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Abstract

Resonance energy transfer by the F€orster–Dexter mechanism in a rigid homogeneous medium is modeled using a hard-sphere

fluid (HSF) radial distribution function. This distribution is more realistic than the commonly used uniform distribution with ex-

cluded volume (UDEV) function. For the dipole–dipole mechanism, both models yield essentially the same donor luminescence

decay, except for small critical radii. For the exchange mechanism, however, the two models differ significantly. The HSF model

displays a stronger ‘‘two-exponential’’ behavior. Also, to fit a given experimental decay, the UDEV model requires both a larger

effective Bohr radius and a larger rate constant at collisional distance than the HSF model.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Current models of intermolecular quenching of lu-

minescence (both fluorescence and phosphorescence)

by nonradiative resonance energy transfer (RET) are

largely based on the pioneering results of F€orster [1]

and Dexter [2], remarkable for their simplicity and
accuracy [3–7]. Recent developments [6,8] have refined

and helped to establish the limits of validity of these

early approaches, but moderate quantitative improve-

ments are achieved only at the cost of considerable

computational work imposed by molecular details [8].

For most studies not involving molecular aggregates,

the modeling of molecules as structureless particles

seems to be a fairly accurate approximation, even for
distances as short as a few angstrom [9,10]. In this

work, calculations will be exclusively based on the

basic F€orster–Dexter theory, the purpose being to in-

vestigate the effect of short-range order on the lumi-

nescence decay of the donor.
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2. General decay law

In the modeling of RET between neutral molecules in

a homogeneous medium, the donor and the acceptors

surrounding it are usually assumed to be point-like and

randomly distributed in space. In this case, the donor–

acceptor radial distribution function, gðrÞ, does not
depend on the distance r between the particles and is

equal to unity for 06 r < 1, i.e., the quenchers are

uniformly and independently distributed around the

excited molecule. The donor luminescence decay with

quenching (normalized to unity at initial time) is more

generally given by

IðtÞ ¼ exp ð � t=s0Þ exp

0
@� 4pnq

�
Z 1

0

1
�

� e�kðrÞt�gðrÞr2 dr
1
A; ð1Þ

where s0 is intrinsic lifetime of the donor, nq is the

quencher concentration (number density), and kðrÞ is the
RET rate constant. This equation can be rewritten as

IðtÞ ¼ exp ð � t=s0Þ exp ð � cHðtÞÞ; ð2Þ
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where

HðtÞ ¼ 4p
Z 1

1

1
�

� e�kðxÞt�gðxÞx2 dx; ð3Þ

and where c ¼ nqd3, x ¼ r=d and d is the distance of

closest approach, whenever d > 0. In the derivation of
Eq. (1), it is supposed that the concentration of donor

molecules is very small, and that donor and acceptor

molecules do not diffuse significantly during the donor

lifetime. In the case of RET by the dipole–dipole

mechanism [1]

kðrÞ ¼ 1

s0

R0

r

� �6

; ð4Þ

where R0 is the critical or F€orster radius, determined by

the overlap of donor luminescence and acceptor ab-

sorption spectra, donor quantum yield, and refractive
index of medium. The parameter R0 takes values be-

tween 10 and 70 �A [4–7].

For RET by the exchange mechanism [2],

kðrÞ ¼ kð0Þ expð�2r=LÞ; ð5Þ
where kð0Þ is the quenching rate for the zero distance

between donor and acceptor and L is the so-called ef-

fective average Bohr radius. The exponential distance

dependence of Eq. (5) results from the extent of spatial

overlap of the electron clouds of excited molecule and
quencher. The parameter L, initially introduced by

Dexter [2] for RET between atoms by the exchange

mechanism, originates from the simplified form of the

electronic wave functions at large distances from the

nuclei. In the molecular case, L is best regarded as an

empirical parameter [11]. For RET by the exchange

mechanism, L was reported to take values between 0.7

and 6 �A [11,12], a typical value being ca. 1.5 �A.
Eqs. (4) and (5) are only approximate. Apart from the

above mentioned deviations to the basic tenets of the

F€orster–Dexter formalism, the true rate constants are

not only functions of relative distance but also of rela-

tive orientation. In the following, an isotropic interac-

tion will be assumed for simplicity.
3. Finite size of the molecules

Molecules are also not point particles. The problem

of RET between particles of finite size was first consid-

ered by Rikenglaz and Rozman [13,14]. The molecules

were modeled as spheres, and the distance of closest

approach d was taken to be identical to the collisional

radius. The radial distribution function used by these
authors was the unit step function, i.e. a uniform dis-

tribution was assumed for distances larger than d,

gðrÞ ¼ 0 if r < d;
1 if r > d:

�
ð6Þ
This model will be called the uniform distribution

with excluded volume, UDEV. Taking into account Eq.

(6), Eq. (3) becomes

HUDEVðtÞ ¼ 4p
Z 1

1

1
�

� e�kðxÞt�x2 dx: ð7Þ

Note that the excluded volume is accounted in a

proper way only for the donor–acceptor pair. Acceptors

are still assumed to be independently distributed. This

means that the model will not be adequate for very high

acceptor concentrations [15–18].

Both the dipole–dipole [13] and exchange [14] mech-

anisms of RET were investigated in connection with this

distribution. For the last case, it is preferable to rewrite
the rate constant of RET, Eq. (5), as [11]

kðrÞ ¼ k0 exp
�
� 2ðr � dÞ

L

�

¼ 1

s0
exp c

�
� 2ðr=d � 1Þ

L=d

�
: ð8Þ

Now, k0 is the quenching rate constant for the dis-
tance of closest approach, and c is a dimensionless pa-

rameter defined as c ¼ ln k0s0ð Þ. This parameter takes

values from )3 to 20 [11,13,14,19], depending on the

system. Note that a low value of c can result either from

a low absolute quenching effect (low k0), or from a short

intrinsic lifetime s0. Likewise, a high value of c can result

either from a high absolute quenching effect (high k0), or
from a long intrinsic lifetime s0.

It is well known that the introduction of a distance of

closest approach according to Eq. (6) leads to an ex-

ponential decay for short times (kðdÞt � 1 in Eq. (7)).

For long times, there are no noticeable differences be-

tween the decays with d ¼ 0 and d > 0.
4. The hard-sphere fluid

In fact, the radial distribution function is a more

complicated function of distance than a step function,

Eq. (6). In liquids and molecular glasses, and even in the

absence of a coulombic or van der Waals potential, a

short-range order exists owing simply to the finite size of

the molecules, and the radial distribution function has a

damped oscillatory shape (see Fig. 1). If the density of
fluid decreases, the amplitude of the oscillations de-

creases. The radial distribution function approaches the

step function shape (UDEV model) only for a dilute gas.

Several fluid models exist for the evaluation of gðrÞ. The
simplest one is that of hard-spheres [20]. The hard-

sphere fluid (HSF) was namely used in [21,22] in the

study of the rate constant of diffusion-controlled reac-

tions, kðtÞ. It was shown that the time dependence of the
reaction rate is the same as for the step function Eq. (6),

with kðtÞ ¼ aþ b
ffiffi
t

p
but the two parameters, a and b,

have more realistic values.
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Fig. 1. Hard-sphere fluid (HSF) radial distribution function, gðrÞ, for fluid densities q ¼ 0:5 (1), 0.8 (2), and 1.1 (3).
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To compute the luminescence decay Eq. (1), the ap-

propriate radial distribution function gðrÞ for the ac-

ceptors surrounding the donor must be used. This

function was investigated for several models of liquid

structure. We will use the hard-sphere fluid (HSF) model

[20] owing to the following reasons. First, this model is

the natural next step after modeling RET with the
UDEV model. Second, the HSF has been investigated in

detail: analytical solutions for gðrÞ [23–28] and its La-

place transform [23] are known, and tables of gðrÞ for

different values of fluid density are available [26,29,30].

Third, the computed gðrÞ for hard-spheres has an

overall good agreement with simulation data, although

some discrepancies are observed, especially at the high-

est densities [29,31].
In this paper, we will use the detailed tables given in

[26]. The radial distribution function for several values

of fluid dimensionless (or reduced) density q, where

q ¼ nd3; ð9Þ
n and d being the number density and the hard-sphere
diameter of fluid molecules, respectively, is shown in

Fig. 1.

The reduced density q is connected to the packing

density, g, which is the fraction of the volume occupied

by the spheres, by

q ¼ 6

p
g; ð10Þ

hence for the most compact lattice packing possible in

three-dimensional space (face-centered cubic packing,

hexagonal close-packing) [32], where g ¼ p=3
ffiffiffi
2

p
ffi 0:74,

one has q ¼ 1:41, while for a cubic lattice, where

g ¼ p=6 ffi 0:52, q ¼ 1:00. For random close packing,

g6 0:64 [33], hence q6 1:22.
There is a simple analytical solution for gðrÞ at r ¼ d
[25],

gðdÞ ¼ 1þ g=2

1� gð Þ2
: ð11Þ

To simplify the calculations, we will suppose that
donor, acceptor, and solvent molecules are all spherical

molecules with a common diameter, d. In this case, the

radial distribution functions for the donor–acceptor pair

in Eq. (3), and for a HSF coincide. For the calculations,

gðrÞ for q ¼ 0:8 and 1.1 is used. At these fluid densities,

there is a marked difference between the step function

Eq. (6) and gðrÞ for a HSF: from Eq. (11) and [26],

gðdÞ � 3:58 for q ¼ 0:8 and gðdÞ � 7:16 for q ¼ 1:1.
Also, the hard-sphere solid and fluid phases are in

thermodynamic equilibrium over a density interval from

0.943 to 1.04 [30,34].
5. Dipole–dipole mechanism

For a uniform distribution of point-like molecules
(UDP model, gðrÞ ¼ 1 for all r) and for the dipole–di-

pole interaction, it is well known that HðtÞ in Eq. (3)

takes the form

HUDPðtÞ ¼
4p3=2

3

R0

d

� �3 t
s0

� �1=2

: ð12Þ

Calculation of the donor luminescence decay ac-

cording to the HSF model shows that a noticeable dif-

ference between the HSF and UDP models is observed

only if R0=d < 2 (see Fig. 2 where R0 ¼ 8 �A, d ¼ 5 �A,
and q ¼ 1:1 are used). This difference practically disap-

pears if the value of R0 used in Eq. (12) is but slightly



Fig. 2. Function HðtÞ calculated for the dipole–dipole mechanism and for three different radial distribution functions. HSF model with density

q ¼ 1:1, d ¼ 5 �A, R0 ¼ 8 �A (solid line); UDP model, R0 ¼ 8 �A (dashed line) and R0 ¼ 7:9 �A (dotted line).
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decreased (e.g. from 8 to 7.9 �A in the case of the pa-

rameters used in Fig. 2).

The difference is more pronounced between the

UDEV and the HSF models (Fig. 3). In this case, the

F€orster radius R0 in Eq. (12) must be decreased from 8

to 7.7 �A (other parameters being the same as in Fig. 3)

to suppress the difference between the two decays in the

time interval 0 < t=s0 < 3.
The fact that the HSF model is closer to the UDP

model than to the UDEV model results from the shape

of the HSF radial distribution function. This function

oscillates around 1 in a damped fashion, see Fig. 1, with

values initially below unity (gðrÞ ¼ 0 for 0 < r < d) and
Fig. 3. Function HðtÞ calculated for the dipole–dipole mechanism and for the

model, d ¼ 5 �A, R0 ¼ 8 �A (dashed line) and R0 ¼ 7:7 �A (dotted line).
then above unity (gðrÞ > 1 for d 6 r < 1:3 d), which re-

sults in a nearly complete cancellation of effects.
6. Exchange mechanism

Recently [11], the UDEV model for fluorescence

quenching with exponential distance dependence was
studied in detail. It was shown that the parameters L; d
and c were correlated, and cannot be independently

determined from a fluorescence decay. At most it is

possible to determine L and c, while fixing d. Three

different regimes were also identified: weak (c < 2), in-
HSF model with density q ¼ 1:1; d ¼ 5 �A, R0 ¼ 8 �A (solid line); UDEV
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termediate (2 < c < 5), and strong (c > 5) quenching.

Following [11], we will also consider such three cases.

Namely, in our numerical calculation, we will use values

c ¼ �2, 4, and 10 and L=d ¼ 0:2, 0.5, and 0.8 as typical

experimental values [4,11,19].
The HSF radial distribution function for q ¼ 0:8 and

1.1 is used. To simplify the comparison procedure (and

in order not to take into account the effect of quencher

concentration, c), only the function HðtÞ is investigated.
The function HUDEVðtÞ will be called ‘‘theoretical’’, and

the function HHSFðtÞ ‘‘experimental’’.

In the weak quenching limit, HðtÞ is almost a linear

function of time. Assuming that the experimental pre-
cision is such that a linear expansion suffices, the ex-

perimental decay (HSF) becomes

HðtÞ ¼ HHSFðtÞ � 4p
t
s0
ec0

Z 1

1

e�2ðx�1Þ=b0gðxÞx2 dx; ð13Þ

and the theoretical one (UDEV),

HðtÞ ¼ 4pHUDEVðtÞ �
t
s0
ec
1

4
b 2
�

þ 2bþ b2
�
: ð14Þ

As can be seen, HHSFðtÞ, can be fitted equally well by

HUDEVðtÞ for a continuous set of parameters c and L=d.
For example, if q ¼ 1:1, c0 ¼ �2, and L0=d ¼ 0:2, the
theoretical curve fitting the experimental one can be

obtained using sets of parameters from fc ¼ �0:49;
L=d ¼ 0:18g to fc ¼ �6:4; L=d ¼ 20g. Only when a

quadratic term in time is introduced, does this correla-
tion disappear [11].

In the intermediate case, the theoretical and experi-

mental functions are no longer linear, and no satisfac-

tory fit of the HSF decay with the UDEV model is

possible in general. There is indeed a strong difference at
0

0.4

0.8

0 1

t

H
(t

)

Fig. 4. Function HðtÞ calculated for the exchange mechanism according to the

UDEV model (d ¼ 5 �A, c ¼ 7:9;L=d ¼ 0:13, dotted line). Parameters c ¼ 7:9

decays as much as possible.
short times in most cases (see Fig. 4). This difference

depends on fluid concentration and decreases with the

decrease of fluid density. The decay according to the

HSF model has in general a marked two-exponential

behavior, and the existence of a fast transient in the
decay, not fully described by the UDEV model, is a sign

of the existence of short-range order.

In the strong quenching limit (c0 P 10 and L0=dP 0:2
or c0 P 4 and L0=dP 0:5), the experimental decays can

be well fitted but the pairs of parameters (c0; L0=d) and
(c; L=d) are different. This difference is nevertheless not

large, and decreases with the increase of the values of the

parameters. For example, if c0 ¼ 4;L0=d ¼ 0:5 in ex-
perimental decay, then c ¼ 4:3; L=d ¼ 0:49 for the the-

oretical one. If c0 ¼ 10; L0=d ¼ 0:8 then c ¼ 10:09;
L0=d ¼ 0:8. The precisions of the obtained values are-

� 0.05 for c and �0.01 for L=d. Note that in the strong

quenching limit, the obtained values are not dependent

on the fluid concentration. They are quantitatively the

same for q ¼ 0:8 and 1.1, although gðdÞ for these fluid

densities differ nearly by a factor of two, see Eq. (11).
The situation approaches in this limit what was already

observed for the dipole–dipole case in Section 3.

In [11], two molecular pairs were experimentally

studied in rigid glasses at 77 K by picosecond single-

photon timing: C70-bromobenzene and phenanthrene–

iodide. In these systems the quenching of fluorescence

occurs by the external heavy-atom effect, but the dis-

tance dependence is similar to that of the exchange
mechanism. In the first system, the very different size of

solvent (7:2 (v/v) methylcyclohexane–toluene) and one

of the solute molecules (C70) makes questionable the

application of the HSF model as developed here, where

solvent and solute are assumed to have identical size.
2 3

/ τ0

HSF model (q ¼ 1:1; d ¼ 5 �A, c0 ¼ 4;L0=d ¼ 0:2, solid line) and to the

and L=d ¼ 0:13 of the dotted curve are chosen to bring together the two
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The second system, where all sizes are comparable, falls

in the intermediate quenching case. Using d ¼ 7:4 �A and

s0 ¼ 64:4 ns, the values L ¼ 1:7 �A and k0 ¼ 0:12 ns�1

(that give L=d ¼ 0:23 and c ¼ 2:05) were obtained [11]

by fitting experimental fluorescence decays with the
UDEV model. In this particular system, fits with the

HSF model were also satisfactory. Different values for c
and L=d are obtained, and depend on the fluid density.

For q ¼ 0:8, we obtain L=d ¼ 0:17 and c ¼ 1:23 (or

L ¼ 1:3 �A and k0 ¼ 0:053 ns�1) for t=s0 < 3. For a

higher fluid density, q ¼ 1:1, L=d ¼ 0:14 and c ¼ 0:85
(or L ¼ 1:0 �A and k0 ¼ 0:036 ns�1) are obtained instead.

Thus, for phenanthrene–iodide system, introduction of a
more realistic radial distribution function (HSF model)

allows to estimate parameters L and k0 as 1.0–1.3 �A and

0.036–0.053 ns�1, respectively. These values are signifi-

cantly smaller than those estimated with the UDEV

model.
7. Conclusions

In this paper, the radial distribution function for the

hard-sphere fluid model (HSF) was used to calculate the

quenching of luminescence by dipole–dipole and ex-

change RET mechanisms. The HSF model takes into

account the short-range order existent in fluids owing to

the finite size of the molecules, which are modeled as

rigid spheres.
For the dipole–dipole mechanism, the luminescence

decay law obtained within the framework of this model

does not practically differ from the usual F€orster decay
law for point-like particles, and from the decay law ac-

cording to the UDEV model. The respective F€orster
radii differ only slightly.

For the short-ranged exchange mechanism, the decay

laws obtained with the use of hard-sphere fluid radial
distribution function and with the step function are

practically identical if the quenching is strong, but the

two sets of parameters c and L=d are different. The pa-

rameter L=d is smaller for the HSF model because the

radial distribution function at the distance of closest

approach is noticeably larger than unity. In the very

weak quenching limit, parameters c and L=d are corre-

lated and cannot in principle be independently deter-
mined from luminescence decays. In the intermediate

case, the luminescence decay laws usually have quite

different time dependences for the uniform distribution

with excluded volume and HSF radial distribution

functions, but in some cases can be made to agree.
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