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Abstract

The Kohlrausch (stretched exponential) decay law is analyzed in detail. Analytical and approximate forms of the distribution of
rate constants and related functions are obtained for this law. A simple generalization of the Kohlrausch decay law that eliminates
unphysical aspects of the original form is introduced and fully characterized. General results concerning the relation between decay
law and distribution of rate constants are also obtained.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Time-resolved luminescence spectroscopy is widely
used in the physical, chemical and biological sciences to
get information on the structure and dynamics of molec-
ular, macromolecular, supramolecular, and nano sys-
tems [1]. In the simplest cases, the luminescence decay
curves can be satisfactorily described by a sum of discrete
exponentials and the pre-exponential factors and decay
times have clear physical meaning. But distributions of
decay times or rate constants must be anticipated to best
account for the observed phenomena in various cases:
fluorophores incorporated in micelles [2,3], cyclodextrins
[3–6], rigid solutions [7], sol–gel matrices [8], polymers [9],
proteins [10–12], vesicles or membranes [13–15], biologi-
cal tissues [16], fluorophores adsorbed on surfaces [17], or
0301-0104/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
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linked to surfaces [18–20], quenching of fluorophores in
micellar solutions [21], energy transfer in assemblies of
like or unlike fluorophores [22–24], etc.

In such cases, the luminescence decay can be written
in the following form:

IðtÞ ¼
Z 1

0

HðkÞe�kt dk; ð1Þ

with I(0) = 1. This relation is always valid because H(k)
is the inverse Laplace transform of I(t). The function
H(k), also called the eigenvalue spectrum (of a suitable
kinetic matrix), is normalized, as I(0) = 1 implies thatR1
0

HðkÞ dk ¼ 1. In most situations (e.g., in the absence
of a rise-time), the function H(k) is nonnegative for all
k > 0, and H(k) can be understood as a distribution of
rate constants (strictly, a probability density function).
This is the situation that will be addressed in this work.

Recovery of the distribution H(k) from the experi-
mental decay I(t) is very difficult because this is an ill-
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conditioned problem [25]. In other words, a small
change in I(t) can cause an arbitrarily large change in
H(k). The quality of the experimental data is of course
of major importance. Depending on the level of preci-
sion, a decay can be fitted with a sum of two or three
exponentials with satisfactory chi-squared values and
weighted residuals in spite of the existence of an under-
lying distribution.

H(k) can be recovered from decay analysis by three
approaches: (i) data analysis with a theoretical model
for H(k) that may be supported by Monte-Carlo simula-
tions; (ii) data analysis by methods that do not require
an a priori assumption of the distribution shape; (iii)
data analysis with a mathematical function describing
the distribution. The present series of papers is devoted
to the third approach, but it is worth to briefly recall the
main features of the first two.

Examples of the first approach can be found in theoret-
ical investigations of the luminescence of polymer chains,
where the eigenvalue spectrum was obtained using
Monte-Carlo simulations of chain configuration and
dynamics [26–30]. The survival probability (in this case
in direct relation to the luminescence anisotropy) and
the eigenvalue spectrum of finite and closed one-dimen-
sional chains of molecules with nearest-neighbour inter-
action were investigated [26–30]. A wide range of
systems was also considered in [23]. All cited papers show
that the eigenvalue spectrum gives important information
on the dynamics of energy transfer in condensed matter.

In the absence of a physical model, the best way to
recover the eigenvalue spectrum appears to be, at first
sight, the second approach, i.e., the use of methods with-
out assumption of the distribution shape such as the
maximum entropy method or other numerical ap-
proaches [31,32]. However, in these calculations the ob-
tained eigenvalue spectrum can be extremely sensitive to
data quality and truncation effects [25]. Because of the
ill-conditioned nature of the lifetime distribution analy-
sis, instability of the recovered distribution can be ob-
served from repeated experiments under exactly the
same conditions, even when data are of excellent quality
[17]. A set of physically plausible results can be obtained
after a regularization technique is employed in the data
reduction [17].

In the third approach, a mathematical function that is
expected to best describe the distribution is used. In
many studies, e.g., biophysics experiments, the eigen-
value spectrum is often approximated by specific empir-
ical functions with a continuous distribution of rate
constants, e.g., Lorentzian or Gaussian functions [33,34].

In the first paper of this series, we discuss the distri-
bution of rate constants of the stretched exponential
(or Kohlrausch) function, written as
IðtÞ ¼ exp �ðt=s0Þb
h i

; ð2Þ
where 0 < b 6 1, and s0 is a parameter with the dimen-
sions of time. This simple and relatively flexible function
has been indeed successfully used in various fields, as re-
called in the next section, and it deserves thus special
attention.
2. Stretched exponential function in decay data analysis

The first use of the stretched exponential function to
describe the time evolution of a nonequilibrium quantity
is usually credited (with references almost invariably
incorrect) to Rudolph Kohlrausch (1809–1858), who in
1854 [35] applied it to the discharge of a capacitor, after
concluding that a simple exponential of time was inade-
quate [36]. The rediscovery of the stretched exponential
relaxation function by Williams and Watts in 1970, who
introduced it in the field of dielectrics [37], while cer-
tainly important, is in our opinion insufficient to war-
rant the association of these names to the general law,
as is sometimes found in the literature (KWW law),
especially when luminescence is concerned. In fact, in
this field the stretched exponential has long been in
use, namely to describe decays in the presence of energy
transfer [22].

In studies of the relaxation of complex systems, the
Kohlrausch function is frequently used as a purely
empirical decay law (see below), although there are the-
oretical arguments to justify its common occurrence. In
the field of molecular luminescence, Eq. (2) has firm
grounds on several models of luminescence quenching,
namely diffusion-controlled contact quenching [38],
where b = 1/2, and diffusionless resonance energy trans-
fer by the dipole–dipole mechanism, with b = 1/6, 1/3
and 1/2 for one-, two- and three-dimensional systems,
respectively [22]. Other rational values of b are obtained
for different multipole interactions, e.g., b = 3/8, 3/10,
for the dipole–quadrupole and quadrupole–quadrupole
mechanisms in three-dimensions [39,40]. In Huber�s
approximation, energy transport as measured by fluo-
rescence anisotropy shows the same time-dependence
as direct energy transfer [23,41,42], and is characterized
by the same values of b.

Luminescence decays in fractals in the presence of
resonance energy transfer (RET) are also described by
the Kohlrausch function [43–45] with b = d/s, where d
is the fractal dimension and s depends on the RET
mechanism, being equal to 6, 8, or 10 for dipole–dipole,
dipole–quadrupole, and quadrupole–quadrupole inter-
actions, respectively.

RET between donor and acceptor chromophores at-
tached to a polymer chain has been widely used as a tool
for studying polymer structure and dynamics. Theory
shows [26–30,46–49] that the kinetics of donor lumines-
cence quenching and the kinetics of depolarization of
luminescence in polymer chains exhibit a Kohlrausch
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time-dependence, where the parameter b of Eq. (2) de-
pends on the mechanism of RET, the type of chromo-
phore attachment (to the ends of the polymer chain or
randomly distributed along the chain), and on the model
of polymer chain considered (Gaussian or self-avoiding
chain).

The Kohlrausch function is also found to apply to
some luminescence decays of disordered [50] and or-
dered [51] inorganic solids, and of semiconductor
nanoclusters [52].

The Kohlrausch decay law is convenient as a fitting
function, even in the absence of a model, given that it al-
lows gauging in simple way deviations to the ‘‘canoni-
cal’’ single exponential behaviour through the
parameter b. Stretched exponentials were used for in-
stance to analyze the fluorescence decay of fluorophores
incorporated in a sol–gel matrix [8] and of fluorophores
covalently bound to silica surfaces [18] or alumina sur-
faces [20]. The Kohlrausch decay function was recently
used in the analysis of single-molecule fluorescence [9]
and in the fluorescence lifetime imaging of biological tis-
sues [16].

It is striking that a variety of microscopic mecha-
nisms can give rise to stretched exponential relaxation
although the origin of this behaviour is not fully under-
stood. In this regard, dynamical models for stretched
exponential relaxation developed by several authors
[51,53–55] are conceptually interesting.
3. General considerations regarding distributions of rate

constants

3.1. Characteristic parameters

Let us consider the following phenomenological
equation restricted to the first order:

dN
dt

¼ �kðtÞN ; ð3Þ

where N is the number of luminophores (in a given vol-
ume) after delta excitation, and k is the rate constant
with possible time dependence. That being the case, it
will be called a rate coefficient.

The luminescence intensity is assumed to be propor-
tional to N, the proportionality constant including the
radiative rate constant. The normalized decay law I(t)
is then simply

IðtÞ ¼ NðtÞ
N 0

; ð4Þ

k(t) is thus given by

kðtÞ ¼ � d ln IðtÞ
dt

; ð5Þ

and the decay can be written as
IðtÞ ¼ exp �
Z t

0

kðuÞ du
� �

. ð6Þ

Using Eq. (1), that expresses a luminescence decay with
an underlying distribution H(k), the time-dependent rate
coefficient becomes

kðtÞ ¼
R1
0

kHðkÞe�kt dkR1
0

HðkÞe�kt dk
. ð7Þ

This time-dependent rate coefficient can in principle ex-
hibit a complex time dependence, but for monotonic de-
cays there are only three important cases: exponential
decay, when k(t) is constant; super-exponential decay,
when k(t) increases with time; and sub-exponential de-
cay, when k(t) decreases with time.

Several average quantities that can be obtained from
the decay law need to be carefully specified at the outset.
The most direct one, the average decay time, is defined
by

�s ¼
R1
0 tIðtÞ dtR1
0

IðtÞ dt
. ð8Þ

Similarly, the time-averaged rate constant is

�k ¼
R1
0

kðtÞIðtÞ dtR1
0

IðtÞ dt
¼ 1R1

0
IðtÞ dt

. ð9Þ

The convention of a bar (e.g., �k) for the time average,
and of brackets (e.g., hki) for the distribution (‘‘ensem-
ble’’) average will be followed throughout.

Instead of a distribution of rate constants, a distribu-
tion of time constants is also sometimes defined, such
that, instead of Eq. (1), the decay is written as

IðtÞ ¼
Z 1

0

f ðsÞe�t
s ds; ð10Þ

the relation between f(s) and H(k) being

f ðsÞ ¼ 1

s2
H

1

s

� �
. ð11Þ

An average time constant can now be defined,

hsi ¼
Z 1

0

sf ðsÞ ds ¼
Z 1

0

IðtÞ dt; ð12Þ

hence

hsi ¼ 1
�k
¼ 1

k

� �
. ð13Þ

The average time constant hsi and the average decay
time �s are not identical in general, and are related by

�s ¼ hs2i
hsi . ð14Þ

On the other hand, the average rate constant is

hki ¼
Z 1

0

kHðkÞ dk ¼ �I 0ð0Þ ¼ kð0Þ; ð15Þ
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and therefore

hki ¼ 1

s

� �
; ð16Þ

while

�s ¼
1
k2

D E
1
k

� � . ð17Þ
3.2. Influence of the intrinsic decay

In many cases (e.g., energy transfer), the full decay
expression contains as a multiplicative factor the intrin-
sic exponential decay,

IðtÞ ¼ exp � t
s0

� � Z 1

0

expð�ktÞHðkÞ dk
� �

. ð18Þ

In such a situation, the full rate constant distribution is
simply the shifted H(k),

HtðkÞ ¼ HðkÞ � d k � 1

s0

� �
¼

0 if k < 1
s0
;

H k � 1
s0

� �
otherwise;

8<
:

ð19Þ
where � stands for the convolution between two
functions.

Also, in this case the condition that the integral of the
decay

R1
0

IðtÞ dt must be finite applies to the decay as a
whole, but not to the reduced decay where the ‘‘natural’’
decay has been removed. One thus encounters decay
laws where the integral diverges (hsi is infinite), because
they must always be multiplied by the natural decay to
give the total decay, and represent in fact only addi-
tional decay pathways. The same applies to anisotropy
decays, r(t), since there is no need for normalization
(in the sense of

R1
0

rðtÞ dt ¼ 1) in this case.

3.3. The transform ladder

The distribution of rate constants H(k) is not the only
relevant transform for the study of luminescence decays.
One can in fact consider the following sequence of func-
tions, connected by successive Laplace and inverse La-
place transforms:

GðsÞ ¢
L

L�1
HðkÞ ¢

L

L�1
IðtÞ ¢

L

L�1
JðxÞ.

The functions H(k) and I(t) have already been discussed.
The function J(x), which occurs in the response to a
harmonic excitation, is central in the luminescence tech-
nique of phase-modulation [1,56], and also in dielectric
relaxation theory [57], but will not be further developed
here.

The function G(s) was introduced in [24] for the anal-
ysis of anisotropy decays with long tails. It is not a den-
sity function, because it is not usually normalized
ð
R1
0

GðsÞ ds ¼ Hð0ÞÞ and because it can take negative
values, e.g., when H(0) = 0. In some cases, like that of
an exponential decay, it cannot even be defined (it would
be the inverse Laplace transform of the delta function).
Since H(k) is normalized, one has, when G(s) exists,
Z 1

0

GðsÞ
s

ds ¼ 1. ð20Þ
Also

hki ¼
Z 1

0

GðsÞ
s2

ds. ð21Þ

The maximum in the H(k) distribution (if it exists) is
sometimes easier to obtain numerically from G(s),
dH
dk

¼ 0 )
Z 1

0

e�kssGðsÞ ds ¼ 0. ð22Þ
This also shows that in such a case G(s) takes necessarily
both positive and negative values. The main interest of
G(s) is nevertheless that I(t) can be written as a double
Laplace transform [24], formerly called by some authors
the Stieltjes transform [58,59],
IðtÞ ¼
Z 1

0

GðsÞ
t þ s

ds; ð23Þ
whenever G(s) exists. This representation of the decay,
alternative to Eq. (1), suggests that in some cases the de-
cay is well represented by a few terms of the discretiza-
tion of Eq. (23), in an analogous way to what happens
with Eq. (1) (sum of exponentials), i.e., when instead
of Eq. (23) the decay is approximated by

IðtÞ ¼
X
i

ai
t þ si

. ð24Þ

This representation is advantageous whenever the distri-
bution of rate constants is broad and cannot be emu-
lated by a few exponentials, while a few hyperbolae
suffice to construct a broad distribution of rate con-
stants [24], as each hyperbola corresponds by itself to
an exponential distribution, and it is therefore the distri-
bution H(k) that is reconstructed with a sum of
exponentials,

HðkÞ ¼
X
i

ai expð�ksiÞ; ð25Þ

while G(s) is approximated by
GðsÞ ¼
X
i

aidðs� siÞ. ð26Þ
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4. Kohlrausch (stretched exponential) decay function

A time-dependent rate coefficient k(t) can be defined
for the Kohlrausch decay law, Eq. (2), by using Eq. (5):

k1ðtÞ ¼
b
s0

t
s0

� �b�1

; ð27Þ

where 0 < b 6 1. After Williams and Watts [37], the
Kohlrausch decay law is often called the ‘‘slower-than-
exponential’’ (with respect to an exponential of lifetime
s0) function. Although sub-exponential, this is however
somewhat of a misnomer, as a most characteristic aspect
of the function is precisely the existence of two regimes:
a faster-than-exponential (with respect to an exponential
of lifetime s0 initial decay (indeed, the rate constant is
infinite for t = 0), and a slower-than-exponential decay
(with respect to an exponential of lifetime s0) for times
longer than s0. These two regimes are very marked for
small b, but become indistinct as b ! 1, see Fig. 1.

The initial part of the Kohlrausch law (b < 1), result-
ing from a Lévy distribution of rate constants (see be-
low), with its characteristic long tail, is sometimes
‘‘swept under the carpet’’ by using a s0 smaller than
the shortest time of observation, and multiplying the de-
cay law by a factor higher than 1, a procedure that obvi-
ously invalidates its correct normalization, but has no
other apparent consequences (see however the discus-
sion below).

The slowing down of the decay rate can be shown
explicitly by the time-dependent rate coefficient, Eq.
(27). As mentioned, this rate coefficient is initially infi-
nite, which is an unphysical result. In the case of diffu-
sion-controlled quenching of fluorescence, this only
happens with the Smoluchowski model [60], for which
an infinite quenching rate constant at contact is implic-
itly assumed. The problem no longer exists in the Col-
lins–Kimball model, for instance [38,60]. In the field of
energy transfer in homogeneous media, an initially infi-
Fig. 1. The Kohlrausch (stretched exponential) decay law for several
values of b (0.1, 0.2, . . . ,0.9, 1). The decay is faster than that of an
ordinary exponential (b = 1) for t < s0, and slower afterwards.
nite rate coefficient arises when point particles are as-
sumed [22]. If a distance of closest approach is
postulated, then the initial part of the decay becomes
exponential, and the decay obeys a stretched exponen-
tial only for longer times [61].

The average rate constant hki = k(0) is infinite for the
Kohlrausch decay law. In general, the time-dependent
rate coefficient cannot be infinite; hence this aspect re-
sults from the approximate nature of the physical model
used, as mentioned for the collisional quenching and en-
ergy transfer phenomena.

The necessarily approximate nature of the stretched
exponential decay function, owing to its unphysical
short-time behaviour, was also noted in the field of
dielectrics [57].

The average decay time is

�s ¼ s0
Cð2=bÞ
Cð1=bÞ ; ð28Þ

whereas the average time constant is

hsi ¼ 1
�k
¼ s0C 1þ 1

b

� �
. ð29Þ

The determination of H(k) for a given I(t) amounts to
the computation of the respective inverse Laplace trans-
form. In the case of the Kohlrausch function, Eq. (2),
the calculation can be performed with the general inver-
sion formula (Bromwich integral), as detailed in Appen-
dix A. The result, first obtained by Pollard [62], is

HbðkÞ ¼
s0
p

Z 1

0

expð�ks0uÞ

� exp �ub cosðbpÞ
	 


sin ub sinðbpÞ
	 


du; ð30Þ

an equivalent integral being (Appendix A)

HbðkÞ¼
s0
p

Z 1

0

�exp �ubcos
bp
2

� �� �
cos ubsin

bp
2

� �
�ks0u

� �
du.

ð31Þ
These integral forms are complementary: Eq. (30) is dif-
ficult to compute numerically for small values of k, ow-
ing to the rapid oscillations of the integrand when k is
small, while Eq. (31) is difficult to compute for large val-
ues of k, again because of the rapid oscillations of the
integrand when k is large. For b = 1, one has of course
H1(k) = d(k � 1/s0). For b 5 1, Hb(k) can be expressed
in terms of elementary functions only for b = 1/2
[62,63],

H 1=2ðkÞ ¼
s0

2
ffiffiffi
p

p
ðks0Þ3=2

exp � 1

4ks0

� �
. ð32Þ

A form for b = 1/4 displaying the asymptotic behavior
for large k was recently obtained [64],



Fig. 2. Distribution of rate constants (probability density function) for
the Kohlrausch decay law obtained by numerical integration of Eqs.
(30) and (31). The number next to each curve is the respective b.

Fig. 3. Function Gb(s) for the Kohlrausch decay law, given by Eq.
(36). Parameter b takes the values 0.49 (a), 0.50 (b), and 0.51 (c).
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H 1=4ðkÞ ¼
s0

8pðks0Þ5=4
Z 1

0

u�3=4e
�1

4
1ffiffiffiffiffi
ks0u

p þu

� �
du. ð33Þ

It appears that for any rational value of b, Hb(k) can be
expressed in terms of confluent hypergeometric func-
tions (results for b = 1/3 and 2/3 are known; the authors
have checked a number of other cases with the Mathem-

atica package). A general solution can be given in terms
of Fox functions [65].

The distribution Hb(k) is shown in Fig. 2 for several
values of b.

In [66], a convergent power series was obtained for
Hb(k)

HbðkÞ ¼
s0
p

X1
n¼1

ð�1Þnþ1 ðks0Þ�ð1þnbÞ

n!
Cð1þ nbÞ sinðnbpÞ.

ð34Þ
It can be seen that the asymptotic form of Hb(k) is

HbðkÞ ¼
s0
p
Cð1þ bÞ sinðbpÞ 1

ðks0Þð1þbÞ . ð35Þ

While the series is convergent for all k, in practice the
terms can increase in magnitude to a tremendous extent
and nearly completely cancel each other to yield a small
number. Therefore, the asymptotic form is useful only
for very large values of k. Lindsey and Patterson [67]
used Eqs. (30) and (34) for the first time in the descrip-
tion of relaxation phenomena.

The function Gb(s) can be obtained either directly
from the integrand of Eq. (30), or by term wise inversion
of Eq. (34). The result is

GbðsÞ¼
1

2p
Im exp �e�ibp s

s0

� �b
" #

� exp �eibp
s
s0

� �b
" #( )

1

p
exp � s

s0

� �b

cosðbpÞ
" #

sin
s
s0

� �b

sinðbpÞ
" #

.

ð36Þ
This function has an oscillatory behavior, controlled by
the argument of the exponential, which is in turn defined
by the value of b, see Fig. 3. For b = 1/2, the amplitude
of the oscillations is constant; for b < 1/2, the amplitude
of the oscillations decreases with s; finally, for b > 1/2,
the amplitude of the oscillations increases with s.

We present here a relatively simple and yet very accu-
rate numerical equation for Hb(k) (see Appendix B for
its derivation),
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HbðkÞ ¼ s0
B

ðks0Þð1�b=2Þ=ð1�bÞ

� exp �ð1� bÞbb=ð1�bÞ

ðks0Þb=ð1�bÞ

" #
f ðkÞ; ð37Þ

where the auxiliary function, f(k), is

f ðkÞ ¼

1=½1þ Cðks0Þd�; d ¼ bð0.5� bÞ=ð1� bÞ;
b 6 0.5;

1þ Cðks0Þd; d ¼ bðb� 0.5Þ=ð1� bÞ;
b > 0.5.

8>>><
>>>:

ð38Þ
and the parameters B and C, which are functions of b,
are given in Table 1 for b = 0.1, 0.2, . . . ,0.9. For other
values of b parameters B and C can be obtained by
interpolation.

It is worth mentioning that the Kohlrausch decay law
is the Laplace transform of the Lévy one-sided distribu-
tion Lb,1, i.e., Hb(k) is a Lévy stable distribution [68].

Interestingly, if one takes b > 1 in the Kohlrausch de-
cay, which is the compressed exponential case, it is found
that k(t) increases with time, starting from zero, and the
decay is super-exponential, henceHb(k) is no longer a dis-
tribution function. The compressed exponential function
appears to apply to protein folding kinetics [69].
5. Modified Kohlrausch decay function

5.1. Origin of times at s0

The problems associated with the undesirable short-
time behavior of the Kohlrausch function (infinite initial
rate, faster-than-exponential decay for short times) can
be eliminated in a simple way. Given that the decay is
faster than an exponential with lifetime s0 only up to
t = s0, we merely shift the origin of times to this point,
and then renormalize the decay, which becomes,

IðtÞ ¼ exp 1� 1þ t
s0

� �b
" #

. ð39Þ

The time-dependent rate coefficient of the generalized
Kohlrausch function is
Table 1
Exponent d and parameters B and C in Eqs. (37) and (38)

b 0.1 0.2 0.3 0.4

d 2/45 3/40 3/35 1/15
B 0.145 0.197 0.243 0.285
C 0.89 0.50 0.35 0.25

For b = 0.5, the coefficients are exact: B = 1/(2p1/2) and C = 0. For b = 0.8
correct asymptote for H(k).
kðtÞ ¼ b
s0

1þ t
s0

� �b�1

; ð40Þ

and therefore it is now finite for all times. For short
times, the decay is exponential (lifetime s0/b).

The parameters of the generalized Kohlrausch func-
tion are:

hki ¼ kð0Þ ¼ b
s0
; ð41Þ

hsi ¼ 1
�k
¼ e

b
C

1

b
; 1

� �
s0; ð42Þ

�s ¼
C 2

b ; 1
� �

C 1
b ; 1

� �� 1

2
4

3
5s0; ð43Þ

where C(x,a) is the incomplete gamma function. The
average decay time is not much affected by the modifica-
tion, as it averages over all the decay, that usually differs
only in a small, initial part, but the same does not hap-
pen to the other three parameters, that have in general
values quite different from those of the original Kohlr-
ausch decay (this is obvious for hki). For instance if
b = 0.1, Eq. (12) gives hsi = 9.9 · 106s0, while Eq. (42)
gives hsi = 3.6 · 106 s0, owing to a much larger concen-
tration of the distribution in the short lifetimes, needed
to account for the fast initial decay.

The decay law can be rewritten as

IðtÞ ¼ exp 1� 1þ hkit
b

� �b
" #

. ð44Þ

An interesting aspect of the generalized Kohlrausch
function is that parameter b can also be higher than 1
to produce super-exponential decays with a simple lim-
iting form,

lim
b!1

IðtÞ ¼ exp½1� ehkit�; ð45Þ

see Fig. 4.
The function H1(k) for this decay law is

H1ðkÞ ¼
s0e
p

Z 1

0

e� cos u cosðks0u� sin uÞ du; ð46Þ

and has the form of damped oscillations, taking both
positive and negative values and therefore, as expected,
H1(k) is not a distribution function.
0.5 0.6 0.7 0.8 0.9

0 3/20 7/15 6/5 18/5
0.382 0.306 0.360 0.435 0.700
0 0.13 0.22 0.4015 0.33

, coefficient C is calculated as C = (1/p)sin (bp)C(1 + b)/B to get the



Fig. 4. The modified Kohlrausch decay law, Eq. (44), for several
values of b. The number next to each curve is the respective b.
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The parameters of this limit decay law are:

hsi ¼ 1
�k
¼ e

hkiCð0; 1Þ ¼
0.596

hki ; ð47Þ

�s ¼ lim
b!1

C 2
b ; 1

� �
C 1

b ; 1
� �� 1

2
4

3
5 b
hki ¼

0.446

hki . ð48Þ

For b > 1, k(t) increases with time, starting from b/s0,
and the decay is super-exponential.

The distribution of rate constants for the modified
Kohlrausch decay law Hm

b ðkÞðb < 1Þ, see Fig. 5, is easily
obtained as

Hm
b ðkÞ ¼ expð1� ks0ÞHbðkÞ; ð49Þ

where Hb(k) is the distribution for the original Kohlr-
ausch decay law. This seemingly small modification
has a major consequence: The distribution ceased to
be of the Lévy type, as the long tail (responsible for
the fast initial decay) disappeared, owing to exponential
damping. Indeed, the asymptotic form is now
Fig. 5. Distribution of rate constants (probability density function) for
the modified Kohlrausch decay law, obtained by numerical integration
of Eq. (49). The number next to each curve is the respective b.
Hm
b ðkÞ ¼

s0e
p

Cð1þ bÞ sinðbpÞ e�ks0

ðks0Þ1þb ; ð50Þ

compare Eq. (34). The corresponding Gm
b ðsÞ function is

given by

Gm
b ðsÞ ¼

0 if s < s0;

1
p exp 1� s

s0
� 1

� �b
cosðbpÞ

� �

� sin s
s0
� 1

� �b
sinðbpÞ

� �
otherwise.

8>>>>><
>>>>>:

ð51Þ
In conclusion, the ‘‘slowest-than-exponential’’ character
is preserved (for b < 1) in the modified Kohlrausch func-
tion, and only the unwanted ‘‘faster-than-exponential’’
initial part of the original Kohlrausch function is sup-
pressed. Additionally, the decay can be converted into
a super-exponential one by taking b > 1. For large b,
it becomes of the exponential of an exponential type.

5.2. Origin of times at t0 > s0

The choice of t = s0 as the origin of times for the
modified stretched exponential is a natural one. How-
ever, any time larger than s0 can also be selected, and
may prove to be a better choice in case of experimental
fits. If this time is denoted by t0, and if a dimensionless
parameter a is defined,

a ¼ t0
s0
; ð52Þ

then

IðtÞ ¼ exp ab � aþ t
s0

� �b
" #

; ð53Þ

and the time-dependent rate coefficient and distribution
of rate constants are

kðtÞ ¼ b
s0

aþ t
s0

� �b�1

; ð54Þ

Hm
b ðkÞ ¼ expðab � aks0ÞHbðkÞ. ð55Þ

The decay is thus initially single exponential with a
lifetime

s ¼ s0
a1�b

b
; ð56Þ

and the decay can be rewritten

IðtÞ ¼ exp ab 1� 1þ 1

babs

� �b
" #( )

. ð57Þ

For large a, the decay is single exponential for most of
the time window, and becomes of the stretched exponen-
tial type only for very long times. As can be seen from
Eq. (55), an increase in parameter a narrows and shifts



Fig. 6. Distribution of rate constants (probability density function) for
the modified Kohlrausch decay law, Eq. (55), with b = 0.5 and fixed s
(Eq. (56)). The number next to each curve is the respective a.
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the distribution of rate constants to the left. For very
large a, an almost pure exponential decay is recovered,

Hm
b ðkÞ ’ d k � b

a1�bs0

� �
. ð58Þ

This behaviour is shown in Fig. 6 for b = 1/2.
6. Conclusions

In this paper, the Kohlrausch (stretched exponential)
decay law was analyzed in detail. This decay law is
known to describe well the luminescence decay of sev-
eral classes of systems, and has in some cases a strong
theoretical basis. Analytical and approximate forms of
the distribution of rate constants of the Kohlrausch
law were given, including several new results. Computa-
tion of the distribution of rate constants H(k) by means
of Eqs. (30), (31) or (37) is a simple and reliable proce-
dure, dispensing the use of numerical inversion methods
subject to considerable error. A simple and flexible gen-
eralization of the Kohlrausch decay law that eliminates
shortcomings of the original form was introduced. Gen-
eral results concerning the relation between decay law
and distribution of rate constants were also obtained.
Appendix A. Calculation of Eq. (31)

For simplicity, we make the change of variable T =
t/s0 in Eq. (2), which becomes

IðT Þ ¼ expð�T bÞ. ðA:1Þ
The inverse Laplace transform of the stretched exponen-
tial is obtained by direct application of the Bromwich
integral,

HðKÞ ¼ lim
e!0

1

2pi

Z eþi1

e�i1
IðT ÞeKT dT

¼ lim
e!0

1

2pi

Z eþi1

e�i1
expð�T b þ KT Þ dT . ðA:2Þ
This integral implies integration along an axis parallel to
the imaginary axis. For this purpose, T is rewritten as
T = x + iy, where x and y are the real and imaginary
parts of the complex number T. In Eq. (A.2), x = e
and therefore dT = i dy.

The complex number T can be written in polar coor-
dinates as T =reiu, where u is the polar angle (in Eq.
(A.2), �p/2 < u < p/2) and r is the absolute value of T
(r = |T| = e/cosu). In polar coordinates, y = etanu and
dy = (e/cos2u) du. The integral (A.2) becomes

HðKÞ ¼ lim
e!0

1

2p

Z p=2

�p=2

� exp � e
cosu

� �b

eibu þ K
e

cosu
eiu

" #
e

cos2u
du.

ðA:3Þ

Using twice the equation eiw = cosw + isinw, Eq. (A.3)
is changed into

HðKÞ ¼ lim
e!0

1

2p

Z p=2

�p=2
exp Ke� e

cosu

� �b

cos bu

" #

� ðcos c� i sin cÞðcos aþ i sin aÞ e
cos2u

du;

ðA:4Þ

where c = (e/cosu)b sinbu and a = ketanu. Note that
c and a are odd functions of u. Taking into account
the identities cos (c � a) = cosc cosa + sinc sina and
sin (a � c) = sina cosc � cosa sinc, Eq. (A.4) can be
rewritten as

HðKÞ ¼ lim
e!0

1

2p

Z p=2

�p=2
exp Ke� e

cosu

� �b

cos bu

" #

� ½cosðc� aÞ þ i sinða� cÞ� e
cos2u

du. ðA:5Þ

In Eq. (A.5), both the exponential term and cos (c � a)
are even functions of the angle u, while sin (a � c) is
an odd function. Integration of the odd function in the
interval [�p/2, p/2] gives zero, and the integrals of the
even function in the intervals [�p/2, 0] and [0, p/2] are
equal, hence

HðKÞ ¼ lim
e!0

1

p

Z p=2

0

exp Ke� e
cosu

� �b

cos bu

" #

� cos
e

cosu

� �b

sin bu� Ke tanu

" #
e

cos2u
du.

ðA:6Þ

To take the limit in Eq. (A.6), let us change the
variable of integration according to u = etanu. Using
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1/cos2u = 1 + tan2u and du = (e/cos2u) du, Eq. (A.6)
becomes

HðKÞ ¼ lim
e!0

1

p

Z 1

0

exp Ke� e2 þ u2
� �b=2

cos bu
h i

� cos e2 þ u2
� �b=2

sin bu� Ku
h i

du. ðA:7Þ

In this equation, the angle u is a function of u. As it can
be seen from the definition of variable u (u = etanu), for
any finite value of u, u ! p/2 when e! 0. Therefore, we
obtain finally

HðKÞ¼ 1

p

Z 1

0

exp �ub cos
bp
2

� �� �
cos ub sin

bp
2

� �
�Ku

� �
du.

ðA:8Þ

For a derivation of Eq. (A.8) without contour integra-
tion see [70].
Appendix B. Calculation of Eq. (37)

The integral (A.2) can be approximately calculated by
the method of steepest descent. Let us introduce the
function g(T) = �Tb + KT. The method consists in find-
ing the extremum g(T0) of g(T) and then in expanding
g(T) in a Taylor series around T0 up to the second order.
This gives

HðkÞ � 1

2pi
expðgðT 0ÞÞ

Z eþi1

e�i1

� exp
1

2
g00ðT 0ÞðT � T 0Þ2

� �
dT ; ðB:1Þ

i.e.,

HðkÞ � 2pg00ðT 0Þ½ ��1=2
expðgðT 0ÞÞ. ðB:2Þ

The parameter T0 is obtained from g 0(T) = 0 and
is equal to (b/k)1/(1 � b), therefore g(T0) = �(1 � b)
bb/(1 � b)/Kb/(1 � b) and g00(T0) = b(1� b)(K/b)(2 � b)/(1 � b).
Thus, we get finally

HðKÞ � b1=½2ð1�bÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� bÞ

p 1

Kð1�b=2Þ=ð1�bÞ

� exp � ð1� bÞbb=ð1�bÞ

Kb=ð1�bÞ

" #
. ðB:3Þ

This approximate distribution was first obtained in [71]
together with two additional terms which were intended
to increase the precision of Eq. (B.3).
Table 2
Fitting parameter A in Eq. (2.4)

b 0.2 0.3 0.4 0.5

A 0.1547 0.195 0.234 0.282

The precision of A is estimated as ±0.0005 for b < 0.5 and up to ±0.003 for
Note that for b = 1/2 Eq. (B.3) reproduces the exact
result, Eq. (32). For other values of b, Eq. (B.3) is not
exact. This can be seen for example from a comparison
of the exact asymptote Eq. (34) with the approximate
one derived from Eq. (B.3). For large K, the exact
asymptote decreases as 1/K1 + b while the approximate
one decreases as 1/K(1 � b/2)(1 � b). For b = 1/2, the
exponents in these two equations are equal. If b < 1/2,
1 + b > (1 � b/2)/(1 � b) and the exact asymptote de-
creases faster with K. If b > 1/2, the exact asymptote de-
creases slower with K. The discrepancy between exact
and approximate functions increases with |1/2 � b|.
The situation becomes even worse if one takes into ac-
count the additional terms given in [71]. For large K
and for b = 0.8, for example, the approximate function
begins to increase with the increase of K if one takes into
account one additional term and even takes negative
values if two terms are used.

Owing to these facts, the empirical formula

H 0ðKÞ ¼
A

Kð1�b=2Þ=ð1�bÞ exp �ð�bÞbb=ð1�bÞ

Kb=ð1�bÞ

" #
; ðB:4Þ

that differs from Eq. (B.3) only by numerical coefficients,
will be used. In Eq. (B.4), the numerical coefficient A is
obtained from the best fit of Eq. (B.4) to the exact func-
tion, Eq. (31), for small and intermediate values of K.
Values of A are given in Table 2.

The function H0(K) can be used to obtain the decay
law using Eq. (1). The difference between approximate
and exact decays is observed only for short times owing
to the incorrect value of H0(K) for large values of K.

The approximate function given by Eq. (B.4) can be
significantly improved by imposing the correct asymp-
totic behaviour, Eq. (34). For this, we multiply Eq.
(B.4) by a correction function, f(K) that corrects the
asymptotic behaviour but does not change H(K) for
small K. In this way, a new approximate distribution,
H(K), must be proportional to H0(K)f(K) and has as
asymptote �1/K1 + b, with f(K) � 1 for small K. Thus,
the corrected approximate distribution, H(K), is

HðKÞ ¼ B

Kð1�b=2Þ=ð1�bÞ exp �ð1� bÞbb=ð1�bÞ

Kb=ð1�bÞ

" #
f ðKÞ;

ðB:5Þ

where the empirical correction function, f(K), has a sim-
ple form
0.6 0.7 0.8 0.9

0.340 0.413 0.529 0.779

b > 0.8.
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f ðKÞ ¼ 1=ð1þCKdÞ; d¼ bð0.5� bÞ=ð1� bÞ; b6 0.5;

1þCKd; d¼ bðb� 0.5Þ=ð1� bÞ; bP 0.5.

(

ðB:6Þ
Exponent d in this equation was obtained from the
condition that H(K) must have the asymptotic form
1/K1 + b: (1 � b/2)/(1 � b) ± d = 1 + b, where the signs
+ and � stand for b < 0.5 and for b > 0.5, respectively.
Parameters B and C are fitting parameters. They are ob-
tained in order to provide the best fit to the exact distri-
bution of rate constants (in a wide range of K values
around the maximum of the distribution) and to the de-
cay law. Values of the exponent d and of parameters B
and C are given in Table 1. For this kind of fit, the
numerical coefficient in the asymptotic form of H(K)
does not coincide with the exact one, (1/p)
sin (bp)C(1 + b), see Eq. (34). One can check that H(K)
reproduces the distribution and the decay law with high
accuracy, although the normalization condition for
H(K) is fulfilled with a precision higher than 10% for
b = 0.1 and 0.2 and higher than 5% for other values of
b. A second method for the computation of H(K), based
on the numerical evaluation of its series expansion, Eq.
(34), is described in detail in [72].
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