protocol is implemented by forcing each PM to

send to every other PM its version of ERCsets𝑡 and ERCsets𝑡+1 at
the beginning of the quarantine. Furthermore, a PMwaits to receive

revocation information from at least 𝑁 − 𝑓 PMs before ending the

quarantine. Because revocation is performed by updating 𝑓 + 1
PMs, and a PM waits for the input of other 𝑁 − 𝑓 PMs, for each

revoked client, a PM is guaranteed to receive at least one up-to-date

ERCset that includes the corresponding revoked capabilities. At

the end of the quarantine, a PM is guaranteed to be fully aware of

all revocations that have occurred in epoch 𝑡 and can start serving

requests for pseudonyms in epoch 𝑡 + 2.

5.9 Handling a PM failure
The temporary failure or disconnection of a PM is treated as fol-

lows. When the PM server recovers, it will immediately start the

pull-gossip procedure. Eventually, it will be able to get up-to-date

information on the revoked clients. The same applies to temporarily

disconnected PMs. A PM that is offline for a short period of time can

operate normally, even if it is slightly outdated. If it is contacted by

a verifier, it will not be able to provide the most recent revocation

information, but the verifier will be able to fetch that information

from another PM in the next gossip interaction. If it is contacted by

a revoked client, it may issue new pseudonyms to that client for the

current or the next epoch. However, the corresponding latchkeys

for those pseudonyms have already been revoked by other PMs,

and the client will be revoked in a bounded time.

RRPs / EDGAR

Haas et al.

revocation
instant

time

Revocation data

Figure 4: Amount of revocation data: EDGAR vs [34].

5.10 Revocation Auditability
Informally, revocation auditability refers to a user’s ability to verify

its revocation status at a service provider before attempting to au-

thenticate. Asmentioned in Section 3.3, for the current prototypewe

assume that the administrator informs the clients before proceeding

with the revocation. As future work, we plan to augment the system

with additional strategies to support revocation auditability. One

approach is to use contract-based revocation [35], where the con-

tract semantics are agreed upon by both the user and the provider.

This enables the user to determine whether a certain action will

constitute misbehavior before deciding whether to engage in it. An-

other approach has been implemented in Nymble [68]. To ensure

that fresh revocation information reaches the client, revocation

lists must be published at regular Δ𝑖 time intervals, containing a

signature with the corresponding timestamp. When a client com-

municates with a verifier, it can first request the list, which must

have a fresh signature for the current Δ𝑖 , and then check if it has not
been revoked, otherwise it should halt the authentication process.

5.11 Discussion
In this section, we discuss the key features of EDGAR.

Epoch Based Pseudonyms: Pseudonyms in EDGAR are bound

to epochs instead of slots. Capabilities are bound to slots, but can

be generated at any moment by the client. This decoupling allows

clients to store only the desired number of pseudonyms based on

application logic, instead of the 𝛿 granularity of slots.

Space Efficiency: Both edge computing and TEEs have memory

constraints, making space efficiency a crucial aspect [17]. With

EDGAR, revoking a client only requires a logarithmic number of

latchkeys, while previous solutions require a linear amount of revo-

cation information relative to the number of time slots (see Figure 4).

Backward Unlinkability: EDGAR revokes future capabilities

while ensuring that these capabilities cannot be linked to capa-

bilities used in the past. Unlike previous work, the 𝛿 granularity of

the time slots can be arbitrarily reduced without imposing a burden

on the system: the number of pseudonyms used by a client does

not depend on 𝛿 and the cost of revocation is log
2
(1/𝛿).

Support for Distributed Fault-tolerance: EDGAR distributes and

replicates the PM functionality. This increases both availability

and resilience. It increases availability because clients can obtain

pseudonyms from any correct PM. It increases resiliency, because

the coordination required to change epoch effectively prevents PMs

that have been isolated or whose clock has been attacked from

providing new pseudonyms to revoked clients in future epochs

(if the clock is moved backward in time and the server generates
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invalid pseudonyms for old epochs; if the clock is moved forward

in time, the server cannot progress through quarantine).

Traceability and Accountability: If required, EDGAR can be

extended with mechanisms in which verifiers share (limited) in-

formation with the PM to provide traceability and accountability.

Specifically, a verifier may present one or more used capabilities

to the administrator and ask to revoke or trace the anonymous

client that is responsible for such capabilities. Depending on the

application and the facts to justify the request, the administrator

may agree and forward the capabilities to the trusted central PM.

Since the PM can generate all the public keys associated with the

pseudonyms it has provided, it can subsequently match the used

capabilities with the clients identifiers (note that only the trusted

PM can perform this operation; this does not conflict with ensuring

unlikability, which aims at preventing non-trusted entities, such

as verifiers, from achieving the same goal). However, we have not

implemented or evaluated such extensions as part of this work.

6 EVALUATION
We evaluate the power of RRPs, using a prototype of EDGAR. We

compare the space efficiency of EDGAR against a state-of-the-art

scheme for BU in the PKI setting. We also show that our scheme

offers a latency suitable for edge applications. Finally, we evaluate

EDGAR’s throughput when serving pseudonyms. The source code

is available at https://github.com/claudio-correia/RRP-EDGAR.

We have implemented both a verifier and a PM server on an Intel

NUC10i7FNB. An Intel NUC is an example of what a fog node might

be, as it possesses modest computational resources but is relatively

inexpensive for large-scale deployments. It has an Intel i7-10710U

CPU with Intel SGX, 16GB RAM, and Ubuntu 20.04 LTS. We run

the Intel SGX SDK Linux 2.13 Release, Intel SSL-SGX [38] version

Linux 2.14_1.1.1k and OpenSSL 1.1.1k. We used a real-world data set

composed of multiple vehicle trajectories in the city of Porto [41].

6.1 Space Efficiency
We have experimentally compared EDGAR with Haas et al., as
both support backward unlinkability by dividing the epoch in time

intervals in the PKI setting. Haas et al. scheme was more recently

implemented in the SCMS POC pilot [14] under the name of linkage

values technique. The comparison is not trivial since the pseudo-

nyms in Haas et al. are locked to a time slot, being invalid if used

in any other, while in RRP the pseudonyms are free to be used at

any moment of an epoch.

For a clear comparison, we test both mechanisms in a real-world

use case of a taxi company operating in the city of Porto, using

a dataset of taxi trajectories [41]. We choose the mix zones strat-

egy [6] for pseudonym changes, i.e., taxis change pseudonyms at

crossroads. This use case requires a large number of pseudonyms

due to constant vehicle movement, favoring the Haas et al. design.
In scenarios with fewer pseudonyms needed over the same period,

EDGAR will outperform Haas et al. by even larger margins.

Figure 5 shows the results obtained in our experiment. The top

part of the figure presents the user latency experienced when ac-

quiring all pseudonyms for a specific epoch, and the bottom part

presents the required Bloom filter size for each solution.
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Figure 5: Storage and latency in Haas et al. Vs EDGAR.

In the dataset, we observed that some taxis drive long distances,

requiring 692 pseudonyms per day (which entails 5, 677 per moth

and 32, 142 per year). Since EDGAR clients can use pseudonyms

freely, these values were used as 𝐼 , the number of pseudonyms

instances in an epoch. On the other hand, Haas et al. must fix the

number of pseudonyms in each 𝛿 interval, e.g., with 𝛿 = 1 min

there was a taxi driver who crossed 12 intersections, forcing to fix

12 different pseudonyms for each 𝛿 interval, which has an explosive

effect on the number of pseudonyms generated. Furthermore, as

we tighten the 𝛿 interval, the difference between Haas et al. and
EDGAR is more pronounced, for 𝛿 = 1 sec and epoch = 1 year we

observe an improvement of ≈ 2.5 ∗ 106KB to ≈ 6.4 ∗ 104KB, two
orders of magnitude lower in the required storage. This results

from the logarithmic effect provided by RRPs, while Haas et al.
suffers from a linear effect. For large values of 𝛿 , when an epoch

is divided into a few time slots, Haas et al. slightly outperforms

EDGAR, since the overhead imposed by the latchkey hierarchy is

no longer compensated by a significant reduction in pseudonyms.

Finally, we also observed that a large number of taxi trips take

around 10 min., so we believe that 𝛿 = 1 min would be a reason-

able configuration for this use case, representing a storage saving

between 35KB and 15KB (for epoch = 1 day) and 508MB to 51MB

(for epoch = 1 year) by implementing EDGAR instead of Haas et
al., highlighted with the vertical orange line.

6.2 𝜹 Granularity vs Latency Trade-off
The use of the latchkey hierarchy makes revocation of a range

of time slots efficient, because a single latchkey can be used to

revoke many capabilities. The efficiency of revocation comes at

the cost of penalty in the authentication procedure, because the

verifier must check a number of latchkeys equal to the tree height

(instead of verifying only the leaf latchkey). Fortunately, the height

of the latchkey tree grows only logarithmically, and latchkeys can

be verified in parallel. Therefore, the penalty of RRPs on latency is

small. Figure 6 shows the latency of the verification procedure as

the granularity of the time slots increases. For instance, a system

that uses 𝛿 = 1 min and an epoch of one day requires a binary

latchkey tree of depth 11; if the epoch is increased to a month,

the depth of the binary tree increases to 16. In such a case, clients
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Figure 6: Client latency for capability verification, for differ-
ent levels of granularity and number of threads.

will incur a latency below 2𝑚𝑠 in a single-thread verifier, still an

acceptable latency for edge applications. Note that a tree with 32

levels can support an extreme large number of time slots, such as

the ones resulting from using 𝛿 = 1 sec and epoch = 70 years; even

in this case, clients would experience only 3.5 ms of latency. We

have used multithreading to parallelize the verification of latchkeys,

reducing the impact on latency. We observe a latency reduction

that is linear with the number of cores of 47% and 45% from 1 to 2

threads and from 2 to 4 threads, respectively. Hyperthreading, from

6 to 12 threads, offers no improvement since most of the time is

spent in cryptographic operations, and each core has a single ALU.

6.3 PM Server Throughput
We use the Ed25519 scheme [7] to obtain deterministic digital sig-

natures, but is not yet available in the SGX SDK. Since the PM is

responsible for generating the pseudonyms and runs inside the en-

clave, we implemented two different versions of the Ed25519 inside

the enclave: a portable one [57] and one based on OpenSSL [38].

The portable version is straightforward to implement in any type

of TEE, but the lack of optimization affects its performance. In the

second implementation, we use the Intel SSL-SGX library to import

the OpenSSL library into the enclave. This library was designed

for the SGX enclaves, being the most efficient implementation of

the scheme. We also evaluated the system with and without SGX,

using the OpenSSL library outside the enclave as well.
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Figure 7: Pseudonym throughput and number of served
clients by the PM w/ and w/o SGX. 𝑃 is the number of pseu-
donyms generated in each request.

Figure 7 presents the pseudonym throughput for each of these

implementations. We vary the number of threads on the PM node

side, improving throughput as expected. Additionally, we vary the

number of pseudonyms that each client requests from the PM, from

4, 8, 16, and 32 new pseudonyms. We observe that increasing the

requested pseudonyms also increases throughput by reducing other

system overheads, such as signing and encrypting. On the contrary,

the number of served clients decreases since the PM server requires

more time for each request. Following the previous discussion and

fixing 𝛿 = 1 min, a taxi could request 32 new pseudonyms in just

133 ms, useful for at least the next 32 min.

7 CONCLUSION
We presented Range-Revocable Pseudonyms, an abstraction that

supports an anonymous authentication scheme based on pseudo-

nyms that is able to enforce backward unlinkability with storage

costs that are multiple orders of magnitude lower than those of

the related work. The gains derive from our novel technique to de-

couple pseudonyms from time slots, and authentication/revocation

procedures based on the use of latchkeys that can be generated

from a given pseudonym for any desired time slot. This technique

prevents clients from having to store a large number of unneces-

sary pseudonyms. As a proof of concept, we have designed and

implemented a prototype of EDGAR, an authentication system for

the edge based on the use of RRPs. We have used this prototype to

perform an experimental evaluation using a real dataset of vehicle

traces. The results show that EDGAR is capable of offering low

latency and storage savings when serving clients. We motivated

our work using a VANET scenario, as one of the most prominent

use cases for anonymous authentication at the edge computing

environment. Still, many other applications, such as crowdsens-

ing, supply chain tracking, augmented reality, etc., also require

anonymity and may benefit from our scheme.

We have made available an extended version of this paper [18]

that includes a more detailed proof of correctness and a complete

workflow of all the operations discussed in the paper.
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A ERCSET CREATION ALGORITHM
We now present in Algorithm 1 the pseudo-code for the algorithm

used to implement the createERCSet function, previously de-

scribed using natural language in Section 4.1. The algorithm re-

ceives multiple capabilities to be revoked (from a given pseudonym).

It first merges all the latchkeys from the set of provided capabilities

(function mergeLatchkeys). Then, the function removeUnsafe

will search and remove any latchkeys that may cover time slots that

have not been revoked, to ensure that any authentication informa-

tion that may be used outside the revocation interval, represented

by the provided capabilities, is not present in the ERCSet. After-

ward, the function removeRedundant will remove any redundant

latchkeys, i.e. any latchkey children, that are already covered by

their parent. This step is only to achieve efficient storage since it

takes advance of our latchkey tree and only requires a logarithmic

number of latchkeys to cover the revoked time slots. Finally, the

function latchkeysEncoding takes the remaining latchkeys and

inserts each one in a Bloom filter that implements the ERCSet. Our

prototype implements an optimized version of this algorithm.

Algorithm 1: ERCSet creation, trusted PM side

C = ⟨𝐶𝑎, . . . ,𝐶𝑏 ⟩: capabilities to be revoked for a pseudonym

Function mergeLatchkeys(C):
latchkeySet← ∅ // latchkeySet is a genuine set (not a multiset)

foreach 𝑐𝑖 ∈ C do
latchkeySet← latchkeySet ∪ extractLatchkeys(𝑐𝑖 )

end
return latchkeySet

Function removeUnsafe(L):
Safe = L
/* Remove latchkeys from non-revoked time slots */

foreach 𝑙𝑖 ∈ L do
/* Returns all children nodes/latchkeys of 𝑙𝑖 */
descendants𝑖 ← getLatchkeysSubTree(𝑙𝑖 )
if ∃𝑥 ∈ descendants𝑖 ∧ 𝑥 ∉ L then

Safe← Safe \ 𝑙𝑖
end

end
return Safe

Function removeRedundant(L):
NonRedundantSet = L
/* Remove latchkeys that are covered by parent */

foreach 𝑙𝑖 ∈ L do
parent𝑖 ← getParentLatchkey(𝑙𝑖 )
if parent𝑖 ∈ L then

NonRedundantSet← NonRedundantSet \ 𝑙𝑖
end

end
return NonRedundantSet

Function latchkeysEncoding(L):
ERCSet← createNewBf( )
foreach 𝑙𝑖 ∈ L do

ERCSet.bfAdd(𝑙𝑖 )
end
return ERCSet

Function createERCSet(C):
Enclave Zone Start
Unfiltered← mergeLatchkeys(C)
Safe← removeUnsafe(Unfiltered)
SafeNonRedundant← removeRedundant(Safe)
ERCSet← latchkeysEncoding(SafeNonRedundant)
Enclave Zone End
return ERCSet

 

3032
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https://www.federalregister.gov/documents/2017/01/12/2016-31059/federal-motor-vehicle-safety-standards-v2v-communications
https://github.com/orlp/ed25519
https://techmonitor.ai/policy/privacy-and-data-protection/connected-vehicle-data-apply-carplay
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