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Photon Trajectories in Incoherent Atomic Radiation Trapping as Lévy Flights
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Photon trajectories in incoherent radiation trapping for Doppler, Lorentz, and Voigt line shapes under
complete frequency redistribution are shown to be Lévy flights. The jump length (r) distributions
display characteristic long tails. For the Lorentz line shape, the asymptotic form is a strict power law
r�3=2, while for Doppler the asymptotic is r�2�lnr��1=2. For the Voigt profile, the asymptotic form
always has a Lorentz character, but the trajectory is a self-affine fractal with two characteristic
Hausdorff scaling exponents.
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Interest in distributions with long tails has increased
over the last years, with intensive search for such laws in
real physical systems. Most of the basic work on these
distributions was carried out by Lévy in the 1930s [1], but
it was only recently that these distributions were shown to
be applicable to the description of a number of physical,
biological, and social phenomena [2–5], including parti-
cle motion in turbulent media [2,3,6], anomalous diffu-
sion in microheterogeneous systems [7], chaotic transport
in laminar fluid flow [8], the albatross flight [9], and
frequency fluctuations of chromophores isolated in glassy
environments [10]. The purpose of this Letter is to show
that photon trajectories in incoherent radiation trapping, a
basic and common phenomenon in atomic and atmos-
pheric physics, and in astrophysics, fit in the category of
Lévy (superdiffusive) flights.

Although ‘‘the general trend nowadays is to put Lévy-
type anomalous (super)diffusion on a similar footing
with normal, Brownian-type, diffusion’’ [11], the actual
physical systems invoked to justify the practical impor-
tance of Lévy flights in physical space tend to be
somewhat marginal [3]. This contribution aims to prove
that the well-known case of classical incoherent radiation
trapping is one of the simplest and best characterized
Lévy flights found up to now. In addition, radiation trap-
ping has a major role in fluorescent lamps and this could
make radiation trapping the economically most relevant
concretization of a Lévy flight. In retrospect, the 1990 Ott
et al. [7] contribution on the superdiffusion in micro-
heterogeneous systems can no longer be considered the
first experimental realization of a random flight with
infinite moments, given that it was preceded by many
studies of radiation trapping.

Radiation trapping of energy is important in areas as
diverse as stellar atmospheres [12], plasmas and atomic
vapors luminescence [13], terrestrial atmosphere and
ocean optics, molecular luminescence [14], infrared ra-
diative transfer, and cold atoms [4]. In these optically
thick media, the emitted radiation suffers several reab-
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sorption and reemission events before eventually escaping
to the exterior; the radiation is said to be imprisoned
or trapped. Atomic radiation trapping is also known as
imprisonment of resonance radiation, line transfer, ra-
diation diffusion, or multiple scattering of resonance
radiation.

The first quantitative theory for atomic radiation trap-
ping was presented in the 1920s by Compton and Milne,
who developed a modified diffusion equation for the
(frequency) coherent spreading of excitation. It was only
in 1932 that the frequency redistribution between absorp-
tion and reemission was taken into account by Kenty [15].
He considered a Doppler spectral distribution and arrived
at the unexpected result that, for an infinite medium, the
diffusion coefficient would be infinite. This was the first
realization of the fundamental fact that all moments of
the jump size distribution are infinite. Kenty’s result
shows that a diffusion-type equation is not valid for
radiation trapping with frequency redistribution effects.
Nevertheless it was only in 1947 that Holstein and
Biberman independently proposed a Boltzmann-type
integro-differential equation [16], which remains the
starting point of the vast majority of radiation trapping
models [13].

Consider the case of inelastic scattering where, as the
result of reabsorption/reemission events there is a photon
frequency redistribution in the laboratory reference
frame. The frequency distribution of the emitted photons
is given by the emission spectrum ��x�. The absorption
probability of a photon with frequency x at a given
distance from the emission point depends on the absorp-
tion spectrum ��x�, and is given by p�rjx� � ��x�e���x�r

(Beer-Lambert law) where r is the opacity or optical
density and is a dimensionless distance. Radiation trap-
ping can then be envisaged as a random flight in physical
space with spectral shape dependent jump size distribu-
tion. The jump size distribution takes into account the
absorption probability for all possible optical emission
frequencies, hence
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FIG. 1. Jump size distribution for CFR Doppler, Lorentz,
and Voigt spectral profiles. From bottom to top: Doppler, Voigt
with a � 10�4, 10�3, 0.01, 0.05, 0.1, and Lorentz.
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p�r� �
Z �1

�1
��x�p�rjx�dx: (1)

Equation (1) fully characterizes the spatial aspects of the
random flight.

The moments of this distribution are

hrni � n!
Z �1

�1

��x�
�n�x�

dx (2)

and can be shown to be infinite for all physical reasonable
atomic emission and absorption spectral distributions as
concluded by Holstein [16]. His original analysis [16]
only included classical incoherent trapping, in which
the emitting state is statistically unrelated with the ab-
sorbing one and therefore there is complete frequency
redistribution (CFR). In this case the absorption and
emission spectra are identical and Eq. (1) reduces to

p�r� �
Z �1

�1
�2�x�e���x�rdx: (3)

Nevertheless, it can be concluded from Eq. (2) that the
case of partial frequency redistribution is also charac-
terized by an infinite moments Lévy statistic. The case of
partial frequency redistribution is especially important
in an astrophysical context. Neither case of complete
coherent nor complete incoherent scattering is achieved
exactly in stellar atmospheres, and it is then necessary to
consider the photon redistribution and to calculate redis-
tribution functions which will give ��x� [12]. In the usual
laboratory conditions, vapor densities are high enough for
CFR to apply [13]. This will be the case considered
here. In two-level CFR atomic models both absorption
and emission spectra can be described by Doppler,
�D�x� �

1���
�

p e�x2 , Lorentz, �L�x� �
1
�

1
1�x2 , or Voigt,

�V�x� � a=3=2
R
�1
�1 e�u2=�a2 � �x� u�2�du, spectral

distributions. x is a normalized difference to the center
of line frequency and a is the Voigt characteristic width.

We now consider the asymptotic approximations valid
for large jump sizes. A random flight in which the proba-
bility density of jump lengths is given by

p�r� 
r!1

1

r�1���
(4)

with �< 2, is a self-similar random fractal with fractal
dimension �. It is called a Lévy flight after Mandelbrot
[17], and defines a broad distribution for which all the
moments of order not smaller than � are divergent. If
��x� is substituted for ��x� in Eq. (2) above, it is found
that hri � 1, whatever the spectral line shape used, as
long as ��x� is nonzero for large jxj. In this way, � � 1
for any ��x�. In order to find the specific value of � for
the spectral distributions mentioned, we begin by rewrit-
ing Eq. (3) as

p�r� � �
d2J�r�

dr2
(5)
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where

J�r� �
Z �1

�1
�1� e���x�r�dx: (6)

When the line shape is Gaussian (Doppler), the inte-
grand in Eq. (6) approaches a square wave form for large
r, with inflection points at �x0 and x0 with ��x0�r ’ 1.
Hence, x0 �

�������
lnr

p
for large r, J�r� ’ 2x0 � 2

�������
lnr

p
, and

therefore, from Eq. (5),

p�r� 
r!1

1

r2�lnr�1=2
: (7)

Assuming a homogeneous scaling law one arrives at an
effective � � 1� 1=2ln�ln�r��=ln�r� which goes to 1 for
r ! 1: although the asymptotic of Eq. (4) is only ap-
proximately valid, one can nevertheless classify Doppler
trapping as a strict Lévy flight with � � 1 with all the
moments of the jump distribution being infinite.

When the line shape is Cauchy-like (Lorentz), the
integrand in Eq. (6) can be simplified to 1�
exp����x�r� ’ 1� exp�� r

�x2
� for large r and J�r� be-

comes 2
���
r

p
. Therefore,

p�r� 
r!1

1

r3=2
(8)

and the asymptotic distribution is a Lévy flight with
� � 1=2.

The Voigt distribution is asymptotically coincident
with the Lorentz distribution, and therefore has also � �
1=2 for any value of its parameter a. Equations (7) and (8)
were already implied in Holsteins’s 1947 contribution
(original equations are, up to some minor terms, inte-
grated versions of the equations in this Letter), a fact
hitherto unnoticed in the literature.

Figure 1 shows the jump probability obtained from
direct numerical integration of Eq. (3). A linear fit gives
for the characteristic ‘‘tail index’’ (Hausdorff box count-
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ing), fractal dimension (�) of the Doppler distribution
� � 1:07 ( jump sizes 103–104), and for the Lorentz case
� � 0:500 ( jump sizes 105–108), in agreement with pre-
vious assertions. Fig. 1 also shows that the continuous
transformation from Doppler into Lorentz-like spectra as
the Voigt a width parameter changes from zero into
infinite values does not manifest itself in a continuous
change of the effective, r dependent, � values. There is an
abrupt change instead at a jump distance which scales
approximately as 1=a. This is expected as the asymptotic
expansion is related to the most extreme values of the
wings of the spectral distribution and these change
abruptly from Doppler to Lorentz-type asymptotics for
a values as low as 10�4 (see Fig. 2). The data in Figs. 1 and
2 allow one to define the Voigt radiation trapping trajec-
tories as a self-affine fractal with two different scaling
exponents which manifest themselves at different length
scales.

Consider now Fig. 3 which shows single excitation
trajectories in a 3D infinite medium (compare
Mandelbrot’s well-known figure [17]). The Lorentz and
Doppler cases display the two qualitative features char-
acteristic of Lévy flights: (i) the longer path length jumps,
although much less common, are of paramount impor-
tance to the overall spreading of excitation and, (ii) self-
similar behavior. There is a hierarchy of clusters formed
at different length scales but with similar topology. The
set of visited points constitute a fractal of characteristic
dimension � for the Doppler and Lorentz distributions
[2,3,6]. The Voigt case shows its self-affine nature. The
trajectory topology changes from a Lorentz character
into a Doppler one for smaller distances. The overall
topology of the trajectory as a whole is of course dictated
by the higher Lorentz scaling.

Up to now we have considered frequency redistribution
at each scattering event. However, for high opacity two-
level systems there are presumably many elastic scatter-
ing events before an inelastic scattering event occurs. It is
therefore important to consider at least qualitatively the
FIG. 2. Doppler, Lorentz, and Voigt spectral profiles.
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influence of elastic scattering. Elastic scattering events
will fold up the excitation trajectories of Fig. 3 and the
more folding, the higher the ratio of elastic to inelastic
scattering probabilities. From this argument alone we
will expect that an increase in the elastic to inelastic
probabilities ratio will lead to an increase in the fractal
dimension, as it will approach the 3D Brownian motion
with fractal dimension 2.

The discussion thus far has been restricted to the case
of Lévy flights. For the vapors studied in the laboratory
the time of flight of in-transit radiation is negligible
compared to the waiting time between absorption and
reemission, thus rendering the Lévy flights formalism
especially adequate. From the set of visited points one
can obtain spatial distribution functions of the excitation
density, which fully characterize the spatial aspects of
radiation migration. The temporal evolution can be fac-
torized from the spatial part (Lévy flight) and then sepa-
rately handled [14,18]. However, for interstellar gases the
time between scattering events might be large compared
to the absorption/reemission times. Because the speed of
light is finite, a Lévy walk modification of the flights here
presented will be more appropriate in an astrophysical
context [6].

The theoretical models for incoherent atomic radiation
trapping are based either on the Holstein-Biberman mul-
tiexponential mode expansion or on the so-called multiple
FIG. 3. Single trajectories of 50 000 jumps each for inco-
herent isotropic CFR radiation migration with Lorentz (top
row), Doppler (middle row), and a � 0:001 Voigt (bottom row)
profiles in infinite 3D medium. (A) shows the whole trajectory
while (B) and (C) show successive details. The three trajecto-
ries were obtained with the same random number sequence.
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scattering representation [13]. In the last case, the tem-
poral evolution is known analytically and the spatial
distributions can be separately obtained, either directly
from Eq. (1) or from its asymptotic approximation Eq. (4)
[18]. It is within this theoretical framework that the
results reported in this Letter are most useful. On the
other hand, the individual terms in the Holstein expansion
have no direct relation with the one (or nth) step jump
probabilities. Although both approaches are ultimately
equivalent [14,19], we follow the multiple scattering ap-
proach, preferable for systems of low opacity [14]. Also,
the multiple scattering representation has a simple inter-
pretation, since each term corresponds to a specific gen-
eration of excited atoms or molecules. In a large number
of practical situations the opacity is not high enough to
warrant the exclusive use of Holstein’s slowest exponen-
tial mode. On the other hand, the multiexponential ex-
pansion remains valid, but its fundamental mode cannot
be identified with Holstein’s high opacity result and
should be estimated by the stationary mode associated
with a nonchanging spatial distribution function [14,19],
a point often misunderstood in the literature.

Results of Fig. 3 strictly apply to an infinite 3D medium
but in a vast number of experimental situations the system
is finite and the trajectory is truncated before the asymp-
totic Lévy expansion is able to manifest itself. Mantegna
and Stanley [20] introduced in 1994 a class of Lévy
flights, the truncated Lévy flight, in which the largest
steps of an ordinary Lévy flight are eliminated by a sharp
cutoff in its power tail. This work allows a reassessment
of Kenty’s pioneering contribution since he was the first to
have used a truncation procedure: within the framework
of the kinetic theory of gases he considered a truncated
Maxwell distribution of speeds, with a maximum speed
corresponding to a free path equal to the linear size of a
sample cell [15]. Although truncation of the jump size
renders the moments of the distribution finite, the con-
vergence to a Gaussian can be extremely slow and the
random walk can exhibit anomalous behavior and multi-
scaling properties in a wide range before convergence
[20,21]. Moreover, trajectory truncation is more complex
to handle and does not create convergence to the Gaussian
in usual situations.

In this Letter, it was shown that all photon trajectories
arising from incoherent two-level complete frequency
redistribution trapping are superdiffusive Lévy flights
with � � 1. In particular, for the Doppler line shape
� � 1, whereas for Lorentz and Voigt � � 1=2.
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[3] Lévy Flights and Related Topics in Physics edited by

M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch
(Springer-Verlag, Berlin, 1995).

[4] F. Bardou, J. P. Bouchaud, A. Aspect, and C. Cohen-
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