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Abstract

The eigenvalue spectrum of the initial excitation survival probability is computed for several models of nonradiative

transport in current use. It is shown that the eigenvalue spectrum is more sensitive to the ®ner details of the models than

the survival probability. In particular, short- and long-time behaviours are clearly displayed. Based on this analysis, a

simple function for the survival probability is proposed. This function represents a numerical interpolation that

combines the correct short- and long-time behaviour of di�erent theories. Monte-Carlo simulations carried out for

regular lattices in one, two and three dimensions allowed the accurate numerical computation of the respective ei-

genvalue distributions. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

It is well known that concentration depolarization of luminescence in isotropic, rigid solutions occurs
owing to resonance energy transfer (RET) [1]. Two types of RET are usually considered: radiative and
nonradiative. Radiative transport was recently reviewed [2], and here, we will consider only the second type.

For nonradiative RET in isotropic media, only the radiation of molecules directly excited by a vertically
polarized beam is signi®cantly polarized. The luminescence of molecules subsequently excited by RET is
almost completely depolarized [3]. Thus, for the quantitative description of luminescence anisotropy (and
similar processes like the kinetics of ¯uorescence of rare-earth ions in solids studied by line-narrowing
spectroscopy [4,5], or transport of spin polarization [6]), it is su�cient to focus attention on the survival
probability function, Gs(t). This function represents the average probability that an initially excited mol-
ecule is still excited at time t. Gs(t) re¯ects not only the ®rst step of transfer, from molecules directly excited
by light absorption to nearby ground state molecules, but also all subsequent multiple transfer paths by
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which the excitation returns to the original molecule at a latter time. On the other hand, Gs(t) does not
include the e�ect of the ®nite excited state lifetime, that if necessary, is accounted for by the factor
exp �ÿt=s�, where s is the excited state lifetime. The usefulness of the survival probability lies in its rela-
tionship with the luminescence anisotropy [7±9], r(t). This quantity, de®ned for excitation with linear po-
larized light in the vertical direction by r�t� � �Ik�t� ÿ I?�t��=�Ik�t� � 2I?�t��, where Ik�t� is the luminescence
intensity with vertical linear polarization measured at right angle, and I?�t� is the luminescence intensity
with horizontal linear polarization measured at right angle, is related to the survival probability by
r�t� � r0Gs�t�, where r0 is the fundamental luminescence anisotropy, function of the excitation wavelength
only.

2. Survival probability

Various theoretical methods have been employed to calculate the survival probability. Here, we brie¯y
state the main results of the most accurate. Other methods are described in Refs. [5,10].

2.1. Gochanour±Andersen±Fayer method

The Gochanour±Andersen±Fayer (GAF) method [11] was used in Refs. [12±14]. In the three-particle
approximation, it was obtained that
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where n is the molecular concentration (number density), s, the excited-state lifetime, and R0, the critical
radius of RET for dipole±dipole (dd) interaction. An orientation-averaged dd interaction is assumed with
the transfer rate between two molecules given by
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s
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R
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R being the intermolecular distance. In general, the orientation-dependent transfer rate needs to be con-
sidered [1,3,15,16]. When molecules in random solution are ®xed in space on the time scale of RET, Gs(t)
for the full transfer rate can be readily obtained from Gs(t) for the orientationally averaged rate [17].

The short-time expansion of Eq. (1) yields
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The numerical coe�cients in Eq. (3) are exact. The value of the second one was con®rmed in Ref. [18] (the
value 0.8001 was obtained with an estimated error of about 0.7%).
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2.2. Huber±Hamilton±Barnett method

HuberÕs approximation [19,20] (also called HHB method) is often used to calculate Gs(t), owing to its
simplicity and good accuracy. For the considered case, this approximation gives
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One obtains from Eq. (4) that for short times
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The function given in Eq. (5) has coe�cients close to those of Eq. (3). It is usually considered that Eq. (4) is
valid for Gs�t�P 0:05. However, this is not always correct. In Appendix A, we show that, in the case of a
one-dimensional lattice, HuberÕs approximation is valid in a much narrower time range.

2.3. Continuous-time random-walk method

The continuous-time random-walk method (CTRW) was also used to obtain the survival probability
[21]. The result is
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For short times, Eq. (6) reduces to
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Now, the numerical coe�cient of the second term of Eq. (7) greatly exceeds the exact one in Eq. (3).
Therefore, this method is not appropriate for short times.

The long-time limit of Gs(t) cannot be easily estimated by the GAF or HHB methods, since these are
essentially good short-time approximations. On the other hand, the CTRW theory can be used to estimate
such long-time limit: From Eq. (6) one obtains the di�usion-like asymptotic form
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where D is the excitation energy di�usion constant. It is generally accepted that Gs(t) has indeed a di�usive
character for long times as ®rst obtained by F�orster for a cubic lattice [22]. According to Ref. [10], the
di�usive limit is observed for su�ciently long times, such that Gs�t� < 10ÿ3.

All applicable theories (GAF, CTRW) give the same expression for the di�usion constant

D � AR2
0c4=3=s: �9�

Only the theoretical value of the numerical coe�cient A varies [5] from 0.12 to 0.428. Its experimental value
is [23] A � 0:20� 0:03. The most recent attempt to calculate the di�usion constant, based on a lattice model
in combination with Monte-Carlo simulations [24], gives A � 0:40.
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2.4. An ad hoc survival probability

Here, we suggest the use of an ad hoc function for the survival probability that incorporates the best
results of previous models. It coincides with the exact form (Eq. (3)) for short times, and for long times has
a di�usion asymptotic character. The numerical coe�cient A in Eq. (9) for the di�usion constant is chosen
to be equal to 0.23. This value was obtained by Monte-Carlo simulations [5], by the modi®ed GAF method
[25], and coincides (within experimental error) with the experimental one [23]. The proposed function is
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It can be seen that the ®rst term of Eq. (10) gives a di�usion asymptotic at long times with a correct dif-
fusion constant (in accordance with Eqs. (8) and (9)), and that the second one ensures the correct temporal
dependence (Eq. (3)) for short times.

2.5. Cubic lattice

The random medium can also be modelled by a three-dimensional simple cubic lattice of molecules with
nearest-neighbour intermolecular interaction (this model can be named e�ective media model, EM). The
exact solution for the survival probability is known [26,27],
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where I0 is the modi®ed Bessel function, w0, the nearest-neighbour interaction in the e�ective media. For dd
interaction, we can write

w0 � 1
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where R is the latticeÕs nearest-neighbour distance, R � nÿ1=3. Then, w0s � �3=4p�2c � 0:057c, and we have
from Eq. (11)

Gs
EM t� � � exp� ÿ 0:342t� I0 0:144t� �� �3: �13�

This function has the following short- and long-time asymptotes
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The short-time asymptotic has a linear dependence on time because of the existence of a minimum (nearest
neighbour) distance, R.

The temporal dependences of Gs
GAF�t�, Gs

H�t�;Gs
CTRW�t�, and Gs

EM�t� are depicted in Fig. 1. One can see
that the temporal dependences of Gs

GAF�t� and Gs
H�t� are practically identical in the time domain 0 < t < 10.

Their major drawback is that they do not give a di�usion asymptotic at very long times (not shown).
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3. Eigenvalue spectrum

In the past years, a di�erent approach to the description and understanding of RET [9,25,28±30] was
proposed. It is based on the fact that the survival probability can be expressed as the Laplace transform of
some function F(k) (for details see the references cited),
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This function (the inverse Laplace transform of the survival probability) has the meaning of an eigenvalue
spectrum, and represents the set of eigenvalues k and respective contribution for the temporal behaviour of
the survival probability. In particular, when the spectrum is discrete
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the survival probability is a sum of exponentials
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An equation of this type, containing only two or three terms, is often used to analyse experimental lu-
minescence decays.

The function F(k) is well known for HuberÕs approximation [19,20]
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We did not calculate the inverse Laplace transform of the survival probability for the GAF approxi-
mation, Gs

GAF�t�, since its time dependence is identical to that of Gs
H�t�.

By careful numerical calculations, an approximate inverse Laplace transform of Gs
CTRW�t� is obtained
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Fig. 1. Survival probability decay as a function of the reduced time de®ned in Eq. (1), computed according to (1) EM model, (2) ad hoc

decay law, (3) HHB model, (4) GAF model, and (5) CTRW model.
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This function reproduces the survival probability in the CTRW approximation with a precision better than
0.5% at all times. The ®rst term of Eq. (17) gives the di�usion kinetics (Eq. (8)) at long times, and the second
one gives the HHB model at short times.

The ad hoc survival probability, Eq. (10), has the following analytical inverse Laplace transform
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whose two terms have the same meaning as in Eq. (17).
Again by careful numerical calculation, the approximate inverse Laplace transform of the survival

probability in the EM approximation, FEM(k), can be obtained. The following information about this
function was used: First, FEM(k) obeys the normalization condition (15). Second, for small k, this function
has to verify
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in order to give the correct di�usion asymptotic (Eq. (14)) for long times. Third, the width of the spectrum
of eigenvalues is limited from above by 12w0s=c � 12� 0:057 (due to the existence of a minimum (nearest
neighbour) distance, R, see Appendix B for details) so

0 6 k 6 0:684: �20�

Fourth, the eigenvalue spectrum is symmetric (this follows from the fact that the spectrum is related to the
eigenvalue spectrum of the one-dimensional lattice, which is symmetric, see Appendix B). Thus, taking
account of Eq. (19), we have for k 6 0:684
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After ful®llment of the numerical calculations (comparing exact kinetics (13) with the calculated one from
Eq. (15) in which the function FEM(k) was modelled by an empirical one possessing enumerated properties),
it was obtained that the following function
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reproduces the survival probability Gs
EM�t� (Eq. (13)) with a precision better than 0.1%. Note that only one

parameter (its ®nal value is 0.162) was used in the ®tting. In Eq. (22), sign(x) is equal to 1 if x > 0 and ÿ1 if
x < 0.

The eigenvalue spectra FH(k), FCTRW(k), F(k), and FEM(k) (Eqs. (16±19)) are depicted in Fig. 2. One can
see signi®cant di�erences between the ®rst three spectra for low k values (k < 0:2), corresponding to very
long times. For k > 0:6, all practically coincide, with the exception of the EM model, in agreement with
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Fig. 1. The eigenvalue spectrum is, therefore, a very sensitive tool for the test of theories of nonradiative
transport.

We next describe Monte-Carlo simulations for a regular lattice in one (evenly-spaced), two (square) and
three (simple cubic) dimensions. Two situations are considered: Firstly, with nearest-neighbour interactions
only; secondly, a more general case with all interactions allowed.

4. Monte-Carlo simulations in regular lattices

4.1. Simulation method

Two di�erent models were considered. Interaction with nearest neighbours only, and interaction with all
neighbours. The computation of the distribution of the symmetric of eigenvalues was made as follows. For
each dimension, a periodic lattice was used in the construction of the F�orster transfer rate matrix. Transfer
matrix entries were always dimensionless, i.e., computed in terms of the nearest-neighbour rate transfer
value. All the lattice sites were considered occupied and cubic type periodic boundary conditions were
applied in each of the necessary dimension coordinates in parallel with the so-called minimum image
convention [31]. Matrix entries kij were then in all cases the transfer rates from i to the nearest of all the
possible periodic images of j lattice site in the simulation cell. These entries were considered zero for all but
the nearest neighbour in each dimension in the case of the model with nearest-neighbours interaction. In the
general case of interactions of each individual molecule with all the minimum periodic images of j lattices
sites, all the matrix entries were nonzero to machine precision.

Given the F�orster transfer rate matrix, its eigenvalues were computed using the digital extended math
library (DXML) v3.3 for digital UNIX implementation of the dense eigenproblem solvers of LAPACK
v2.0 [32,33]. The eigenvalues found for each lattice simulation cell were then distributed over a ®xed
number of bins and the probability density functions estimated as histograms in units of nearest-neighbour
interaction. The histograms shown in Figs. 3 and 4 were obtained by accumulating �4 million eigenvalue
values for each considered geometry in order to decrease the variance of the estimated values. To do so, a
variable number of simulation cells were constructed corresponding to several sizes of the lattices in each
one of the cartesian coordinates. The number of lattice sites ranged from 1000 to �7000 and several tests

Fig. 2. Eigenvalue spectra for the di�erent approximations: EM model (� � �), ad hoc decay law ()á)á)), HHB model (Ð), and CTRW

model (- - -).
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were made in each case to ensure that su�cient sites existed in each dimension, so that the eigenvalues
distribution found was independent on the simulation cell dimensions.

4.2. Simulation results

The eigenvalue distributions computed for regular lattices with nearest-neighbour interaction only,
depicted in Fig. 3, coincide with the exact analytical results given in Appendix B. When other neighbours
are considered, the distributions become asymmetric, and are shifted towards higher values, as shown in
Fig. 4. The noticeable shift to higher values in two dimensions and three dimensions, with respect to the
results in Fig. 3, is due to the contribution of interactions with some neighbours other than the nearest that
are still at a close distance. This contribution is negligible in one dimension, since second and higher order
neighbours are always much more distant. In Appendix B, empirical functions are obtained for the ei-
genvalue distributions obtained by simulation.

Fig. 3. Eigenvalue spectra, obtained by Monte-Carlo simulation, for regular lattices in one, two and three dimensions, considering

only nearest-neighbour interactions.

Fig. 4. Eigenvalue spectra, obtained by Monte-Carlo simulation, for regular lattices in one, two and three dimensions, considering

interactions with all neighbours. Note the shift to higher values in two and three dimensions with respect to the results in Fig. 3.
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5. Summary and conclusions

The survival probability functions computed from several models of nonradiative energy transport,
including GAF, HHB, and CTRW, were compared. While the ®rst two correctly describe the short-time
behaviour, and fail for long times, the opposite happens with the CTRW model.

A systematic analysis of the eigenvalue spectra of models for radiative transport, carried out here for the
®rst time, allows one to better discuss the ®ner details of the models than the survival probability, and is
thus a better tool for their comparison. In particular, short- and long-time behaviours are clearly displayed.

Based on this analysis, a simple function for the survival probability in a random three-dimensional
medium is proposed. This function represents a numerical interpolation, and combines the correct short-
and long-time behaviour provided by di�erent theories. Monte-Carlo simulations carried out for regular
lattices in one, two and three dimensions allowed the accurate numerical computation of the respective
eigenvalue distributions.
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Appendix A. HHB approximation in one dimension

Let us consider a linear and in®nite chain of equally spaced molecules with nearest-neighbour interaction
only (one-dimensional lattice). In this case, the survival probability, Gs

1�t�, is given by [26]

Gs
1�t� � eÿ2w0tI0�2w0t�; �A:1�

where I0 is the modi®ed Bessel function of zero order and w0, the rate of RET between nearest-neighbour
molecules.

HuberÕs approximation gives in this case for a dd interaction
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n�1

2 ln 1

�"
� 1

2
eÿ2w0t=n6

�#
: �A:2�

One can see (Fig. 3) that Eqs. (A.1) and (A.2) coincide only if Gs
1�t�P 0:3. This condition di�ers sig-

ni®cantly from the condition for three dimensions �Gs
1�t�P 0:05� discussed in Section 2.2. The HHB

method is, therefore, a poor approximation in one dimension.

Appendix B. Eigenvalue distributions for regular lattices with nearest-neighbour interaction

The eigenvalue spectrum of a ®nite and closed unidimensional chain (containing N molecules) with
nearest-neighbour interaction, w0, was considered in Ref. [30]. This spectrum is discrete and the eigenvalues
are given by (in w0 units)

kn � 2� 2�ÿ1�n�1
cos

�N ÿ 2�np
N

� �
; n � 1; 2; . . . ;N : �B:1�

Note that one eigenvalue (the smallest) is equal to zero (n � 0 in Eq. (B.1)) because the survival probability
in this case approaches a constant value 1=N when t!1 (the excitation has equal probability to be at each
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molecule). The largest eigenvalue is equal to 4w0 if N is even or approaches this value when N is odd and
large.

For an in®nite unidimensional chain of molecules, the survival probability (A.1) can be rewritten as

Gs
1 t� � � exp� ÿ 2t�I0 2t� �; �B:2�

where t � w0t. The eigenvalue spectrum (the inverse Laplace transform, F1(k)) of Eq. (B.2) is well known. It
is continuous, lies in the limited interval 0 6 k 6 4 and has symmetrical shape

F1�k� � 1

p
�����������������
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Function (B.3) is shown in Fig. 3.
Let us now consider a two-dimensional molecular system formed by a ®nite square lattice of 4� 4

molecules with nearest-neighbour interaction, w0. We suppose that molecules situated at the boundaries of
this lattice interact with the molecules situated at the opposite boundaries with the same rate of RET, w0. So
these 16 molecules form a torus in three-dimensional space. In this case, the eigenvalue spectrum (in w0

units) is discrete and the eigenvalues are k � 8 (one value), k � 6 (four values), k � 4 (six values), k � 2
(four values) and k � 0 (one value). So, the spectrum is symmetrical. Again (like in the one-dimensional
®nite lattice), one eigenvalue is equal to zero because the survival probability goes to the constant value 1/16
when t!1. Note that the spectrum lies in the interval 0 < k < 8 which is two times larger the corre-
sponding interval in one dimension.

The survival probability for an in®nite two-dimensional lattice, Gs
2�t�, is well known [26]

Gs
2 t� � � Gs

1 t� �� �2 � exp� ÿ 4t� I0 2t� �� �2: �B:4�
At long times, it has the asymptotic form
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This means that the eigenvalue spectrum of Eq. (B.5) (inverse Laplace transform, F2(k)) is constant when
k ! 0, F2�0� � 1=�4p�. Due to Eq. (B.4), spectrum F2(k) can be expressed through F1(k). So, spectrum F2(k)
has to be symmetric (as F1(k)) and to be localized inside the interval 0 < k < 8 (see also the spectrum of
®nite two-dimension lattice). Thus, it has to be F2�k � 8� � 1=�4p�. Finally, the function F2(k) is normalized
(Eq. (15)) due to condition Gs

2�1� � 1. After some numerical calculations (carried out by comparing the
exact kinetics (B.4) with those calculated with Eq. (15) in which the function F2�k� was modelled by an
empirical one having the enumerated properties), it was obtained that function
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reproduces the survival probability Gs
2�t� (Eq. (B.4)) with a precision < 1%. Note that only one parameter

(its ®nal value is 2.123) was ®tted.
Using the explicit results in k space obtained by Monte-Carlo simulation, one can observe that it is better

to use another empirical distribution function. Indeed, the function
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1:1� 4
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reproduces the survival probability Gs
2�t� (Eq. (B.4)) with a higher precision �< 0:3%�. Note that only one

parameter (its ®nal value is 1.1) was ®tted.
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Let us now consider a three-dimensional molecular system formed by a ®nite cubic lattice of 4� 4� 4
molecules with nearest-neighbour interaction, w0. Again, we suppose that molecules situated at the
boundaries of this lattice interact with the molecules situated at the opposite boundaries with the same rate
of RET, w0. So, these 64 molecules de®ne a torus in four-dimensional space. In this case, the eigenvalue
spectrum (in w0 units) is discrete and eigenvalues are given by k � 12 (one value), k � 10 (six values), k � 8
(15 values), k � 6 (20 values), k � 4 (15 values), k � 2 (six values), and k � 0 (one value). So, the spectrum
is symmetrical. Again (like in one and two-dimensional ®nite lattices), one eigenvalue is equal to zero
because the survival probability goes to the constant value 1=64 when t!1. Note that the spectrum F2(k)
lies in the interval 0 < k < 12 which in three times larger the corresponding interval in one dimension.

The survival probability for the in®nite simple cubic lattice, Gs
3�t�, is well known [26,27]
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At long times, it has the asymptote
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The last equation means that the eigenvalue spectrum, F3(k), of survival probability (B.7) can be written for
small k as

F3�k� � 1

4p2

���
k
p

; k � 1: �B:9�

Due to Eq. (B.7), spectrum F3(k) can be expressed through F1(k). So, spectrum F3(k) has to be symmetric
(as F1(k)) and to be localized inside the interval 0 < k < 12 (see also the spectrum of ®nite three-dimension
lattice). Thus, at k ! 12, it has to be

F3�k� � 1

4p2

�������������
12ÿ k
p

: �B:10�

Finally, the function F3(k) is normalized (Eq. (15)) due to condition Gs
3�1� � 1. After ful®llment of nu-

merical calculation (comparing exact kinetics (B.7) with calculated one from Eq. (15) in which the function
F3(k) was modelled by an empirical one ful®lling the enumerated properties), it was obtained that function

F3�k� � 1

4p2

���
k
p 1� sign�6ÿ k�

2

�
�

�������������
12ÿ k
p 1ÿ sign�6ÿ k�

2

�
� 0:10312 exp

"(
ÿ k ÿ 6

2:842

� �2
#
ÿ exp

"
ÿ 6

2:842

� �2
#)

�B:11a�

reproduces the survival probability Gs
3�t� (Eq. (B.7)) with a precision better than 1%. Note that only one

parameter (its ®nal value is 2.842) was ®tted.
Using the explicit results in k space obtained by Monte-Carlo simulation, one can observe that again it is

better to use another empirical distribution function. Indeed, the function

F3�k� � 1

4p2

���
k
p 1� sign�6ÿ k�

2

�
�

�������������
12ÿ k
p 1ÿ sign�6ÿ k�

2

�
� 0:0048076 k1:82 1� sign�4ÿ k�

2

�
� �12ÿ k�1:82 1ÿ sign�8ÿ k�

2

�
� 0:14

sign�4ÿ k� � sign�8ÿ k�
2

�B:11b�
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reproduces the survival probability Gs
2�t� (Eq. (B.4)) with higher precision �< 0:3%�. Note that only one

parameter (its ®nal value is 1.82) was ®tted.
The connection between F3(k) and FEM(k) spectra (Eq. (22)) is determined by the equation

FEM�k� � 1

0:057
F3

k
0:057

� �
: �B:12�

The empirical functions F1(k), F2(k), and F3(k) and the respective eigenvalue spectra are depicted in
Fig. 5.
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