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The classical and the quantum mechanical description of a one-dimensional motion
of a particle in the presence of a gravitational field is thoroughly discussed. The
attention is centered on the evolution of classical and quantum mechanical position
probability distribution function. The classical case has been compared with three
different quantum cases: (a) a quantum stationary case, (b) a quantum non-stationary
zero approximation case, where the wave packet has the shape of the first eigenfunction,
and (c) a quantum non-stationary general case, where the wave packet is a superposi-
tion of stationary states.
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1. Introduction

Textbooks and pedagogical articles on quantum mechanics present vari-
ous formulations for the connection between the Schrödinger wave function and
the classical motion of particle [1]. For free particles Gaussian wave packets
constructed from plane wave solutions are frequently discussed as an analytic
example. For bound states, instead, wave packet solution for the harmonic oscil-
lator problem can be constructed, which exhibit the classical periodicity of the
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particle motion. Numerical solutions of the Schrödinger equation representing
wave packet scattering events have extensively been studied and they help to visu-
alize the time dependence of such interaction [1–4].

A familiar approach for stationary state solution is to compare the proba-
bility density, given by P (st)

qu (x, n) = |ψn(x)|2, with a classical probability distri-
bution, Pcl(x), and show that the two probabilities approach each other in the
limit of large quantum number n, and this is often done using the harmonic
oscillator as an example. The agreement between the classical and the modified
quantum probability densities [2], Pqu(x), is very good. In fact, quantum effects
become noticeable only in the region near the potential barrier, where the parti-
cle can penetrate through the barrier. The great attention devoted to the simple
harmonic oscillator in classical, statistical, and quantum mechanics is certainly
due to its direct connection with important physical systems from elementary
classical mechanics to quantum field theory.

An important example of linear potential is the gravitational field, which
plays an interesting role in our life, as has recently been underlined for the case
of a gas in a gravitational field [5–7]. The last of these articles concerned the
effect that a constant gravitational field had on the existence and position of the
liquid–vapor boundary of a pure classical fluid. Here, the cases of a perfect gas
and incompressible liquid model, as well as of a van der Waals fluid model were
analysed. Linear potentials are also important in the field of elementary particle
physics, in fact, it is argued that at large separations the quark–antiquark inter-
action is described by a linear potential.

The solution of the Schrödinger equation for particle bouncing on per-
fectly reflecting surface under the influence of gravity, known as “The quantum
bouncer” problem [8], is discussed in a number of textbooks. The study of the
dynamics of a bouncing wave packet, initially Gaussian in shape, in a linear
potential is very interesting from a pedagogical standpoint, as it underlines some
of the differences between classical and quantum dynamics [8–16]. The classi-
cal motion is periodic, since no energy dissipation is assumed to take place, and
it repeats itself indefinitely, while the quantum motion is aperiodic, and exhib-
its interesting collapses and revivals of the oscillations, similar to those observed
in many other quantum systems. In spite of this, there is a clear correspondence
between the classical and quantum limits.

The subject of this paper will be to draw a comparison between the clas-
sical, Pcl(x), and the modified quantum probability densities, Pqu(x), which,
so far, have not been compared. Some aspects of the quantum boucer prob-
lem have practical implications, e.g., the condensation phenomena of an ideal
Bose–Einstein gas [17,18], and the observation of quantum states of neutrons
in Earth’s gravitational field [19]. In recent years, the development of high preci-
sion techniques to cool and manipulate atoms and neutrons allowed to develop
an experimental version of the simple quantum bouncer [20 and references
therein].
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Last but not least, the exact solution of the Schrödinger equation in a lin-
ear potential is connected with name of an outstanding scientist, who lived well
before Schrödinger, George Biddel Airy. For the interested reader a short biblio-
graphic note is given at the end of the paper.

2. Classical description

2.1. Equation of motion

The potential energy of a particle of mass m in a gravitational field point-
ing in the −x direction, where it is subjected to a constant force (F (x) = mg),
is given by

V (x) = mgx, (1)

where g is the gravitational acceleration. In classical mechanics, the equation of
particle motion reads

d2

dt2
x(t) = −g. (2)

If the particle is falling down from some maximum height, xmax, the classical
turning point, with zero speed

x(0) = xmax and
d
dt
x(t)|t=0 = 0 (3)

then the solution of equation (2) has the form

x(t) = xmax − gt2

2
. (4)

In the case of elastic reflection of the particle at the Earth surface (V (x) = ∞
for x < 0), the motion is periodic and is limited inside the interval [0, xmax]. The
period of this motion, T, can be obtained from the condition x(T /2) = 0, and
is equal to, T = (8xmax/g)

1/2. Maximum height, xmax, is reached at time t =
T + nT n = 0, 1, 2, . . . (see figure 1), when all kinetic energy is transferred into
potential energy, mv2

max/2 = mgxmax, i.e. xmax = v2
max/2g, where vmax is the max-

imum speed of the particle. Thus, the particle motion in the gravitation field is
periodical. With the given result, T = (8xmax/g)

1/2, equation (4) can be rewrit-
ten, within the time interval [0, T], as

x(t)/xmax = |1 − 4(t/T )2|. (5)

This function is shown in figure 1.
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Figure 1. Trajectory of particle motions in the gravitational field.

2.2. The classical position probability density

The classical position probability density for this oscillator can be obtained
by two ways. One way was described in Refs. [3,5]. The average value of a func-
tion of the position coordinate, < f (x) >, can obtained as

〈f (x)〉 = 1
T

∫ T

0
f (x(t))dt = 1

T

∫ T

0
f (x(t))

dx
dx/dt

→ 2
T

∫ xmax

0
f (x)

dx
v(x)

=
∫ xmax

0
f (x)Pcl(x)dx, (6)

where, v(x)= dx/dt , and Pcl(x)= 2/T v(x) is the classical position probability
distribution. The integral is taken between the turning points 0 and xmax that
covers to only half the period, T/2. The local speed is related to the potential
energy function via

E = 1
2
mv2(x)+ V (x), (7)

where E is total energy of the oscillator. Taking into account that E = mgxmax

and using equations: T = (8xmax/g)
1/2, Pcl(x) = 2/T v(x), and (7), one gets

Pcl(x) = 1
2

1√
xmax(xmax − x)

. (8)

But another way of obtaining the classical position probability density in
the presence of a gravitational field was suggested some years ago [2]. Pcl(x) can
be obtained as

Pcl(x) = 1
T

∫ T

0
δ(x − xmax + 1

2
gt2)dt. (9)
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This integral can be evaluated expressing the δ function of a function y(t) as [21]

δ(y(t)) =
∑
i

δ(t − ti)

|dy/dt |t=ti
. (10)

Here the sum is over all simple zeros ti of y(t). For fixed 0 < x < xmax, the
function

y(t) = x − xmax + 1
2
gt2 (11)

has two simple zeros t1,2(x−xmax +0.5gt21,2 = 0) along the interval of integration
[0, T], namely,

t1,2 = ±
√

2(xmax − x)

g
(12)

and

|dy/dt |t=t1,2 = |gt |t=t1,2 = g

√
2xmax − 2x

g
=
√

2g(xmax − x). (13)

Hence, for 0 < x < xmax, equation (9) becomes

Pcl(x)= 1
T

∫ T

0

∑
i=1,2

δ(t − ti)√
2g(xmax − x)

dt= 1
T

2√
2g(xmax − x)

= 1
2

1√
xmax(xmax − x)

.

(14)

Hence we obtain the result of the preceding paragraph [see equation (8)]. Finally,
for x < 0 and x > xmax, function (11) has no zeros in the interval [0, T], and the
integral (9) is equal to zero.

Thus, the classical position probability density for the particle in a gravita-
tional field is

Pcl(x) =
{
(1/2)[xmax(xmax − x)]−1/2, 0 < x < xmax;
0, x < 0, x > xmax.

(15)

The reader can check that the normalization condition,
∫ xmax

0 Pcl(x)dx= 1, is ful-
filled. This probability distribution is shown in figure 2 (dotted line), together
with a quantum result from section 3.
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Figure 2. Classical, Pcl(ζ ), dotted curve, and zero approximation quantum, P (0)
qu (ζ ), solid curve,

position probability densities. ζ = x
(

2m2g/–h2
)1/3

.

3. Quantum mechanical description

3.1. Schrödinger equation and stationary wavefunction

The separated time-independent Schrödinger equation for a single particle
is the same for y and z motions as in the field-free case, while for motion along
the x direction we have the equation

d2ϕ

dx2
+ 2m

–h2 (E −mgx)ϕ = 0. (16)

The stationary wavefunction ϕ(x) must obey the following boundary conditions:
ϕ(x) = 0 for x = 0 and ϕ(x) → 0 for x → ∞. With the introduction of the
following dimensionless height, and maximum height, which can also be read as
a dimensionless energy,

ζ = x

(
2m2g

–h2

)1/3

, ζE = E

mg

(
2m2g

–h2

)1/3

= xmax

(
2m2g

–h2

)1/3

(17)

the Schrödinger equation (16) can be rewritten as

d2
ϕ

dζ 2
− (ζ − ζE)ϕ = 0. (18)

The following Airy function [21] is a solution of this equation for the given
boundary condition,

ϕE(ζ ) = BE × Ai(ζ − ζE). (19)

Here, the constant BE can be obtained from the normalization condition,∫∞
0 ϕ2

E(ζ )dζ = 1.
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Table 1
Values of several roots of equation (20), of Bn, Cn, and C2

n .

n ζn B2
n Cn C2

n

1 2.3381 2.0338 0 0
12 14.5278 0.8242 0.1316 0.0173
13 15.3410 0.8021 0.2980 0.0888
14 16.1329 0.7821 0.5065 0.2566
15 16.9059 0.7640 0.6129 0.3835
16 17.6616 0.7475 0.4611 0.2126
17 18.4014 0.7323 0.1118 0.0125
18 19.1264 0.7183 −0.1224 0.0150

The wavefunction, ϕE, must obey the boundary condition ϕE(ζ = 0) = 0.
This condition allows to obtain the eigenvalues of the Schrödinger equation,
through an equation, which is equivalent to the equation for deriving the roots
of the Airy function [21–23],

J1/3

(
2
3
ζ

3/2
E

)
+ J−1/3

(
2
3
ζ

3/2
E

)
= 0, (20)

where J1/3 and J−1/3 are the Bessel functions of order 1/3 and −1/3, respectively.
Equation (20) has the following approximate solutions [9,12,18,22,23]

yn = 2
3
ζ 3/2
n

∼= π

(
n− 1

4

)
, n = 1, 2, . . . (21)

The values of several roots of equation (20) (for n � 10) can be found in Refs. [1,
2,14]. The values for n = 1 and n > 11 are shown in table 1.

The values of BEn [see equation (19)] for different n were calculated by
numerical integration of the normalization condition for ϕEn(ζ ), and are also
given in table 1. All the eigenfunctions ϕn(ζ ) = BnAi(ζ−ζn)(0 � ζ < ∞, to avoid
using many subscripts subscript E has been dropped) are dependent on the Airy
function Ai(ζ ), whose plot can be found in Refs. [2,10,14].

If the particle is in a quantum stationary state n, its position probability
density, P (st)

qu (ζ ), is obtained as

P (st)
qu (ζ ) = |ϕn(ζ )|2 . (22)

In figures 3 and 4, we plotted P (st)
qu (ζ ) (solid curves) for cases n = 0 and n = 15,

respectively. For comparison purposes, the corresponding classical expressions,
Pcl(ζ ), (dotted curves) and the classical turning points (vertical dotted lines) are
also shown. On the one hand, this comparison demonstrates the convergence of
classical and quantum predictions for large quantum numbers. It is easy to note
that there is still a large difference between two distribution functions, Pcl(ζ ) and
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Figure 3. Classical (Pcl(ζ ), dotted curve) and quantum (P (st)
qu (ζ ), for a particle in quantum

stationary state n = 0, solid curve) position probability densities.
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Figure 4. Classical (Pcl(ζ ), dotted curve) and quantum (P (0)
qu (ζ ) and P (st)

qu (ζ ), for a particle in
quantum stationary state n = 15, solid curves) position probability densities.

P
(st)
qu (ζ ), due to oscillations P (st)

qu (ζ ). The same problem was discussed in Ref. [11]
in connection with a harmonic oscillator. The reason of the noticeable differ-
ence being that the comparison is based on states of different quality. In fact, the
probability density associated with the classical oscillation in gravitational field,
whose height over the Earth is xmax and which has a non-stationary state charac-
ter, is compared with the position probability density of a quantum state that is
stationary in character. Clearly, stationary quantum states cannot be the quan-
tum analog of the classical state. The comparison should then be done between
a classical non-stationary state and a suitable quantum non-stationary state. A
suitable quantum non-stationary state is a wave packet moving in the gravita-
tional field as the classical particle.

3.2. The wave packet in a gravitational field

In a paper by Brown and Zhang [14] a recipe is given for the constrac-
tion of the explicit time development of any initial wave packet under a constant
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force (without a “floor”, unlimited motion in interval −∞ < x < +∞). Let us
first note that the narrowest wave packet obeying the non-stationary Schrödinger
equation,

i–h
∂

∂t
ψ(x, t) =

(
−

–h2

2m
∂2

∂x2
+mgx

)
ψ(x, t) (23)

can be written as

ψ(x, t) = exp
(

− i
–h
E1t

)
ϕ1(x), (24)

where E1 and ϕ1(x) are the first (n = 1) eigenvalue and eigenfunction of the sta-
tionary Schrödinger equation (16), respectively. Let us now assume that

φ(x, t) = −mgxt −mg2t3/6, (25)

Let ϕ0(x) be the initial wave packet centered at some height, and ϕ0(x − v0t, t)

be the description of the free-particle motion (i.e., the motion in the absence of
gravitational field) with speed v0, then, according to Ref. [14], the wave packet

ψg(x, t) = exp
{
i
–h
φ(x, t)

}
ϕ0
(
x + gt2/2, t

)
(26)

will be peaked at −gt2/2 and will obey the non-stationary Schrödinger equation
(23), i.e., it will move as a classical particle in gravitational field [in equation
(26), the initial speed, v0, is supposed to be equal zero]. If ϕ0(x) has a Gauss-
ian shape, then the analytical solution for ψg(x, t) is known [1,16]. Indeed this
wave packet, |ψg(x, t)|2, moves as a classical particle but the width of this packet
increases with time (∼ t). In the presence of a “floor” (i.e., a wall, V (x) = ∞ for
x < 0), the time development of the wave packet changes significantly. Due to
the interference of the falling and reflected parts of the wave packet, oscillations
in the shape of the function |ψg(x, t)|2 near the wall will appear [1,15,16]. Note
that in a harmonic potential, the Gaussian wave packet moves as a classical par-
ticle and there is an initial condition for which the shape of this packet does not
change with time [1,2]. The motion of the wave packet in an infinite square well
also coincides with the motion in the classical case but here the shape of wave
packet changes with time [1,4].

3.3. The zero approximation to quantum position probability density

The quantum position probability density, Pqu(x), for the periodical motion
can be calculated as [2]

Pqu(x) = 2
T

∫ T/2

0

∣∣ψq(x, t)∣∣2 dt. (27)
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As a zero approximation, let us suppose that the motion of a wave packet in
a gravitational field in the presence of the wall is periodic and that this packet
does not change its shape with time, like in the harmonic case. Here, we will
assume that this wave packet has the shape of the first eigenfunction, ϕ1(x)

(i.e., the initial wave packet is the narrowest), but is localized at some height
above the “floor”. We will assume that this height is equivalent to some eigen-
value ζn (see equation (17)). Then taking into account that all the eigenfunctions
ϕn(ζ ) = BnAi(ζ − ζn)(0 � ζ < ∞) are pieces of the Airy function, we get (in the
variable ζ )

ψg(ζ, t = 0) = ϕ0(ζ ) =
{

0, 0 � ζ < ζn − ζ1

(B1/Bn)ϕn(ζ ) = B1Ai(ζ − ζn), ζn − ζ1 � ζ.
(28)

Then according to equations (26) and (27), we have for the zero approximation

P (0)qu (x) = 2
T

∫ T/2

0
ϕ2

0(x + gt2/2)dt. (29)

Now, introducing the dimensionless time τ = 2t/T and x(qu)
max = gT 2/8, equation

(27) can be rewritten as

P (0)qu (x) =
∫ 1

0
ϕ2

0

(
x + x(qu)

max τ
2)dτ. (30)

Finally, proceeding to the variable ζ (see, equation (17)) and taking into account
the connection of the wave and Airy functions (19), we obtain

P (0)qu (ζ ) =
∫ 1

0
ϕ2

0

(
ζ + ζ (qu)

max τ
2)dτ. (31)

This zero approximation to quantum position probability density can be
calculated numerically. In figure 2 we plotted P

(0)
qu (ζ ) (solid curve) for cases

n = 15
(
ζ
(qu)
max = 14.568

)
. The corresponding classical expressions, Pcl(ζ ), (dotted

curves) and the classical turning point, ζ (cl)
max = ζ15, (vertical dotted line) are also

shown. The used value for ζ (qu)
max corresponds to the quantum number n = 15 and

was obtained in the following way: at time t = T/2 (or at τ = 1), the initial wave
packet (28) is coincident with the first eigenfunction, ϕ1(ζ ) = B1Ai(ζ − ζ1), i.e.,
B1Ai(ζ + ζ

(qu)
max τ

2 − ζn) |τ=1 = B1Ai(ζ − ζ1), and in this case, ζ (qu)
max + ζ1 = ζ15.

The difference between ζ
(qu)
max and ζ15 reflects the fact that the minimum energy

of quantum particle in the gravitational field with “floor” is equal E1 (or ζ1 in
dimensionless variables). Figure 2 allows a direct comparison between the clas-
sical position distribution and the zero approximation to the quantum distribu-
tion.
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3.4. The approximate quantum position probability density

Let us write the wave function (the wave packet) (26) as a superposition
(with coefficients Ck) of the stationary states (19) of the oscillator in the grav-
itational field,

ψg(x, t) =
∑
k

Ckϕk(x) exp
(

−1
–h
Ekt

)
. (32)

Then

∣∣ψg(x, t)∣∣2 =
∑
m,k

CmC
∗
k ϕm(x)ϕ

∗
k (x) exp

(
−1

–h
(Em − Ek)t

)
. (33)

For the quantum position probability density, we obtain

Pqu(x) = lim
T0→∞

1
T0

∫ T0

0

∣∣ψg(x, t)∣∣2 dt =
∑
k

|Ck|2 ϕ2
k (x). (34)

As the probability density Pqu(x) has to be normalized, the coefficients Ck will
obey the condition:

∑
k

|Ck|2 = 1.

For the full time-dependent solution (32) one needs the expansion coeffi-
cients Ck, which depend on the initial condition. Assuming, for the expansion
coefficients Ck, the initial condition of equation (28), we will have

Ck =
∫ ∞

0
ϕk(ζ )ψg(ζ, 0)dζ = B1

∫ ∞

ζn−ζ1

ϕk(ζ )Ai(ζ − ζn)dζ. (35)

Coefficients Ck were calculated numerically, their values are shown in table 1. At
the initial conditions of equation (28), we can suppose that the dominant term
in the series (34) is the term with k = n. Thus, as a first crude approximation we
can write (introducing again the dimensionless parameter, ζ )

Pqu(ζ ) ≈ P (st)
qu (ζ ) = ϕ2

n(ζ ). (36)

This function is shown in figure 4 for n = 15. If we include in the approximation
the terms with index k = n ± 1 and provide for the correct normalization, then
the approximation, P (3)qu (ζ ), to relation (34) becomes

Pqu(ζ ) ≈ P (3)qu (ζ ) = (|Cn−1|2 + |Cn|2 + |Cn+1|2
)−1

1∑
i=−1

|Cn+i |2 ϕ2
n+i(ζ ) (37)

what, according to figure 5 (n = 15), approaches to equation (15) somewhat bet-
ter than equation (36).
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Figure 5. Classical (Pcl(ζ ), dotted curve) and quantum (P (0)
qu (ζ ), dashed curve, and P (3)

qu (ζ ),
C14 = 0.5065, C15 = 0.6129, C16 = 0.4611, solid curve) position probability densities.
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Figure 6. Classical (Pcl(ζ ), dotted curve) and quantum (P (0)
qu (ζ ), dashed curve, and P (7)

qu (ζ ),

C12 = 0.1316, C13 = 0.2980, C14 = 0.5065, C15 = 0.6129, C16 = 0.4611, C17 = 0.1118, C18 = − 0.1224,
solid curve) position probability densities.

If we yet include the terms with indexes k = n±2, n±3 and provide, again,
for the correct normalization, we obtain the approximation P (7)qu (ζ ),

Pqu(ζ ) ≈ P (7)qu (ζ ) =
(

3∑
i=−3

|Cn+i |2
)−1 3∑

i=−3

|Cn+i |2 ϕ2
n+i(ζ ). (38)

According to figure 6 (n = 15), the probability density P (7)qu (ζ ) approaches to equa-
tion (15) somewhat better than equation (37). Including more and more terms, we
would eventually approach the exact position probability density (34). Note that the
other coefficients are rather small (|Cn±i

| < 0.1 for n = 15 and i > 3). Our calcu-
lations show that their inclusion (up to i = 10) into series (34) does not noticeably
change the approximation (38). It seems that the probability density P (7)qu (ζ ) gives
the correct approximation to (34). The oscillations near the wall (“floor”) reflect
the interference of falling and reflected waves. These oscillations can also be seen
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throughout the figures of wave packet propagation in gravitational field near the
wall (i.e., see figures 3 and 4 in Ref. [15] and figure 1 in Ref. [16]).

For larger energies (larger n, classical limit), the amplitude of oscillation of
Airy functions near the wall decreases [22,23], so the quantum and classical posi-
tion probability functions become increasingly similar (with the exception of the
space interval near the classical turning points).

4. Conclusions

Many interesting conclusions can be drawn from these results. First of all,
comparison between the classical and the quantum case obliges to differentiate
between two different quantum cases (a) a quantum stationary case and (b) a
quantum non-stationary case. This last case, then, allows for two approximate
solutions (a) the zero approximation to the quantum position probability den-
sity, where the wave packet has the shape of the first eigenfunction, and (b) a
more general approximate solution to the quantum position probability func-
tion, where the wave packet is a superposition of several stationary states. A
direct comparison among the four cases for the position probability function,
i.e., the classical case, the stationary quantum case, the non-stationary quantum
zero case, and the non-stationary quantum superposition case, let us conclude
that (i) the classical case shows, as usual, that the probability density is peaked
at the turning point, where the speed of the particle is zero (figure 2, dotted line).
The (ii) quantum stationary case shows that (a) it diverges from the classical
solution at the reflection point, where oscillations are evident and (b) at the clas-
sical turning point, where the particle can penetrate through the potential bar-
rier (figure 4, the wavy-line). The (iii) quantum non-stationary zero case, even
if it is a rather crude approximation, as it does not include the interference of
the falling and reflected waves, shows a quantitative agreement with the previ-
ous quantum case in the mid-distance and near the classical turning point (fig-
ure 4, solid non-wavy-line). The (iv) quantum non-stationary superposition case
shows that in the mid-distances it resembles the classical case, while at the classi-
cal turning point it show the well-known quantum penetration through the bar-
rier, and at the short-distances, near the “floor”, shows the existence of interfer-
ence between falling and reflected waves (figure 6, wavy-line). Further, when the
energy of quantum particle increases the quantum superposition solution seems
to approach the classical case, because the amplitude of the oscillations decrease
near the “floor” and the width of quantum distribution near the classical turning
point decreases in comparison to the full allowed distance of the motion (xmax).

5. Bibliographical note

George Biddell Airy was born on July 27, 1801 and died on January 2,
1892. He was the seventh Astronomer Royal from 1835 to 1891 and a very
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versatile scientist. For his scientific achievements he was knighted in 1872. He
reorganized the Royal Greenwich Observatory. Airy improved the theory of orbi-
tal motions of Venus and of the Moon. In 1827 he did the first attempt to cor-
rect astigmatism in the human eye by use of a cylindrical eyeglass lens. In 1838
he devised a compass-correction system for the Royal Navy. In 1854 he measured
gravity by swinging a pendulum at the top and at the bottom of a deep mine
and thus computed the density of the Earth. We should note that the value he
obtained was too large by a fair amount. In 1871 he used a water-filled telescope
to test the effect of the Earth’s motion on the aberration of light. He contributed
also, in optics, to the study of interference fringes and to mathematical theory
of rainbows. The Airy disk, the central spot of light in the diffraction pattern
of a point light source, is named after him. He was among the first to propose
(c. 1855) the theory that root structures of lower density must exist under moun-
tains to maintain isostatic equilibrium. Airy went on a number of scientific expe-
ditions to study the eclipse including Turin in 1842, Sweden in 1851 and Spain in
1860. He was an opponent of Charles Babbage. When the Government was con-
sidering funding Babbage’s calculating engine, the Government asked Airy what
would be the value of such a device. Airy answered with one word: worthless.

The Airy function is the solution of differential equation:

y ′′ − xy = 0. (39)

There are two independent solutions: Ai(x) approaches to zero for large x, and
Bi(x) goes to infinity for larger x. The Airy function is found as solution to
boundary value problems in quantum mechanics and electromagnetic theory.
The story of this function starts in France. It was known that France was build-
ing a new huge telescope. The French instrument, actually, was so overweight
that its longitudinal axis was deflected into a curve which affected more than
heavenly bodies and thus rendered the telescope useless. When Airy knew about
this problem he immediately wrote out something about it: a state of plane strain
in a two-dimensional solid, free from body forces, may be specified by three mutu-
ally orthogonal stress components. These may be stated as first-order differential
equation. If the three stress components are equal to the appropriate second order
partial derivatives of an arbitrary function, then satisfy the equilibrium conditions.
In spite of the fact that Airy spoke in italics he was well-understood for the func-
tion to be called an Airy function.
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