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Abstract
A computational model study for atomic radiation trapping is presented with
an audience non-specialized in radiation transport in mind. The level of
presentation is adequate for a final undergraduate or beginning graduate project
in a computational physics instruction. The dynamics of resonance radiation
transport is discussed using a theoretical model known as the multiple scattering
representation. This model is compared with the alternative Holstein’s ansatz,
reinterpreting the fundamental mode as the one associated with a relaxed
stationary spatial distribution of excitation. Its computational implementation
is done making use of the stochastic Markov chain formalism. A comprehensive
discussion of its rationale as well as fine implementation details are presented.
The simplest case of complete frequency redistribution in a two-level system
is considered for a unidimensional geometry. Nevertheless, the model study
discusses at length the influence of the spectral distributions, overall opacity
and emission quantum yield for trapping distorted ensemble quantities stressing
physical insight and using only straightforward algorithmic concepts. Overall
relaxation parameters (ensemble emission yield and lifetime) as well as
steady-state quantities (spectra and spatial distribution) are calculated as a
function of intrinsic emission yield, opacity and external excitation mode for
Doppler, Lorentz and Voigt lineshapes, respectively, with the fundamental
mode contribution singled out.

1. Introduction

In optically thick media, electronic excitation energy can undergo several reabsorption and
reemission events before either escaping to the surroundings or being converted into thermal
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energy by means of collisional deactivation. Atomic radiation trapping is also known as
imprisonment of resonance radiation, reabsorption, self-absorption, line transfer, radiation
diffusion or multiple scattering of resonance radiation. This resonance radiation trapping
is important in areas as diverse as stellar atmospheres [1], plasmas and atomic vapour
luminescence [2], terrestrial atmosphere and ocean optics [3], molecular luminescence [4],
infrared radiative transfer [5] and cold atoms [6]. From the point of view of economically
important applications, electric discharge lamps are still the most important application [7]
even though electrodeless fluorescence lamps [8] and large area plasma display panels [9] are
gaining an increasing importance.

In spite of its importance from the fundamental physics point of view as well as from the
need to control trapping in practical applications, the discussion of the physical implications
of radiation trapping at the level of the nonspecialist has been hampered by several factors,
most notably, the intricate computational technicalities that were developed over the decades
to obtain useful estimates of trapping-dependent quantities in practical situations. In this
context, the present contribution should appeal to a broad audience and be valuable in the
context of a final undergraduate and beginning graduate physics instruction since, although
it uses only straightforward computational resources and concepts, it nevertheless allows at
least a semi-quantitative detailed discussion of the physical implications of a wide range of
factors affecting trapping efficiency and dynamics.

Section 2 discusses the way the dynamics of incoherent trapping is usually taken
into account. The two standard alternative approaches to quantify trapping, the so-called
Holstein mode expansion and the multiple scattering representation (MSR), are outlined
giving particular emphasis on the connection between both through the (re)interpretation of
the Holstein fundamental mode as the one associated with a relaxed nonchanging spatial
distribution of excitation. Expressions for the macroscopic relaxation parameters (emission
yield and lifetime) and steady-state quantities are derived within the MSR framework but
with the fundamental mode contribution singled-out. The estimation of these quantities is
then implemented using a simple Markov chain algorithm to quantify incoherent trapping
in a computational model study for two-level atomic models. This is done in section 3
in which the rationale as well as critical implementation details are given. Section 4 presents
the results and their discussion at length. Particular emphasis is placed on the discussion
of the physical implications of the range of factors affecting trapping including the spectral
lineshape, and the conditions of creation of initial excitation (collisional or photoexcitation).
A thorough discussion of the conditions for which the use of Holstein’s fundamental mode
alone is a tolerable approximation is included. Finally, the main conclusions are summarized
in section 5.

2. Dynamics of incoherent trapping

2.1. Characteristic scales

Radiation trapping studies should be cast in dimensionless coordinates since this increases
computational efficiency and, more importantly, defines characteristic scales or universal
conditions. The quantities most directly amenable to define characteristic scales in trapping
are time, distance and optical frequency. The scaled time is t = �t ′, where � is the global
deactivation rate constant. The dimensionless distance is sometimes called the opacity or
optical density. k(x) = k0�(x)/�(0) is the single line monochromatic opacity (k0 is
the corresponding centre-of-line value which, for homogeneously distributed species along
a given pathlength l, is k0 = nσ0l, with n and σ0 being the numerical density and the
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centre-of-line absorption cross section, respectively) and the absorption lineshape is given
by the normalized spectral distribution �(x) (so that

∫ +∞
−∞ �(x) dx = 1). x is used to

represent the optical frequency (see below). Finally, the overall (reflecting the whole of the
spectral distribution) dimensionless opacity is r = ∫ +∞

−∞ k(x) dx = k0
�(0)

and this defines the
characteristic lengthscale for trapping.

For two-level atomic models, the intrinsic (i.e. undistorted by trapping) spectrum is
usually described by a Doppler, �D(x) = 1√

π
e−x2

, a Lorentz, �L(x) = 1
π

1
1+x2 , or a Voigt,

�V (x) = a
π3/2

∫ +∞
−∞

e−u2

a2+(x−u)2 du, spectral distribution. The Doppler distribution allows us to
single out the pure Doppler broadening from the other broadening mechanisms while the
Lorentz and Voigt’s distributions are the ones to be used in pure radiation damping and
combined radiation and collision broadening conditions, respectively. For all these three
lineshapes, the spectra can be written as a function of a dimensionless optical frequency
defined as x = ν−ν0

�ν
. For the Doppler and Lorentz cases, this is a normalized difference to

the centre of line frequency, where �ν stands for the FWHM of the Doppler (or Lorentz)
distribution at each given temperature. For the Voigt lineshape, the width parameter �ν is
the one for the underlying Doppler distribution and a = √

ln(2) �νL

�νD is the Voigt characteristic
width, the relative Lorentz over Doppler spectral width and implicitly dependent upon both
temperature and vapour pressure.

2.2. Holstein–Biberman equation

The starting point for the majority of incoherent radiation trapping models is the Holstein–
Biberman equation which is a Boltzmann-type integro-differential equation describing the
spatial and temporal evolutions of the excited state number density n(r, t) as

∂n(r, t)

∂t
= −�n(r, t) + �φ0

∫
V

f (r, r′)n(r′, t) dr′, (1)

where the non-local character of trapping is evident in the last term of the right-hand side: a
local excited number density increase owing to reabsorption of radiation emitted from all parts
of the sample enclosure. φ0 is the intrinsic (i.e. unaffected by trapping) emission quantum
yield, and can be interpreted as the probability of photon emission by an excited state (the
ratio of radiative over global relaxation rate constants: φ0 = �r

�
). f (r, r′) is the (conditional)

transition probability of photon absorption at r, given that there was an emission at r′.
For the classical trapping problem [2], in which the time of flight of in-transit radiation

between emission and reabsorption is negligible compared with the natural lifetime of the
excited states, and for linear response conditions, two alternative ansatze can be used to obtain
solutions for the previous equation: Holstein’s exponential mode expansion and the so-called
multiple scattering representation (MSR).

In the form presented in (1), the Holstein–Biberman equation neglects the time of flight of
radiation and, therefore, the spatial and temporal dynamics are decoupled. Holstein proposed
an eigenmode expansion

n(r, t) =
∑

n

nn(r) e−βnt , (2)

as the general solution of (1). This solution, has, however several important shortcomings: (i)
the eigenmodes (stationary spatial modes) nn(r) have a troublesome physical interpretation
since all but the slowest decaying mode take negative values at some points and cannot thus
be identified with physical distributions; (ii) individual relaxation constants βn have no simple
connection with physical parameters; (iii) the eigenmodes/values are not easily estimated;
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and (iv) it is very difficult to generalize the mode expansion to account for additional effects
(polarization, partial frequency redistribution between absorption and reemission, radiation
propagation time, particle diffusion). However, an alternative mode expansion exists that
overcomes most of these difficulties. It is known as the multiple scattering representation
since it identifies each spatial mode with the spatial distribution of excited species after several
scattering (reemission–reabsorption) orders. These multiple scattering modes are associated
with several generations of excited species, paralleling the members of decaying radioactive
families. The MSR was independently proposed for atomic [10] and molecular trapping [11]
and, subsequently, proven to be equivalent to the original Holstein solution [12]. For general
reviews see [2, 4].

Although the Holstein mode expansion is well known to the radiation transport specialist,
its utility to a wider audience is hampered by the abovementioned shortcomings. In particular,
it must be emphasized that the standard solution of (1) by a multiexponential expansion is in
fact an eigenproblem which has an elementary solution algorithm (both mathematically and
also from the point of view of physical intuition) only for the case of the slowest decaying
mode. This is usually called the fundamental mode and its eigenvector corresponds to a
relaxed spatial excitation distribution. However, the standard practice of substituting the
whole of the dynamics for the fundamental mode alone is unsatisfactory since it does not
fully describe the trapping phenomenon. Moreover, in common situations in steady-state
applications, the fundamental mode introduces a systematic error in approximating the actual
trapping influenced steady-state solution to (1). In order to go beyond the fundamental mode,
a wealth of computational algorithms exist that were developed in recent decades (see [2]).
However, to master at the same time both the physics, the computational algorithms, and
the technical tricks of the trade is not an easy task. But perhaps more importantly, from a
pedagogical point of view, it would be preferable for the student first to master the physics
using a simple computational model. The MSR approach is in this respect very attractive
since it is simpler and more amenable to discussion at an elementary level than the alternative
Holstein multiexponential expansion. Its numerical implementation is straightforward and can
be easily discussed at a level that stresses physical intuition without actually getting into the
intricate details needed for the estimation of Holstein modes other than the fundamental. In its
essence, it is just the estimation of mean reabsorption and escape probabilities. The theoretical
formulation of the MSR stochastic model must weight properly these mean probabilities when
quantifying the effect of trapping on observables. The way this is done is summarized in the
following subsection.

2.3. Multiple scattering representation

In the MSR ansatz for linear incoherent trapping with a negligible time of flight for in-transit
radiation, the spatial and temporal relaxation dynamics for excitation are given by

n(r, t) =
∑

n

anpn(r)gn(t), (3)

where n stands for the generation number of excited species (initial excitation creates the first
generation, the trapping of this generation’s emission creates a second generation and so on;
one can envisage each generation as the result of n−1 previous scattering events of resonance
radiation), an is the population efficiency for each generation, and pn(r) and gn(t) are the
(normalized) spatial and temporal excited species distributions, respectively. The pn(r) s
replace the eigenmodes of the Holstein ansatz with distinctive advantages since their physical
interpretation is clear; they are the spatial distribution of excitation after n − 1 scattering
events. The temporal distributions are easily obtained for incoherent trapping; the temporal
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evolution of each generation, gn(t), is an iterated convolution of the intrinsic response of each
generation, g(t) = e−t . The temporal evolution is, therefore, gn(t) = tn−1

(n−1)! e−t [4]. The
trapping efficiency can be discussed either based on each generation’s population efficiency
an or, preferably, on each generation’s reabsorption probability defined as αn ≡ an+1

an
. One

should elaborate a little further by factoring out trapping specific effects (opacity scales,
geometry, spectral distribution) from the trivial influence of the reemission probability φ0. This
decoupling can be made by writing αn ≡ αT

n φ0 (superscript T signals quantities dependent only
on trapping efficiencies) and an = aT

n φn−1
0 with aT

n = ∏n−1
n=1 αT

n . Finally, one should be aware
that only a fraction of the radiation emitted by each generation escapes (or, is reabsorbed);
the generation-dependent mean escape probability can be defined as qn = φ0

(
1 − αT

n

)
. With

these aspects in mind, useful expressions can be derived for the relevant parameters of the
ensemble.

2.3.1. Ensemble relaxation parameters. The trapping dynamics has a direct effect on the
two single most important macroscopic parameters for the ensemble relaxation; the overall
re-emission efficiency φ (mean photon re-emission probability out of sample enclosure,
irrespective of scattering order) and mean excitation deactivation or photon emission lifetime
τ (mean excitation survival time in macroscopic ensemble). These will be the most important
quantities to be extracted from (3). Before showing explicitly how these quantities are
obtained, let us consider the relaxation from an initially created population of excited species
based on trapping alone. After a sufficiently high number of scattering events, initial excitation
will relax to a distribution which, when normalized, does not change with time since each
point deactivation is exactly balanced with local reabsorption due to emission from the whole
ensemble. Thus, based on physical insight, in all of the following we can divide the contribution
of all the generations in two groups: one summing up the spatial changing excited species and
the other grouping all the generations with a nonchanging distribution (Holstein’s fundamental
mode with an analytical explicit sum; see discussion below). The generations will be grouped
into up to m = nnc and m onwards, where the subscript is a remainder for nonchanging. The
nonchanging distribution is stationary in the sense that it is time-independent but we will keep
the nc subscript to emphasize the difference to the steady-state or stationary system response
to a continuous perturbation and avoid common misinterpretations.

To obtain the ensemble dynamics, we will need to compute sums of the type
∑

qnan or∑
anpn(r) and

∑
nqnan and, in these, we will use the fact that qn�m = qnc, pn�m(r) = pnc(r)

and an�m = ancα
n−m
nc . The ensemble re-emission yield is

φ =
∫ +∞

0

[
+∞∑
n=1

qnangn(t)

]
dt

=
+∞∑
n=1

qnan

∫ +∞

0
gn(t) dt

=
+∞∑
n=1

qnan

=
m−1∑
n=1

qnan +
qncanc

αm
nc

+∞∑
n=m

αn
nc

=
m−1∑
n=1

qnan +
qncanc

αm
nc

[
+∞∑
n=1

αn
nc −

m−1∑
n=1

αn
nc

]
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=
m−1∑
n=1

qnan +
qncanc

αm
nc

[
αnc

1 − αnc

− αnc

1 − αm−1
nc

1 − αnc

]

=
m−1∑
n=1

qnan +
qncanc

1 − αnc

, (4)

since

ρ(t) =
+∞∑
n=1

qnangn(t), (5)

is just the emission decay.
The mean lifetime is

τ =
∫ +∞

0 tρ(t) dt∫ +∞
0 ρ(t) dt

. (6)

The denominator is just the re-emission yield, while the numerator can be written as∫ +∞

0
t

[
+∞∑
n=1

qnangn(t)

]
dt =

+∞∑
n=1

qnan

∫ +∞

0
tgn(t) dt

=
+∞∑
n=1

nqnan

=
m−1∑
n=1

nqnan +
qncanc

αm
nc

[
+∞∑
n=1

nαn
nc −

m−1∑
n=1

nαn
nc

]

=
m−1∑
n=1

nqnan +
qncanc

αm
nc

×
[

αnc

(1 − αnc)
2 − αnc

(1 − αnc)2

(
(m − 1)αm

nc − mαm−1
nc − 1

)]

=
m−1∑
n=1

nqnan +
qncanc

(1 − αnc)2
[m(1 − αnc) + αnc], (7)

since each generation will decay on average in n units of the dimensionless time. Finally, the
scaled lifetime is

τ =
∑m−1

n=1 nqnan + qncanc

(1−αnc)2 [m(1 − αnc) + αnc]

φ
. (8)

2.3.2. Steady-state spectra and spatial distribution. The decay in (5) is strictly valid for
a delta pulse excitation. However, under incoherent conditions, the decay for other initial
excitation distributions is obtained from linear response theory as the convolution of the
excitation profile with the delta response function (e.g. [13] and references therein). Let us
obtain the system observables for a continuous excitation which constitutes a particularly
important limiting case in many practical conditions. We have then steady-state or stationary
conditions and use superscript SS to express it.

The overall emission intensity is just the previously computed macroscopic emission yield
φ but now the most important quantity is the spectral distribution. To obtain it, the decay
should be resolved both in the optical frequency and in the detection geometrical details. For
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the most important case of complete frequency redistribution [2], both spectra, absorption and
emission, are the same and therefore the decay is

ρ(x, t) =
+∞∑
n=1

�(x)q
n (x)angn(t). (9)

The decay at each frequency depends upon the intrinsic spectrum �(x) and on the mean
escape probability in the detection direction ,

q
n (x) =

∫


∫
V

e−�(x)rpn(r) dr dS, (10)

where the Beer–Lambert escape (survival) probability is weighted in both spatial distribution
inside volume V and over the surface S facing detection optics. r should be the optical distance
between emission coordinate r and the surface point facing detection. In unidimensional
geometry (see next section), photon escape to the left reduces to

q
n (x) =

∫
e−�(x)rpn(r) dr, (11)

if one chooses to set the origin of the opacity scale on the left side of the cell.
Now the steady-state spectrum is obtained by time integrating this, giving

I SS,(x) =
+∞∑
n=1

�(x)q
n (x)an. (12)

The distortion of emission spectrum owing to trapping is better appreciated if one scales
the emission spectrum and it is thus better to have the normalized spectral distribution,

I SS,(x) =
∑m−1

n=1 q
n (x)an + q

nc(x)anc

1−αnc∫ +∞
−∞

[∑m−1
n=1 q

n (x)an + q
nc(x)anc

1−αnc

]
�(x) dx

�(x). (13)

The numerator gives the trapping-dependent spectral distortion. At this point the
paramount importance of the x-dependent escape probability in defining the contribution
of each generation to the observed spectra must be stressed, this being due to the strong
nonlinear character of (10).

It is also informative to know the steady-state spatial distribution. This can be obtained,
again under the conditions of linear response theory, from the overall (reflecting all generation’s
contribution) time resolved normalized spatial distribution

n(r, t) =
∑+∞

n=1 anpn(r)gn(t)∫ ∑+∞
n=1 anpn(r)gn(t) dr

=
∑+∞

n=1 anpn(r)gn(t)∑+∞
n=1 angn(t)

. (14)

Time integrating both the numerator and the denominator of (14) gives

nSS(r) =
∑+∞

n=1 anpn(r)∑+∞
n=1 an

=
∑m−1

n=1 anpn(r) + anc

1−αnc
pnc(r)∑m−1

n=1 an + anc

1−αnc

, (15)

since the gn(t) are normalized.
In all of the above expressions, it is important to recognize that the trapping dynamics can

be factored out into a generation varying part and another corresponding to generations that
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have the same spatial distribution (the fundamental mode) and the nonchanging part can be
expressed explicitly as an analytical sum. The dynamics for this nonchanging part corresponds
only to an attenuation of overall excitation in going from one generation to the next by a fixed
αnc factor and, as a result, the contribution of this part corresponds to a monoexponential
relaxation with a trapping-dependent effective decay constant.

3. Markov stochastic algorithm

We conducted a model study for atomic radiation trapping stressing physical insight and using
only elementary computational concepts and resources. We have used a two-level single line
atomic model with Doppler, Lorentz or Voigt spectral distributions. We have, furthermore,
decided to use a unidimensional geometry, driven by the motivation to do a simple mimic of
a cylindrical tube of a discharge fluorescence lamp and by the desire to keep computational
detail and power adequate to the proposed audience of final undergraduate and beginning
graduate students. In this 1D case, the opacity scale comes naturally as the opacity along
the cylindrical axis. The simplest and most general case of complete frequency redistribution
conditions is used [2], which means that the number of collisions during the lifetime of excited
atoms is sufficiently high to render the reemitted photon’s frequency completely uncorrelated
with the frequency of the previously absorbed photon. Under these conditions, the absorption
and emission lineshapes coincide and the jump length distribution of the excitation random
trajectory is independent of previous jumps. This makes the formalism of Markov processes
[14] especially adequate. Its rationale for the MSR implementation can be cast in the following
way. The 1D cell is divided into several bins, each corresponding to a pure state of the system
and characterized by a mean probability that the excitation resides in that state. The system
dynamics corresponds to the evolution of the probability of excitation being inside each state.
The stochastic process is completely specified by (i) a column vector with the (normalized)
spatial probability distribution of the first generation species, p1 = [

pi
1

]
and (ii) a transition

matrix P = [pij ], whose entries are the one-step transition probabilities between states i and j .
For a complete frequency redistribution, there is an absence of memory effects (homogeneous
chain) meaning that the transition probability between individual states depends only upon
their relative opacity distance (it is independent of the generation number and thus computed
only once).

The binning of the spatial excitation distributions corresponds to the substitution of
a continuous distribution for its discretized version, effectively transforming a continuous
process into a discrete one realized in a lattice. It is, therefore, the Markov equivalent of a
random walk defined over a regular spaced lattice [15] and the binning corresponds to the
single most important approximation underlying the use of the Markov model. The bin width
(or the number of cells) is the critical parameter for the algorithm. We have conducted several
tests and found it advisable to have a maximum bin size of 0.05 in an opacity scale. Otherwise,
numerical artifacts associated with substituting the actual excitation migration for the jump
between the mean coordinates of each bin of sample cell could exist. These were found to be
more important for higher overall opacities.

We have mentioned in the last section that the stochastic formulation of the MSR model
aims at estimating mean reabsorption and escape probabilities. These are straightforwardly
estimated from each generation’s spatial distribution. The Markov algorithm proceeds then
in four consecutive steps: (i) specify the first generation’s spatial distribution and the
transition matrix (the system relaxation response due to radiation trapping), (ii) compute
each generation’s spatial distribution from the previous generation’s counterpart, (iii) estimate
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each generation’s mean reabsorption and escape probabilities and, finally, (iv) compose the
overall ensemble data from each generation’s relative contribution.

3.1. Spatial distribution of the excitation

The spatial distribution functions for all the generations are calculated from the previous
generation by

pn+1 = Ppn. (16)

The sample cell is divided into h-length bins and the transition matrix elements are,
therefore, given for a 1D geometry by [16]

pij � 1

2
h

∫ +∞

−∞
�2(x) e−�(x)|ri−rj | dx, (17)

corresponding to the Beer–Lambert law weighted according to the emission lineshape for an
individual reemission–reabsorption (scattering) event. The integration takes into account all
the possible emission frequencies, 1/2 is the left or right emission direction probability for a
1D geometry and it was assumed that the bin width is sufficiently small in order to attain a
satisfactory precision.

The complete specification of the Markov process is achieved once one specifies the
initial spatial distribution p1. Since we wanted to discuss the excitation relaxation dynamics
for conditions mimicking electron impact as well as photoexcitation, we considered two
possibilities for the first generation. In the first case, we used homogeneous initial excitation
(trivial; electron impact), while for the second case we considered photoexcitation with the
reabsorption undistorted line (this last case corresponds to a common experimental practice;
see for instance [17]). For photoexcitation from the left side of the 1D cell,

pi
1 � h

∫ +∞

−∞
�2(x) e−�(x)ri dx, (18)

which afterwards must be properly normalized.
The numerical integrations are necessary to estimate both transition probabilities and the

first generation’s distribution for the case of photoexcitation, equations (17) and (18), must
map the infinite domain of integration into a finite representation in the computer. One simple
purely numerical way to achieve this is demonstrated in [18]. This is an important point owing
to the need of accounting for the so-called wings of the spectral distribution, those with the
most important contribution to excitation spreading due to reabsorption of resonance radiation
on higher opacity scales.

Equation (16) is equivalent to linear response theory and, therefore, the evolution of the
spatial excitation is given as a convolution integral between the excitation profile pn with the
delta response function given by (17). This renders the Markov approach especially efficient
since this convolution can be easily made using FFT algorithms [19] paying attention to zero
pad to double size the column vector containing the excitation distribution in order to avoid
wrap-around effects due to the cyclic convolution [18]. The speed-up factors could rise up
to several orders of magnitude (roughly 50 to 400 times for a number of Markov states of 2
000 to 200 000) making the FFT convolution the recommended implementation of the Markov
algorithm. The instructor has the freedom to tailor the computational physics project as needed
by using either a direct matrix multiply or, alternatively, a FFT-based convolution approach
to (16).
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3.2. Reabsorption and escape probabilities

The mean reabsorption and escape probabilities for each generation are estimated from their
spatial excitation distribution. The reabsorption probabilities are estimated with the following
procedure. One starts with a normalized spatial distribution for the first generation. Then,
each time (16) is used, the fraction of the excitation remaining inside the sample cell gives the
nth generation mean reabsorption probability: the sum over all the states i—αT

n = ∑
i p

i
n+1—

immediately after using (16). The excitation column vector is then (re)normalized and
the process repeated. From the values of this parameter for each generation, the trapping
population efficiency is aT

n = ∏n−1
n=1 αT

n . This procedure is the equivalent of an important
sampling method in a Monte Carlo simulation, in which it is assumed a unit intrinsic reemission
yield in (17). The Markov algorithm directly estimates aT

n , each generation’s population
efficiency due to trapping (and geometry) alone, and the actual population efficiencies were
then given by an = aT

n φn−1
0 . As for the escape probabilities, we suggest the following

implementation of (11). The monochromatic left escape probability is obtained from

q
n (x) = Q(x)pn, (19)

where pn is the spatial distribution and Q(x) is the escape matrix, whose entries are finally,

qi(x) � 1
2 e−�(x)ri , (20)

which comes from the Beer–Lambert law.

3.3. Fundamental mode

The estimation of parameters for each generation (spatial distribution and mean reabsorption
and escape probabilities) is done as described in the two previous subsections. Nevertheless,
the practical question of defining a figure-of-merit or objective function to estimate the
fundamental mode remains. This is especially important for high opacity cases since we
have found that for high overall opacities, a small error in the fundamental mode can be
greatly amplified in the ensemble relaxation parameters. The single criterion we advise to
use as a test for convergence to the fundamental mode with the generation number is the
mean reabsorption probability. That this is the most useful criterion can easily be justified
from both the physical meaning of the fundamental mode and the nature of the Markov
algorithm. The Markov stochastic formulation considers directly the evolution of mean
excitation probabilities. The evolution of the mean spatial distribution is considered whenever
applying (16). By repeating this equation one mimics the relaxation of excitation from the
initial distribution into a nonchanging spatial distribution, precisely the sought for fundamental
mode distribution. The relaxed nonchanging spatial distribution is a vector quantity but the
corresponding mean reabsorption probability is a single scalar number that we can test for
the attainment of the limiting spatial distribution. We have made several tests and ended
up using a conservative fractional tolerance of 10−6 for the mean reabsorption probability
of the generation corresponding to the fundamental mode distribution. So the Markov chain
simulation proceeded as follows: (i) we considered the initial excitation spatial distribution; (ii)
repeatedly applied (16) to estimate for each generation the mean probabilities and renormalize;
(iii) for each generation we tested the mean reabsorption probability for convergence and
decided either to continue applying (16) or to end up due to convergence to the fundamental
mode. After having reached the nonchanging mode, we took into account its analytical
contribution to the ensemble obervables in equations (4), (8), (13) and (15).
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3.4. Excitation spatial distribution functions

The mean reabsorption and escape probabilities for each generation are scalar quantities and,
thus, pose no special demands on computer memory resources. However, this is not the case
for the spatial distribution functions. We have mentioned before that the binning of these
distributions is the single most important approximation in the Markov algorithm and stressed
the need to use a binning as small as 0.05 in opacity. So each generation’s spatial distribution
is a vector valued quantity and possibly a very big one. The algorithm proceeds by following
each generation’s spatial distribution until convergence to the nonchanging mode. This mode
could correspond to generation numbers as high as some hundreds (see the discussion of
results), thus eventually posing some constrains on memory. The recommended solution to
circumvent this difficulty is not to record all the spatial distributions but only the last two, the
previous and the current one. In addition to these two, only one more vector is needed: the
one used to record the steady-state spatial distribution. During the intermediate generation
computations, one uses this vector to keep track of the accumulated contribution of generations
up to the present generation number: the first term in the numerator of (15). After reaching
the fundamental mode, this equation is finally updated with its relative contribution (the last
term in the numerator) and the distribution properly normalized (the denominator). For the
remaining quantities, the simplest procedure is to keep in memory the probability values for
all the generations up to the fundamental mode.

4. Results and discussion

4.1. Ensemble relaxation

Figure 1 shows the overall relaxation parameters for an initial homogeneous excitation and
an intrinsic quantum yield of φ0 = 0.9 as a function of opacity for Doppler, Voigt and
Lorentz lineshapes. The higher the opacity the more important the trapping is, with the
following implications: (i) an increase of the mean relaxation time (equivalent to a mean
number of scattering events before escape) and (ii) a decrease of the ensemble reemission
yield (the fraction of original excitation that eventually comes out; an increased importance
of trapping translates into additional possibilities of nonradiative relaxation). The Voigt
continuous transition from Doppler into Lorentz is evident as well as the relative importance
of core and wings of the distributions. The higher the Lorentz character of the spectra the
higher the weight of the wings and the higher the escape probabilities (lower mean lifetime
and higher macroscopic emission yield).

The model study used a two-level single line atomic model with Doppler, Lorentz or
Voigt spectral distributions and particular attention is paid to the influence of the lineshape
on the trapping efficiency. The Voigt case illustrates the fact that a continuous variation of
the characteristic width parameter will map the Doppler into the Lorentz distributions by
changing the relative importance of the Lorentz-like wings over the Doppler-like core of the
distribution (figure 2). Accordingly, the ability to compute the Voigt line to machine precision
is mandatory and we give some implementation details in the appendix.

Figures 3 and 4 show the mean scaled lifetime and reemission yield for a homogeneous
initial excitation for the Doppler and Lorentz limiting spectral distributions, respectively, for
several values of the intrinsic quantum yield. Three main conclusions can be drawn from
these results. First of all, the two most important parameters controlling trapping efficiency
are the spectral distribution and the value of φ0. The higher the overall opacity the more
difficult is the escape of radiation for Doppler-like distributions and the more important the
escape from the Lorentz-like wings of the distribution. Second, trapping for Doppler-like
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distributions is much more efficient since, especially in high opacity cases, the escape of
excitation at optical frequencies far from the line centre frequency is reduced due to the
extremely small probability of reemission at these frequencies (for unit reemission yield, the
lifetime for the higher opacity is about 200 for Doppler and only about 15 for Lorentz). Finally,
under conditions rendering trapping efficient, the φ0 value is of paramount importance; for
unit intrinsic reemission probability all the excitation will eventually come out (thus giving
a simple check for consistency of computation) but, as soon as φ0 is smaller than one, each
new scattering event gives the excitation another chance of thermal degradation (in (4) each
generation’s contribution is intrinsically dependent upon φn−1

0 ). Note in these figures that
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there is a strong dependence of the relaxation parameters on the φ0 value, especially for the
more trapping influenced Doppler case.

All these conclusions are important in the discussion of atomic vapour ensembles for
lighting applications, either electric discharge lamps or plasma display panel (PDP) devices.
Better performance is achieved with higher macroscopic reemission yields. On top of that,
the increase of the overall opacity is in principle desirable since this is related to the increase
of the number of excited species. In a crude first-order approximation, one can assume the
overall lamp efficiency to be directly proportional to the product of φ times the overall opacity
(directly proportional to initial excitation density):

� ∝ φ × r. (21)

The actual behaviour of a lamp or a PDP can be quite involved since an increase in
opacity means an increase of partial vapour pressure (the external dimensions of the device
are fixed) and this induces several changes whose influence on the overall performance can
be contradictory. The higher opacity means higher light throughput but only as long as the
increase in the trapping efficiency does not substantially increase thermal degradation. The
higher opacity could increase collisional deactivation to the point that its overall influence to
light throughput is undesirable. To have a simple idea of the effect, and due to the paramount
importance of the reemission quantum yield φ0, a series of results were made for both limiting
Doppler and Lorentz distributions with the radiative quantum yield given by φ0 = �r

�r +�q
,

where the quenching rate constant was assumed in a first order approximation to be linear with
the cell opacity (�q ≡ kr , with the numerical values �r = 107 s−1 and k = 2.5 × 104 s−1).
This corresponds to the well known Stern–Volmer equation for dynamical quenching by
binary collisions for unitary intrinsic radiative yield in the absence of collisions. The results
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are shown in figure 5 which is judged to be more representative of the actual lamp behaviour
than the results in figures 3 and 4. Figure 5 shows that, ultimately, a delicate balance will
dictate the best operation conditions which manifest themselves in the peaks of the � values.
Of course, the results are very approximate since the assumed functional dependence of φ0 is
only approximate. Nevertheless, figure 5 allows the discussion of the qualitative behaviour
emphasizing physical insight without the additional burden of fine grained details. It shows
how critical the spectral distribution shape and the quantum reemission yield are. For φ0 values
sufficiently close to one, an increase in opacity corresponds to an increase in lighting efficiency
due to the increased initial excitation number density. However, as soon as the φ0 value starts
to be significantly smaller than one, the trapping leads to a much higher thermal degradation
(compare the difference between the quantum and the ensemble yield or the reduced overall
relaxation lifetime in the upper part of figure 5) which, ultimately decreases the lighting
efficiency. From some point onwards this will be more important than the increase in initial
excitation due to a higher vapour pressure, which originates optimal operation conditions,
giving the best possible lighting efficiency. Figure 5 also shows that the Doppler distribution
is associated with smaller throughput in lighting applications when compared with the Lorentz
case due to the step reduction of the ensemble reemission yield with the increase of the overall
opacity. This could of course be related to the use of an inert gas filling to render collisions
more important (increasing the Lorentz character of the spectral distribution and reducing
trapping efficiency) in fluorescence lamps.

The results of figure 5 allow a semi-quantitative discussion of a multitude of physical
effects motivated by lighting applications without introducing any qualitative difference in the
basic Markov algorithm; the only modification is the underlying approximation in the form
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of (21). This equation permits some discussion of the role of collisional deactivation and its
relation to the trapping efficiency without added computational complexity. The suggested
model should, thus, be useful if the instructor wants to be more detailed in the discussion of
additional physical effects. Of course, she may choose not to implement (21) without losing
the essential.

Finally, figure 6 shows the predicted ensemble relaxation parameters for both
homogeneous and photoexcitation as a function of overall opacity. Up to opacities of the
order of 10, no significant difference exists (photoexcitation is able to penetrate well deep
into sample cell). But, for higher opacities, the importance of trapping continues to increase
indefinitely for the homogeneus excitation while it levels off for photoexcitation, a point to be
revisited in section 4.3 when discussing spatial distribution functions.

4.2. Steady-state spectra

Figure 7 shows the estimated normalized spectral distribution in steady-state conditions for
Doppler, Lorentz and Voigt lineshapes for both primary homogeneous and photoexcitation.
The motivation for the homogeneous case is the excitation along the axis of a fluorescence
lamp for lighting applications. It shows the well known self-reversal of spectral lines due to the
higher attenuation of core optical frequencies. For photoexcitation, there is a balance between
reduced penetration of external excitation and higher attenuation at core frequencies which
dictates a flattening of the spectra near the line centre (of course, for left wall photoexcitation
and right wall detection there is a self-reversal higher than the one for homogeneous excitation;
not shown). In both cases, there is a considerable broadening of the detected spectra and the
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Voigt distribution has an intermediate character between core Doppler-like and wings Lorentz-
like.

4.3. Spatial distribution

Figure 8 shows the steady-state spatial distributions for both limiting cases of Doppler and
Lorentz distributions. This figure shows that the fundamental mode spatial distribution
(limiting case for a relaxed, non-changing spatial distribution and thus independent of the
original excitation) could only give a reasonable approximation of the steady-state distribution
for the homogeneous excitation case; for photoexcitation it is more convenient to choose
the spatial distribution of the first generation species as a first approximation to the overall
distribution. This illustrates the well known procedure of, whenever approximating the actual
trapping-dependent behaviour by the monoexponenial fundamental mode (easier to obtain
by a variational procedure or given by Holstein’s asymptotic approximations), design the
experimental setup to mimic as much as possible the fundamental mode spatial distribution
(symmetrical and well spread into the bulk of sample cell) with the external excitation. This
can be accomplished with photoexcitation of high opacity samples using strongly detuned
external radiation.

4.4. Fundamental mode

Figure 8 shows some of the problems of quantifying trapping simply by using the fundamental
mode, a point further illustrated in table 1. Several conclusions can be drawn from its data:
(i) Doppler distributions render trapping much more efficient and thus its fundamental mode
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Table 1. Fundamental mode contribution to the reemission yield φ and mean scaled lifetime τ . The
approximate generation number corresponding to the fundamental mode (m), for a 10−6 fractional
tolerance to consider a non-changing spatial distribution is also shown (see text). In all cases,
φ0 = 1.

Homogeneous Photoexcitation

Doppler Lorentz Doppler Lorentz

Opacity m φ τ m φ τ m φ τ m φ τ

10 10 6% 20% 7 1% 3% 10 3% 14% 7 1% 3%
100 70 10% 40% 30 0.5% 3% 100 2% 20% 35 0.1% 1%

1000 200 25% 60% 80 1% 6% 550 0.2% 6% 100 0.1% 1%

contribution is always much higher than that for the Lorentz case; (ii) the spatial spreading for
Doppler is smaller, giving rise to a higher generation number for the fundamental mode; (iii)
the use of the fundamental mode alone for Lorentz distributions (and therefore, albeit with a
lesser degree, for Voigt) is never justified; and (iv) to approximate the actual behaviour for
photoexcitation to the fundamental mode is never justifiable.

Two additional points related to the common practice of using only the fundamental
mode to take into account trapping distortions should be emphasized. First, the fundamental
mode is the slowest decaying possible and is located well (and symmetrical) into the sample
cell. To substitute the whole of the ensemble dynamics for the fundamental mode alone will
always overestimate the lifetime, and underestimate the reemission yield (spatial distribution



1122 A R Alves-Pereira et al

0 50 100 150 200 250

0 50 100 150 200 250

10-4

10-3

10-2

10-1

10-5

10-4

10-3

10-2

10-1

1st - Homo
SS - Homo

1st - Photo
SS  -  Photoexcitation

Fundamental

Lorentz

S
p

at
ia

l d
is

tr
ib

u
ti

o
n

Opacity

Doppler

1st - Homo

S
p

at
ia

l d
is

tr
ib

u
ti

o
n

 Steady State
 Other

1st - Photo

SS  -  Photoexcitation

SS - Homo
Fundamental

Figure 8. Normalized spatial distributions of excitation in steady-state (SS) conditions for Doppler
and Lorentz lineshapes for an overall opacity of 250 and φ0 = 0.90. The primary excitation
(homogeneous or photoexcitation) as well as the fundamental mode distributions are also shown.
The photoexcitation case corresponds to both excitation and detection from the left cell wall using
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giving the highest possible trapping efficiency) thus introducing a systematic error. Secondly,
the use of the fundamental mode alone is too often misunderstood with the use of the
asymptotic approximations proposed by Holstein [20], only valid in the high opacity limit
and for ideal geometries [2]. The MSR has a clear cut advantage relative to the Holstein
approximation in this respect since it allows an easy estimation of the fundamental mode
by elementary computational algorithms as that corresponding to a nonchanging spatial
distribution, irrespective of opacity and geometry.

The spatial distribution functions presented in this section draw some further insights
into the previous results of figure 6. The levelling of the lifetime and reemission yield at
higher opacities for the photoabsorption case corresponds to absorption of external excitation
complete within a layer smaller than the overall opacity making the ensemble relaxation
effectively insensitive to the overall opacity. This approaches well the conditions of semi-
infinite geometry, under the time scale of ensemble complete relaxation.

5. Conclusions

This contribution presented a unidimensional computational model study for complete
frequency redistribution linear incoherent atomic radiation trapping that could constitute a
general scaffold to base a computational physics project for final undergraduate or beginning
graduate students. It is versatile enough for the instructor to adapt to specific needs while
allowing some freedom to the student to explore additional effects both at a level of strict



Radiation trapping in 1D using the Markov chain formalism 1123

computational physics algorithms, and at a level giving more emphasis to physical insight.
Two examples of these additional further exploration issues could be the fast Fourier transform
implementation of convolutions for the first case, or the detailed analysis of the collisional
deactivation and trapping effects for steady-state lighting applications, for the second.

The model study tries to introduce the practical problem of incoherent resonance radiation
reabsorption at a level adequate to the nonspecialist but nevertheless retaining the essential of
all the physical effects. It goes beyond the standard but generally unjustifiable approximation of
discussing trapping based only on an effective exponential mode for the ensemble relaxation.
It illustrates the advantages of the multiple scattering representation (MSR) over the more
well-known Holstein expansion, based on physical insight and computation feasibility at
an elementary level. Holstein’s ansatz has significant shortcomings when compared to
the equivalent alternative of MSR: (i) Holstein spatial modes are unphysical except for the
fundamental; (ii) their estimation is computationally much more troublesome than the simple
algorithms used in this work; (iii) the wide spread use of original Holstein expressions for the
fundamental mode are only valid in the asymptotic limit of high opacities while MSR allows an
easy estimation of the fundamental at any opacity value; and (iv) the higher Holstein modes are
difficult to obtain while for Lorentz-like spectral distributions we found that their contribution
must be always taken into account (the fundamental mode contribution to ensemble relaxation
being always small; higher Holstein modes correspond in the MSR language to small numbered
generations and are easy to obtain with the stochastic formulation presented).

The dependence of the ensemble reemission yield and lifetime, relative efficiency for
lighting applications, steady-state spectral and spatial distributions on reemission yield, opacity
and homogeneous or external photoexcitation are discussed at length for the Doppler, Voigt
and Lorentz lineshapes. We quantify the contribution of the nonchanging fundamental mode
and found it uniquely troublesome using this mode for Voigt and Lorentz-like spectra. The
results are comprehensive and try to provide as broad as possible range of possible exploration
directions of the basic model study. They should appeal to a broad audience and provide
insight into a wide range of more realistic situations in an atomic as well as in an astrophysical
context, while maintaining the computational concepts and resources at a relatively modest
level.
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Appendix. Numerical Voigt distribution

The numerical evaluation of the Voigt spectral distribution can be troublesome, as one can
easily judge from the large number of approximations that have been published in recent
decades balancing precision and computational speed (see [2] and references therein). This is
especially true for the wings of the distribution in case of trapping since the photons can most
easily escape via the wings, especially in high opacity vapours. However, given the current
desktop computing capabilities, the numerical (careful) direct integration of the defining
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equation is perfectly adequate and the use of approximations to reduce computation time is
not justifiable any more. The difficulty in the direct numerical integration came from the
behaviour of the integrand function: it differs from zero over two width scales, a broad scale
centred at zero (corresponding to the exponential term in the numerator of the integrand) and
a much narrower one centred in a frequency corresponding to the Voigt frequency (associated
with the difference term in the denominator). The integration domain should therefore be
broken into smaller domains and an automatic adaptative integration algorithm should be used
in each subdomain always starting at the integrand function maximum and with an initial
stepsize adapted to the local scale of variation of the integrand [18]. We have used the 400
central frequencies for the central broad feature and a 0.4 frequency width for the floating
narrow peak. Integrations further away from the central core were analytically mapped from an
infinite to a finite integration range. In order to decrease the time for repetitive Voigt function
evaluations, the Voigt distribution was previously computed in a given table of frequency
values and, whenever necessary, a cubic spline interpolation was used [18]. We used a linear
scale in the core (frequency range up to 100 with a 5 × 10−2 spacing) and a log scale in the
wings (frequency range from 100 to 108 with a 1 × 10−3 log10 spacing). Natural cubic spline
was not necessary since the derivatives of the Voigt distribution in the end points are analytical.
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