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The birth, raise, development and fortunes of a fundamental theory in thermodynamics, the
axiomatic thermodynamics, a creation of Constantin Carathéodory, is thoroughly presented to-
gether with a summary of Carathéodory’s biography. Axiomatic thermodynamics is centered
around some interesting properties of Pfaffian differential equations, which are here intro-
duced and used for some well-known cases in thermodynamics.
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There is no branch of mathematics, however abstract, which may not some day be
applied to phenomena of the real world

Lobatchewsky

1. Introduction

In 1909 Constantin Carathéodory, a skilled mathematician of the German mathe-
matics school, published a seminal work on an axiomatic approach to thermodynamics,
which practically put the entire subject on a new basis. His method allowed a rigorous
mathematical formulation of the consequences of the second thermodynamic law (or
postulate). In Carathéodory’s treatment thermodynamics is built up as a kind of exten-
sion of mathematics. The mathematics of the axiomatic treatment is centered around the
geometric behavior of a certain differential equation, known as Pfaffian, and its solutions.
As a result he was able to obtain a purely formal thermodynamics without the recourse
to the well-known XIXth century principle of Thomson and Clausius of the impossi-
bility of a “perpetuum mobile” of the second kind, and without recourse to imaginary
machines or imaginary cycles, and such strange concepts as the flow of heat.

The geometrical flavour of thermodynamics can clearly be noticed with the for-
mulation of the zeroth law of thermodynamics, which practically defines temperature,
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but which concerns thermal equilibrium, that is, “if t1, t2 and t3 are equilibrium states of
three systems such as t1 is in thermal equilibrium with t2, and t2 is in thermal equilibrium
with t3, then t3 is also in thermal equilibrium with t1”. This law strongly resembles the
first axiom of Euclidean geometry (ca. 300 BC), that is, “things equal to the same thing
are equal to one another”.

Before entering into the argument the fundamental difference between a mathe-
matical formulation and a mathematical derivation should be mentioned. What has been
achieved in Carathéodory’s treatment is a mathematical formulation and not a mathe-
matical derivation of the laws of thermodynamics which, as any law of physics, cannot
be derived mathematically.

In the present paper we will not get into the details of Carathéodory’s achievement
as it has already been done in a very satisfactory way by other well renowned scien-
tists all along this century, as we shall see. Here, we will just try (i) to briefly describe
Carathéodory’s biography, (ii) to review the historical development of the axiomatic
treatment of thermodynamics, and (iii) to elucidate some aspects of Pfaffians, the math-
ematical tools of axiomatic thermodynamics, normally underscored in thermodynamics
textbooks.

2. Constantin Carathéodory

2.1. Life and deeds

Constantin Carathéodory (1873–1950), see figure 1, was born in Berlin but was
the son of a Turkish ambassador of Greek origin [1]. In 1875 his family is residing in
Bruxelles, Belgium, where in 1895 he ends his studies at the École Militaire of Bel-
gium. He then moves to Samos, Greece, where he plans the construction of roads. After
a period in London and Egypt, he returns to Berlin in 1900 where he carries further
studies in mathematics. His Ph.D., on special Euler–Lagrange equations, carried un-
der the supervision of H. Minkowski, is concluded in Göttingen in 1904. From 1905
till 1908 he is free professor in Göttingen, then in Bonn (1909) and then in Hannover
(1910). He starts then a long journey through Breslau, Göttingen, Berlin, Izmir (now in
Turkey), Athens (Greece), until he finally settles down in Munich (1924). At this time he
is well acquainted with many famous mathematicians, like D. Hilbert (1862–1943) and
H. Schwarz (1848–1921), having contributed to the theory of functions of Weierstrass,
and to variational calculus and its application to optics. He is one of the founders of the
generalized metric geometry, and from 1905 on he starts deepening the general theory
of functions and the algebraic basis of the concept of integral. His main mathematical
works are listed in the appendix, and testify his wide mathematical knowledge and inter-
ests. Nevertheless, his notoriety mainly comes from his two studies on thermodynamics.
These can probably be considered his greatest scientific achievements.
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Figure 1. Constantin Carathéodory (1873–1950) (from [41]; this book provides inside the cover page a
series of portraits of famous scientists who contributed to thermodynamics).

2.2. Birth and origins of axiomatic thermodynamics

On thermodynamics he published a rather long paper followed many years later by
a short paper. His first fundamental paper, in which he laid the basis of axiomatic ther-
modynamics, was published in 1909 under the title “Untersuchungen über die Grund-
lagen der Thermodynamik” (Researches on the foundations of thermodynamics) which
appeared in Math. Ann. 67 (1909) 355–386. The second more explanatory and conclu-
sive paper, “Über die Bestimmung der Energie und der absoluten Temperatur mit Hilfe
von reversiblen Prozessen” (On the calculation of energy and of the absolute temperature
with the help of reversible processes), appeared only 16 years later in Sitzber. Preuss.
Akad. Wiss. Phys. Math. K1 (1925) 39–47. In his first paper he was able to obtain in a
formal way the laws of thermodynamics without recourse to imaginary engines or such
concepts as the flow of heat. We could wonder how did he arrive at the idea of an ax-
iomatic thermodynamics. A short glance at his curriculum can give us some guidelines.
His engineering studies at the École Militaire included many lectures on thermodynam-
ics. Another important moment in his life, and in the life of every contemporary math-
ematician, was the publication in 1899 by his later colleague and friend, D. Hilbert, of
the seminal work “Grundlagen der Geometrie” (Foundations of Geometry) where a rig-
orous axiomatic foundation for geometry was laid down. This work, soon recognized
as one of the most important works in mathematics of our age, had also a tremendous
impact on the development of mathematical physics. Exactly ten years later, in 1909,
Carathéodory came out with his first work on thermodynamics, in which, centering the
attention on the geometric properties of certain equations, known as Pfaffians, he at-
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tempted to “geometrize” this field of physics. Something like was doing A. Einstein
(1879–1955) during those same years, 1905–1917, with gravitation. An important role
in the development of the new axiomatic method was surely played by Carathéodory’s
friendship with M. Born (1882–1971), as we shall see in the following lines.

2.3. The axioms

In his first seminal work Carathéodory starts, quite mathematically, with three def-
initions, concerning equilibrium, states, and thermodynamic coordinates. He, then, goes
on, introducing a first axiom about the internal energy of a multiphase system and its
variation, inclusive external work, during an adiabatic process (Uf − Ui + W = 0,
where f stands for final, and i for initial). This first axiom can be read as a reformula-
tion of the first postulate of thermodynamics. After that, he states his famous second
axiom, that constitutes the real novelty of his work. This axiom reads in original lan-
guage, “In jeder beliebigen Umgebung eins vorgeschriebenen Anfangszustandes gibt es
Suztände, die durh adiabatische Zustandsänderungen nicht beliebig approximiert wer-
den können”. An English version of this axiom could be, “In the neighborhood of any
equilibrium state of a system (of any number of thermodynamic coordinates), there exists
states that are inaccessible by reversible adiabatic processes”. Starting with this axiom,
Carathéodory shows how to derive the Kelvin temperature and every other statement of
the engineering method developed during the second part of XIXth century. This axiom
can be better understood when it is read together with Kelvin’s formulation of the sec-
ond law, that “no cycle can exist whose net effect is a total conversion of heat into work”.
Both statements have their common basis on the everyday experience, and they are just
a generalization of the observed fact of nature that work cannot be fully recovered. If,
for example, the one-sidedness of entropy function is exemplified by an arrow in which
1 and 2 are two adjacent non-infinitesimally close points, —1—2→(S), then the asym-
metry ofS does not allow transformations from 2 to 1, but only from 1 to 2, that is, 1 is
inaccessible from 2, while 2 can be accessed from 1. Carathéodory’s “mathematical”
formulation identifies this asymmetry with unattainable “near” equilibrium states.

It can be noticed that in the axioms and definitions of the new method there is no
mention of heat, temperature or entropy whatsoever. In fact, heat is regarded as a de-
rived rather than a fundamental quantity, that appears as soon as the adiabatic restriction
is removed. This can be considered the strength and the weakness of Carathéodory’s
approach. The weakness, as it is usually the heat added to a system that can easily be
measured, but, centering the attention on energy rather than on heat renders the method
quite appealing from a physical point of view (as it is energy that is conserved and not
heat). In the bulk of his work he develops, with the aid of both axioms, but specially
of the second, and by the aid of the theory of Pfaffian equations, the new methodology,
which will bring to the introduction of the concept of entropy and its postulate as well to
the introduction of the concept of thermodynamic absolute temperature.
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3. The scientific community

The axiomatic treatment of Carathéodory started rather noiseless and it was only in
1921 that M. Born wrote three important articles [2–4] about Carathéodory’s axiomatic
treatment. After that, the axiomatic thermodynamics caught the attention of well-known
physicists of those times, and particularly of A. Landé (1888–1975) [5], M. Planck
(1858–1947) [6], S. Chandrasekhar (1910–1995) [7], and W. Pauli (1900–1958) [8],
among others, who recognized, and in one case even sharply criticized Carathéodory’s
work. The importance of the attempt to dispense with the engines and cycles which are at
the root of the engineering method due, mainly, to S. Carnot (1796–1832), W. Thomson,
Lord Kelvin (1824–1907) and R.J.E. Clausius (1822–1888), was soon recognized. In
this respect, it should be noticed that already L.F.H. Helmholtz (1821–1894), during the
previous century, had remarked that to define temperature and entropy it was not neces-
sary to invoke neither cycles nor ideal gases [9]. The formal elegance of Carathéodory’s
method was so appealing that many tried either to complete or to render its mathemat-
ics more palatable to a wider scientific community. Nevertheless, these last efforts did
not gain a large audience among physicists and physical chemists, who normally ei-
ther were rather reticent in adopting Carathéodory’s axiomatic method or considered it
as an interesting curiosity. Thus, it is not all odd to notice that the axiomatic method,
with some exceptions [8–12], never arrived on the main pages of widely used physics,
physical chemistry or just thermodynamics textbooks. Even a fundamental book on the
argument, like theThermodynamics by Lewis and Randall [13], did ignore the method,
but, this same book included in the appendix the Bridgman shorthand method by which
formulas may be obtained for any desired partial derivative, which had been proposed
in 1914, i.e., shortly after the birth of Carathéodory’s thermodynamics. Even in the cited
exceptions [8–12] the axiomatic method is presented more as a pure curiosity than as a
general foundation for thermodynamics, with the exception of [12].

If M. Born was the first renowned scientist, soon after first world war, who with a
series of three studies [2–4] centered the attention on the new method, then M. Planck
in 1926 [6] was the first sharp criticizer of the new method. He, in fact, concluded that
the Thomson–Clausius treatment was far more reliable. Max Planck’s preferences were
due to the fact that Thomson’s definition was much nearer to experimental evidence, i.e.,
to natural processes, which at the very end are the only ground on which all natural laws
are erected. It is interesting to read his own words on the argument, “hat wohl noch
niemand jemals Versuch angestellt in der Absicht, alle Nachbarzustände irgendeines
bestimmten Zustandes auf adiabatischen Wege zu erreichen, . . . , das Prinzip gibt aber
kein Merkmal an, durch welches die erreichbaren Nachbarzustände von den unerrre-
ichbaren Nachbarzustände zu unterscheiden sind” (nobody has up to now ever tried to
reach, through adiabatic steps only, every neighborhood of any equilibrium state and to
check if they are inaccessible, . . . , this axiom gives us no hint which would allow us to
differentiate between the inaccessible from the accessible states). Planck himself tried
to put forward a treatment between Thomson–Clausius’ and Carathéodory’s approaches.
His treatment was also based on the properties of Pfaffians.



318 L. Pogliani, M.N. Berberan-Santos / Constantin Carathéodory

The second important positive reflection on this topic, after Born’s, came soon after
the second world war from a scientist working in a far away University, H.A. Buchdahl
from the University of Tasmania, Australia, who published a series of three main studies
[14–16] followed, some years later, by two other papers [17,18]. Buchdahl tried to
render Carathéodory’s treatment more appetizing to a wider range of physicists, and
especially to English speaking physicists. He was, very probably, well acquainted with
the German language. In fact, he refers continuously to the original M. Born articles and
to other German mathematics books. To him can be credited the fact that, soon after,
axiomatic thermodynamics caught the attention of American and English physicists. It
is to be noticed that Buchdahl published not only a book on thermodynamics [19] but
also a book on Hamiltonian optics [20] in which a detailed account of the Hamiltonian
treatment of aberration theory in geometrical optics is presented, and where many classes
of optical systems are defined in terms of the symmetry they possess. Geometry seems
to concern a lot those who are interested in axiomatic thermodynamics.

After Buchdahl, authors like Pippard [21], Turner [22], Sears [23], and Lands-
berg [24] presented an interesting series of works, with the initial aim to further simplify
the mathematics of the axiomatic method. But this school of thought soon realized that
it was a rather unfruitful effort, and, thus, it ended by demonstrating the equivalence
between Carathéodory’s axioms and the Kelvin–Planck statement of the second pos-
tulate. Now, the two methods can be considered equivalent, and the only superiority
of Carathéodory’s method being that it focuses the attention on the system, its coordi-
nates and states, which are normally overlooked in the normal engineering approach.
It should not be underscored the fact that some of these authors published interesting
works on thermodynamics and on physical theory [25–29] and that Landsberg pub-
lished in 1956 [30] an interesting and detailed development of the axiomatic method
of Carathéodory. This last work certainly played no minor role in Landsberg’s deduc-
tion [24] of Carathéodory’s principle from Kelvin’s principle.

Looking back at the history of this elegant mathematical method, it really seems
that M. Planck’s criticism about the difficulty of the method to provide a compelling
physical picture of entropy stands even today as the main difficulty, together with its
mathematical “harshness”, for a wide acceptance of Carathéodory’s treatment. Quite
probably these two difficulties are equivalent, as, as soon as the compelling physical pic-
ture is considered insufficient, the mathematical “harshness” becomes practicable, and
as soon as the mathematical “harshness” becomes intelligible, the compelling physical
picture is considered incomplete.

4. The Pfaffians

Before introducing the Pfaffians let us first spend two words about the meaning of
the term axiomatic. An axiomatic system is an ensemble of declarations (statements)
which are the starting elements of a mathematical project, e.g., the construction and
solution of a theorem. In some cases axioms are held to be self-evident, as many axioms
in Euclidean geometry, while others are assumptions put forward for the sake of the
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argument. Axioms are considered like mathematical propositions even if during the
development of the project they are not cited. They can be either geometric, arithmetic
and logical. For example,x = x, (x+0) = x, (x ·0) = 0 are arithmetic axioms, and they
can be used to state some transformation rules, and to infer new formal statements, i.e.,
from x = x we can infer 0= 0. The axioms and the rules of inference jointly provide the
basis for proving theorems. The word “postulate” is sometimes used as a synonym for
axiom, but, strictly speaking, in mathematics and logic, axioms are general statements
accepted without proofs, while postulates are axioms which deal with specific subject
matter and cannot be considered general statements anymore.

The mathematical tools from which evolves the axiomatic thermodynamics of
Carathéodory are the Pfaffian differential equations, first studied by J.F. Pfaff (1765–
1825), who proposed the first general method of integrating partial differential equations
of the first order in 1814–1815. Carathéodory’s arguments are, in fact, derived from the
geometric behavior of Pfaffian equations and their solution. Pfaffians are, essentially, a
set of partial differential equations that have kept the name of their originator. Usually,
equations of thermodynamics occur in a linear differential form that once was known as
Pfaff expression or Pfaff differential form

df =
∑

Xi dxi , (1)

wherei runs from 1 ton, and whereXi are functions of some or all the independent
variablesxi. This equation generally cannot be considered a normal differential equa-
tion. If equation (1) is equalled to zero, i.e., df = 0, then we have what is called a Pfaff
equation.

For the sake of clarity let us limit ourselves toi = 2, and let it be,x1 = x, x2 = y,
X1 = X1(x, y) = X, andX2 = X2(x, y) = Y . In this case the Pfaff expression given
by equation (1) can be rewritten into the following form:

df = X dx + Y dy. (2)

The curvilinear integral along a pathC of equation (3) is path-independent ifX = ∂f/∂x
andY = ∂f/∂y: ∫

C

df =
∫
C

[X dx + Y dy]. (3)

Then, equation (1) can be rewritten into the following well-known total differential form:

df = ∂f

∂x
dx + ∂f

∂y
dy. (4)

In this case functionf is a state function, and is path-independent, i.e.,

f =
∫
C

df = f (x2, y2)− f (x1, y1), (5)

whereP(x2, y2) andP(x1, y1) are the end and start points of pathC, respectively.
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A necessary and sufficient criterium to detect a total differential equation is
given by the following Schwarz relation (notice that H.A. Schwarz, 1843–1921, was
Carathéodory’s professor in Berlin)

∂X

∂y
= ∂Y

∂x
, (6)

i.e.,

∂2f

∂x∂y
= ∂2f

∂y∂x
. (7)

This criterium tells us that the Pfaff equation, df = 0, is an exact differential and has
the following solution:

f (x, y) =
∫

df =
∫
X dx +

∫
Y dy = const. (8)

Now, let us use these mathematical considerations to check some well-known thermo-
dynamic Pfaffians.

4.1. Adiabatic transformation of an ideal gas

This is the kind of transformation around which Carathéodory’s method turns. In
this case the first law of thermodynamics can be written as

dU = Cv dT = dW = −p dV, (9)

rearranging we obtain

Cv dT + p dV = 0. (10)

For an ideal gas(PV = RT ) this equation can be rearranged into

Cv

T
dT + R

V
dV = 0. (11)

This Pfaff equation is exact,∂(Cv/T )/∂V = ∂(R/V )/∂T = 0. There exists, then, a
function, f = f (T , V ) = const, with the following properties:∂f/∂T = Cv/T and
∂f/∂V = R/V and

f (T , V ) =
∫
Cv

T
dT +

∫
R

V
dV = const. (12)

From this relation the well-known equation for an adiabatic transformation of an ideal
gas can be retrieved:T V γ−1 = const, withγ = Cp/Cv andR = Cp − Cv.
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4.2. General transformation of an ideal gas

If the system is not in an adiabatic enclosure, than relationship dU = dW is no
more valid, and the system becomes asymmetric. The asymmetry can be expressed as a
difference,

dU − dW = dQ, (13)

whereQ is called heat. The question here arises whether each term of this equation is a
state function. For an ideal gas the Pfaffian, dU − dW = dQ, becomes

dQ = Cv dT + RT
V

dV. (14)

Now, the Schwarz relation does not hold anymore, as∂(Cv)/∂V = 0 �= ∂(RT /V )/∂T =
R/V , thus,Q is no state function, and, in fact, dQ is normally written asδQ.

For dW the problem is similar, we can rewrite the dW Pfaffian into the following
form:

dW = RT

V
dV + 0 · dT . (15)

Even here the Schwarz relation does not hold anymore, as∂(RT /V )/∂T = R/V �=
∂(0)/∂V = 0, i.e.,W is no state function and, in fact, also dW is generally written as
δW . Concerning the expression for dU , it can be rewritten into the following way:

dU = Cv dT + 0 · dV. (16)

Here the Schwarz relation holds, as∂(Cv)/∂V = ∂(0)/∂T = 0, andU is a state func-
tion, the well-known internal energy.

4.3. The integrating factor

In many cases it is possible to transform a non-exact Pfaffian into an exact one by
the aid of a multiplicative functionT = T (x, y), i.e., of an integrating factor. Thus, be
the Pfaff equation,

X dx + Y dy = 0. (17)

Multiplying this expression byT (x, y), we obtain the following expression:

T X dx + T Y dy = 0. (18)

Now, the introduction of the functionT allows to satisfy the following Schwarz condi-
tion:

∂(T X)

∂y
= ∂(T Y )

∂x
. (19)

For example, the following non-exact Pfaff equation,(1− xy)dx + (xy − x2)dy = 0,
can be transformed, by the aid of the multiplicative factorT (x, y) = 1/x, into an exact
differential equation, as the reader can easily check.
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Another differential expression for which the Schwartz test fails is

df = RT

P
dP − R dT . (20)

But by the aid of the integrating factor,T = −1/P , the Schwartz condition is again
fulfilled, and the resulting expression becomes the total differential ofV = V (T , P ) =
RT/P .

And, this is what happens forδQ. It is possible to find aT = T (θ) function,
whereθ is some chosen empirical temperature that rendersδQ/T a state function, i.e.,
a total and exact linear differential form. This function is called entropy,S, andT is the
absolute temperature. In this respect let us notice that

dS = δQ

T
= dU + pdV

T
. (21)

For an ideal gas this equation rearranges into

dS = Cv

T
dT + R

V
dV, (22)

and this Pfaffian obeys the Schwarz relation, thus,S is a state function.
This is, in an extremely concise way, the path which can be followed by the aid of

Pfaffians, and it was this Pfaffian “thread” that Carathéodory followed to introduceQ, S
andT . While we have here only treated the case withi = 2 (see equation (1)), which
is rather trivial, as in this case an integrating factor always exists, Carathéodory’s main
and powerful result was to solve equation (1) for every case, i.e., fori > 2.

5. Finale

Before closing let us notice that further evolution of the axiomatic method with
specialized works continued well into the 1970s and 1980s [31–33]. With these works
we have the possibility to know some interesting considerations about the geometriza-
tion of thermodynamics, and to detect an application of the axiomatic method to the
third law of thermodynamics [32]. Instead, [31] proposes a treatment which makes no
use of the theory of Pfaffians, while [33] tells us about Carathéodory’s method applied to
a “gedanken” experiment of a laser interaction with absorbing matter. For those, instead,
who are interested in deepening the axiomatic side of thermodynamics, and, further, the
axiomatic treatment of physics (a topic which interested also D. Hilbert), [34–39] are
worth to peruse. In the last cited work a critique of Carathéodory’s axiomatic thermody-
namics, from the point of view of the foundation of an axiomatic physics, is presented.
In it Carathéodory’s axioms are criticized as being too experimentally based.

Let us end with an interesting citation about Pfaff [40]: “Laplace was asked one
day who was the greatest mathematician in Germany, and he replied Pfaff in Germany
and Gauss in Europe.”
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Appendix. Carathéodory’s main mathematical works

Vorlesungen über reelle Funktionen (Lipsia, 1918) (Lectures on Real Functions).
Conformal Representation (Cambridge, 1932).
Variationsrechnung und partielle Differentialgleichungen erster Ordunung (Lipsia,
1935) (Variation Calculation and First Order Partial Differential Equations).
Geometrische Optik (Berlin, 1937) (Geometrical Optics).
Reelle Funktionen (Lipsia, 1939) (Real Functions).
Funktionentheorie (Berlin, 1950) (Theory of Functions).
Gesammelte Mathematische Schriften (München, 1954–1957) (Collected Mathematical
Writings).
Mass und Integral und Ihre Algebriesierung (Basel, 1956) (Mass and Integral and Their
Algebra Formalism).
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