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A luminescence relaxation function I(t/s0; a, b) unifying the stretched exponential with the compressed
hyperbola is obtained. The scaling parameter s0 has dimensions of time, whereas the shape-determining
parameters a and b are dimensionless, both taking values between 0 and 1. For short times, the relaxation
function is always exponential, with time constant s0. For small values of a, the function is close to expo-
nential for all times. The function is also close to an exponential when b is near unity. For large values of a
and long times, the function is close to a stretched exponential, provided that b > 0. The compressed
hyperbola is recovered for b = 0.
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1. Introduction

In relaxation processes, including time-dependent lumines-
cence spectroscopy, a perturbation is applied to the system up to
an instant set as the origin of times, t = 0. At this moment, the per-
turbation is suddenly removed, and the system relaxes towards the
long-time (equilibrium) value. The time-dependent relaxation
function I(t), defined from a suitable property P of the system as

IðtÞ ¼ PðtÞ � Pð1Þ
Pð0Þ � Pð1Þ ; ð1Þ

can also be written as

IðtÞ ¼ exp �
Z t

0
wðuÞdu

� �
; ð2Þ

where w(t) is a time-dependent rate coefficient, defined by

wðtÞ ¼ �d ln I
dt

: ð3Þ

In the simplest case, w(t) is time-independent, and the decay is
exponential. If dw/dt > 0, the decay is said to be super-exponential,
and if dw/dt < 0, the decay is sub-exponential [1].

The relaxation function can also be written as:

IðtÞ ¼ L½HðkÞ� ¼
Z 1

0
HðkÞe�ktdk: ð4Þ

This relation is always valid because H(k) is the inverse Laplace
transform of I(t). The function H(k) is normalized, as I(0) = 1 im-
plies that

R1
0 HðkÞdk ¼ 1. In many cases (e.g. in the absence of a
ll rights reserved.
rise-time), the function H(k) is non-negative for all k > 0, and
H(k) can be understood as a distribution of rate constants (strictly,
a probability density function, PDF) [1]. This is the situation ad-
dressed in this work.

Recovery of the distribution H(k) from experimental data is very
difficult because this is an ill-conditioned problem [2–4]. In other
words, a small change in I(t) can cause an arbitrarily large change
in H(k). The quality of the experimental data is therefore of major
importance. Depending on the level of precision, a decay can be fit-
ted with a sum of two or three exponentials with satisfactory chi-
squared and weighted residuals in spite of the existence of an
underlying distribution.

H(k) can in principle be recovered from the experimental lumi-
nescence decay by three approaches [1]: (i) Data analysis with a
theoretical model for H(k) that may be supported by Monte-Carlo
simulations; (ii) data analysis by methods that do not require an
a priori form for the PDF of rate constants; (iii) data analysis with
a definite mathematical function corresponding to the PDF that
contains adjustable parameters.

In the absence of a physical model, the best way to recover the
eigenvalue spectrum appears to be, at first sight, the second ap-
proach, i.e., the use of methods without assumption of the distribu-
tion shape such as the maximum entropy method or other
numerical approaches. However, in these calculations the obtained
eigenvalue spectrum can be extremely sensitive to data quality and
truncation effects [2–4]. Because of the ill-conditioned nature of
the lifetime distribution analysis, instability of the recovered distri-
bution can be observed from repeated experiments under exactly
the same conditions, even when data are of excellent quality
[2,4]. A set of physically plausible results can in principle be ob-
tained after a regularization technique is employed in the data
reduction [2–4].
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In the third approach, a mathematical function with adjustable
parameters that is expected to best describe the distribution is
used. The choice is very wide, but some specific empirical functions
with a continuous distribution of rate constants enjoy special pop-
ularity, such as the stretched-exponential decay function, or decay
functions resulting from the Lorentzian and Gaussian PDFs [1]. In
addition to these well-known functions, further generalizations
of the exponential decay function deserve attention [1]. A new gen-
eralization that unifies the stretched exponential with the com-
pressed hyperbola is the subject of this work.

A simple form of the inverse Laplace transform of a relaxation
function can be obtained by the method outlined in [5]. Briefly,
the three following equations can be used for the computation of
H(k) from I(t),

HðkÞ ¼ 2
p

Z 1

0
Re½IðixÞ� cosðkxÞdx k > 0; ð5Þ

HðkÞ ¼ � 2
p

Z 1

0
Im½IðixÞ� sinðkxÞdx k > 0; ð6Þ

HðkÞ ¼ 1
p

Z 1

0
½Re½IðixÞ� cosðkxÞ � Im½IðixÞ� sinðkxÞ�dx; ð7Þ

it being understood that I(z) has no singularities for Re(z) > 0. Eq. (7)
is clearly the semi-sum of Eqs. (5) and (6). While there is no appar-
ent advantage of one of the relations over the others, it turns out
that for numerical integration purposes, and depending on the
relaxation function and specific values of the respective parameters,
some of the relations may lead to large errors whereas the other(s)
yield accurate results.

2. Stretched exponential (or Kohlrausch) function

The stretched exponential decay function is given by

IðtÞ ¼ exp½�ðt=s0Þb�; ð8Þ

where 0 < b 6 1, and s0 is a parameter with the dimensions of time.
In studies of the relaxation of complex systems, the Kohlrausch

function is frequently used as a purely empirical decay function,
although there are theoretical arguments to justify its relatively
common occurrence. In the field of condensed matter lumines-
cence, Eq. (8) has firm grounds on several models of luminescence
quenching, namely diffusionless resonance energy transfer by the
dipole–dipole mechanism, with b ¼ 1

6 ;
1
3 and 1

2 for one-, two- and
three-dimensional systems, respectively [6,7]. Other rational val-
ues of b are obtained for different multipole interactions, e.g.
b ¼ 3

8 ;
3

10, for the dipole-quadrupole and quadrupole–quadrupole
mechanisms in three-dimensions [8].

The Kohlrausch decay function is convenient as a fitting func-
tion, even in the absence of a model, given that it allows gauging
in simple way deviations to the ‘canonical’ single exponential
behaviour through the parameter b. This is precisely how it was
introduced in relaxation studies, first by Kohlrausch [9] in transient
electric phenomena, and then by A. Werner [10] in luminescence
studies [11]. The Kohlrausch decay function was also recently used
in this way in the analysis of single-molecule fluorescence [12] and
in the fluorescence lifetime imaging of biological tissues [13].

A time-dependent rate coefficient w(t) can be defined for the
Kohlrausch decay function by using Eq. (3):

wðtÞ ¼ b
s0

t
s0

� �b�1

; ð9Þ

where 0 < b 6 1. After Williams and Watts [14], the Kohlrausch
decay function is often called the ‘slower-than-exponential’ (with
respect to an exponential of lifetime s0) function. Although sub-
exponential, this is however somewhat of a misnomer, as a most
characteristic aspect of the function is precisely the existence of
two regimes: a faster-than-exponential (with respect to an expo-
nential of lifetime s0) initial decay (indeed, the rate constant is infi-
nite for t = 0), and a slower-than-exponential decay (with respect to
an exponential of lifetime s0) for times longer than s0 [15]. These
two regimes are very marked for small b, but become indistinct
as b ? 1.

The initial, fast decaying part of the Kohlrausch function (b < 1),
resulting from a Lévy distribution of rate constants (see below),
with its characteristic long tail, is sometimes ignored by using a
s0 smaller than the shortest time of observation, and multiplying
the decay function by a factor higher than 1, a procedure that
invalidates its correct normalization.

The slowing down of the decay rate can be shown explicitly by
the time-dependent rate coefficient, Eq. (9). As mentioned, this rate
coefficient is initially infinite, which is an unphysical result. In the
field of energy transfer in homogeneous media, an initially infinite
rate coefficient arises when point particles are assumed. If a dis-
tance of closest approach is postulated, then the initial part of
the decay becomes exponential, and the decay obeys a stretched-
exponential only for longer times [15]. The stretched exponential
decay function is thus necessarily of an approximate nature.

The determination of H(k) for a given I(t) amounts to the com-
putation of the respective inverse Laplace transform. The result,
first obtained by Pollard [16], is

HbðkÞ ¼
s0

p

Z 1

0
expð�ks0uÞ exp½�ub cosðbpÞ� sin½ub sinðbpÞ�du:

ð10Þ

Equivalent integral representations are obtained from Eqs.
(5)–(7) [5]:

HbðkÞ ¼
2s0

p

Z 1

0
exp �ub cos

bp
2

� �� �
cos ub sin

bp
2

� �� �
� cosðks0uÞdu� ðk > 0Þ; ð11Þ

HbðkÞ ¼
2s0

p

Z 1

0
exp �ub cos

bp
2

� �� �
sin ub sin

bp
2

� �� �
� sinðks0uÞdu� ðk > 0Þ; ð12Þ

HbðkÞ ¼
s0

p

Z 1

0
exp �ub cos

bp
2

� �� �
cos ub sin

bp
2

� �
� ks0u

� �
du:

ð13Þ

For b = 1, one has of course H1(k) = d(k � 1/s0). For b 6¼ 1, Hb(k)
can be expressed in terms of elementary functions only for b = 1/
2 [16],

H1=2ðkÞ ¼
s0

2
ffiffiffiffi
p
p
ðks0Þ3=2 exp � 1

4ks0

� �
: ð14Þ

A relatively simple form for b = 1/4 displaying the correct
asymptotic behavior for large k is also known [17],

H1=4ðkÞ ¼
s0

8pðks0Þ5=4

Z 1

0
u�3=4 exp �1

4
1ffiffiffiffiffiffiffiffiffiffi
ks0u

p þ u

 !" #
du: ð15Þ

The probability density function associated to the Kohlrausch
decay function is plotted in Fig. 1 for selected values of the param-
eter b.

As mentioned, the stretched exponential decay function has an
undesirable short-time behavior (infinite initial rate, faster-than-
exponential decay for short times). For this reason, a modified form
was proposed [15]

IðtÞ ¼ exp ab � aþ t
s0

� �b
" #

; ð16Þ

where a is a non-negative dimensionless parameter. The time-
dependent rate coefficient is in this case



Fig. 1. Distribution of rate constants (probability density function) for the stretched
exponential (or Kohlrausch) relaxation function [15]. The number next to each
curve is the respective b.
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Fig. 2. Distribution of rate constants (probability density function) for the compress
hyperbola (or Becquerel) relaxation function. The number next to each curve is the
respective a.
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wðtÞ ¼
b
s0

aþ t
s0

� �1�b
: ð17Þ
3. Compressed hyperbola (or Becquerel) function

The first quantitative studies of the time evolution of lumines-
cence (following flash excitation), were carried out by Edmond
Becquerel [18]. The functions used by this author for the descrip-
tion of the experimental decays already included an exponential
of time, and also a sum of two such exponentials [18]. Becquerel
also noticed that for some of his experimental systems (with inor-
ganic solids), an empirical decay function of the form

IðtÞ ¼ 1

ð1þ atÞ2
; ð18Þ

gave better fits than a sum of two exponentials. Later on, he pro-
posed a more general equation in the form Im(t + a) = b that can
be rewritten as

IðtÞ ¼ 1
ð1þ atÞp

; ð19Þ

with p taking values between 1 and 2 [19].
This function that decays faster than a hyperbola (for which

p = 1) can be called compressed hyperbola. Owing to Becquerel pio-
neering studies, this function is also called the Becquerel decay
function [19]. The Becquerel decay function can be rewritten as
[19],

IðtÞ ¼ 1

1þ a t
s0

� �1
a
; ð20Þ

where 0 6 a 6 1. The restriction p 6 2 is thus lifted. Values of a out-
side the range defined yield unphysical results: for a 6 1 the inte-
grated intensity (total intensity) diverges, and for a < 0 the
intensity becomes zero at a finite value of t.

The corresponding time-dependent rate coefficient is [19]

wðtÞ ¼
1
s0

1þ a t
s0

: ð21Þ

The Becquerel decay function possesses a simple inverse La-
place transform [19],

HðkÞ ¼ s0

aC 1
a

	 
 ks0

a

� �1
a�1

exp � ks0

a

� �
; ð22Þ
which is a Gamma distribution, and whose mean and standard devi-
ation are 1=s0 and

ffiffiffi
a
p

=s0, respectively. This probability density
function is plotted in Fig. 2 for selected values of the parameter a.
For a = 1, the distribution of rate constants is exponential. On the
other hand, for a sufficiently close to 0, the rate constant distribu-
tion becomes a relatively narrow normal (Gaussian) distribution
with mean and standard deviation given by the previous expres-
sions. When a ? 0, the standard deviation goes to zero, and the dis-
tribution becomes dðk� 1

s0
Þ.

The Becquerel decay is initially exponential,

IðtÞ ¼ exp � t
s0

� �
; ð23Þ

and the initial decay rate is always finite. This short-time behavior
is more realistic than that displayed by the primitive Kohlrausch
function, but is shared by the modified Kohlrausch function
mentioned.

The Becquerel function is a quite flexible decay function,
although its less direct relation to the exponential decay has lim-
ited its use up to now mainly to the luminescence of phosphors
[19]. Nevertheless, there are some applications in fluorescence.
For instance, Wlodarczyk and Kierdaszuk [20] showed that it pro-
vides good fits for fluorescence decays that slightly depart from the
exponential behavior, implying a relatively narrow distribution of
decay times around a mean value. A general view of the broad
range of applications of the Becquerel relaxation function is given
by Whitehead et al. [21].

4. A more general decay function

Comparison of Eqs. (17) and (21) suggests a time-dependent
rate coefficient encompassing both the stretched exponential and
the compressed hyperbola,

wðtÞ ¼
1
s0

1þ a t
s0

� �1�b
; ð24Þ

where a and b are dimensionless parameters. Indeed, with this rate
coefficient Eq. (2) yields

IðtÞ ¼ exp
1� 1þ a t

s0

� �b

ab

2
64

3
75; ð25Þ



Fig. 4. Distribution of rate constants (probability density function) for the general
relaxation function, Eq. (25), as a function of both k and parameter b. The parameter
a is fixed at 0.01.
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which for short times reduces to an exponential function with life-
time s0, cf. Eq. (24). For very small a, and irrespective of b, the decay
is also close to single exponential for all times.

On the other hand, this relaxation function gives, for sufficiently
long times (how long they need to be depends on a) the stretched
exponential form,

IðtÞ ¼ exp � t
s00

� �b
" #

; ð26Þ

with

s00 ¼
ðabÞ1=b

a
s0; ð27Þ

except for b = 0, where Eq. (25) becomes for all times

IðtÞ ¼ 1

1þ a t
s0

� �1=a ; ð28Þ

which is the compressed hyperbola function if 0 < a < 1, and the
stretched hyperbola function if a > 1 (in the last case the integrated
decay diverges).

The function given by Eq. (25) encompasses thus the stretched
exponential and the compressed hyperbola relaxation functions in
a much simpler manner than that of a previous proposal [19].

The distribution of rate constants corresponding to Eq. (25) can
be obtained by means of Eqs. (5)–(7), with

Re½IðixÞ� ¼ exp
1� qb cosðbhÞ

ab

� �
cos

qb sinðbhÞ
ab

� �
; ð29Þ

Im½IðixÞ� ¼ � exp
1� qb cosðbhÞ

ab

� �
sin

qb sinðbhÞ
ab

� �
; ð30Þ

where

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax

s0

� �2
s

; ð31Þ

and

h ¼ arctan
ax
s0

� �
: ð32Þ

The probability density function of rate constants, Hab(k), ob-
tained by numerical integration [22], is shown in Figs. 3 and 4
for selected values of the parameters.
Fig. 3. Distribution of rate constants (probability density function) for the general
relaxation function, Eq. (25), as a function of both k and parameter b. The parameter
a is fixed at 1.
In Fig. 3, parameter a is fixed at 1. It is seen that the probability
density function H1b(k) already closely follows the trend with b dis-
played by the stretched exponential one, compare Fig. 1.

In Fig. 4, parameter a is fixed at 0.01. It is seen that the proba-
bility density function H0.01b(k) is always narrow and peaks at k = 1,
irrespective of b, being nearly Gaussian for b close to 0 and
approaching d(ks0 � 1) as b ? 1.

5. Conclusions

A relaxation function I(t/s0; a, b) unifying the stretched expo-
nential with the compressed hyperbola was obtained, Eq. (25),
and its properties studied. The scaling parameter s0 has dimen-
sions of time, whereas the shape-determining parameters a and
b are dimensionless, with 1 > a > 0 and 1 > b > 0. For short times,
the relaxation function is always exponential, with time s0. For
small values of a, the function is close to exponential for all times,
irrespective of b. The function is also close to an exponential when
b is near unity, irrespective of a. For large values of a and long
times, the function is close to a stretched exponential, provided
b > 0. The compressed hyperbola is recovered for b = 0.

The interest of function I(t/s0; a, b) results from three aspects:
Firstly, it has a simple mathematical form, appropriate for data fit-
ting; Secondly, it demonstrates the continuity between two appar-
ently disparate relaxation functions, the stretched exponential and
the compressed hyperbola; Thirdly, and finally, it can in principle
be used to describe a class of complex relaxations processes with
unimodal distributions that do not follow exactly neither the
stretched exponential nor the compressed hyperbolic laws.
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