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Abstract

In this work, an analysis of the general properties of the luminescence decay law is carried out. The conditions that a luminescence

decay law must satisfy in order to correspond to a probability density function of rate constants are established. From an analysis of the

general form of the luminescence decay law, it is concluded that the decay must be either exponential or sub-exponential for all times, in

order to be represented by a distribution of rate constants H(k). Sub-exponentiality is nevertheless not a sufficient condition. Only decays

that are completely monotonic have a probability density function of rate constants. The construction of the decay function from

cumulant and moment expansions is studied, as well as the corresponding calculation of H(k) from a cumulant expansion. The

asymptotic behavior of the decay laws is considered in detail, and the relation between this behavior and the form of H(k) for small k is

explored. Several generalizations of the exponential decay function, namely the Kohlrausch, Becquerel, Mittag-Leffler and Heaviside

decay functions, as well as the Weibull and truncated Gaussian rate constant distributions are discussed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Time-resolved luminescence techniques are widely used
in various fields for time scales ranging from picoseconds
to hours, i.e., spanning 15 orders of magnitude. The data
are usually analyzed with a sum of discrete exponentials,
but there are many cases where a continuous distribution
of decay times best describes the observed phenomena:
luminophores incorporated in micelles, cyclodextrins, rigid
solutions, inorganic solids, sol–gel matrices, proteins,
vesicles or membranes, biological tissues, luminophores
adsorbed on surfaces, or linked to surfaces, quenching of
luminophores in micellar solutions, energy transfer in
assemblies of like or unlike fluorophores, etc.
e front matter r 2006 Elsevier B.V. All rights reserved.
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In the most general case, a luminescence decay can be
written in the following form:

IðtÞ ¼

Z 1
0

HðkÞ e�kt dk, (1)

with Ið0Þ ¼ 1. This relation is always valid because H(k) is
the inverse Laplace transform of IðtÞ. The function HðkÞ,
also called the eigenvalue spectrum (of a suitable kinetic
matrix), is normalized, as Ið0Þ ¼ 1 implies thatR1
0

HðkÞdk ¼ 1. In most situations (e.g. in the absence of
a rise-time), the function HðkÞ is non-negative for all k40,
and HðkÞ can be regarded as a distribution of rate
constants (strictly, a probability density function, PDF).
The designation ‘decay law’ is usually taken as a synonym
for ‘luminescence time evolution’, thus encompassing the
cases where the intensity initially increases with time, as
observed for intermolecular excimer emission, and the non-
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monotonic intensity decreases displaying quantum beats.
In the present work, however, we will consider only stricto
sensu (monotonic) decays.

Recovery of the distribution HðkÞ from experimental
data is very difficult because this is an ill-conditioned
problem [1]. HðkÞ can in principle be recovered from the
experimental luminescence decay by three approaches: (i)
data analysis with a theoretical model for HðkÞ that may be
supported by Monte-Carlo simulations; (ii) data analysis
by methods that do not require an a priori form for the
PDF of rate constants; and (iii) data analysis with a definite
mathematical function corresponding to the PDF that
contains adjustable parameters. The present work is
devoted to the third approach. In such an approach, a
mathematical function that is expected to best describe the
distribution of rate constants is used. The choice is very
wide, but some specific empirical functions with a
continuous distribution of rate constants enjoy special
popularity, such as the stretched exponential, or the decay
functions resulting from the Lorentzian and the Gaussian
PDFs. In the first two papers of this series, we specifically
discussed the stretched exponential (or Kohlrausch) func-
tion [2],

IðtÞ ¼ exp �ðt=t0Þ
b� �
, (2)

and the less-known compressed hyperbola (or Becquerel)
function [3],

IðtÞ ¼
1

1þ ð1� bÞ t=t0
� �ð1=1�bÞ , (3)

where 0obp1, and t0 is a parameter with the dimensions
of time. Both functions conveniently reduce to an
exponential function for b ¼ 1.

In this work, an analysis of the general properties of the
luminescence decay law is carried out. In Section 2, the
nature of the luminescence decay law and of the PDF of
rate constants is discussed. The conditions that a lumines-
cence decay law must satisfy in order to correspond to a
PDF of rate constants are examined in Section 3. The
construction of the decay function from cumulant and
moment expansions is next studied in Section 4, and the
corresponding calculation of the PDF from a cumulant
expansion is discussed in Section 5. The asymptotic
behavior of the decay law is considered in detail in Section
6, and the relation between this behavior and the form of
HðkÞ for small k explored. Several generalizations of the
exponential function are examined in Section 7. The final
discussion and main conclusions are presented in Section 8.
2. Nature and limitations of the luminescence decay law and

of the distribution of rate constants

2.1. Luminescence decay law

What is named a decay law IðtÞ can be, in some
circumstances (single species initially excited), related to a
probability of emission between t and tþ dt, PðtÞ, which is
a more fundamental quantity,

PðtÞ ¼ �
dI

dt
. (4)

In this case it is assumed that I(t) corresponds to an
experiment where all photons emitted by the system under
study (or a fixed fraction of these) are collected. PðtÞ is the
probability of emission of the photon between t and tþ dt,
given that it was emitted (hence no quantum yield
correction is necessary). With this generality, PðtÞ implies
an integration over emission wavelengths, and information
concerning internal dynamics in the system may be lost.
The probability of emission PðtÞ can be written as

PðtÞ ¼

Z 1
0

HðkÞPkðtÞdk, (5)

i.e., as a weighted distribution of emission probabilities for
exponential decays, given by

PkðtÞ ¼ k�kt
e . (6)

More frequently, the emission is recorded for a narrow
wavelength range, and results from a sum of weighted
contributions of several emitting species. The decay law is
then a technical quantity, whose normalization at t ¼ 0 is
performed for convenience. The decay law can in principle
be related to a detailed model describing the luminescence
mechanism and respective dynamics, but remains a
valuable formal description of the time evolution of the
luminescence even in the absence of such a model.
Another important aspect relates to the preparation of

the emissive state. It is assumed here that this state is
instantaneously generated, e.g. by light absorption (photo-
luminescence). In fact, a transition to an upper vibrational
or electronic excited state is followed by electronic and/or
vibrational relaxation, processes that may take up to a few
picoseconds. For these short time scales, not considered
here, the inclusion of a rise time in the decay law is clearly
essential.
In the following, it will also be assumed that sponta-

neous emission is the dominant radiative decay path, i.e.,
that emission is incoherent.

2.2. Distribution of rate constants

Turning now our attention to HðkÞ, the integration limits
in Eq. (1) deserve consideration. It has been argued that a
positive cut-off value kmin must be imposed, in order to
avoid a finite number of molecules with a physically
unacceptable decay rate equal to zero [4]. The argument is
however incorrect, as this happens only if HðkÞ contains
d(k); otherwise HðkÞ can even tend to infinity when k-0,
while still having I(t)-0 when t-N, as will be discussed
in Section 6. It may nevertheless be objected that in certain
cases the decay rate cannot be lower than a certain
radiative decay rate. For well-defined molecular species this
is in principle correct, but even in this case the effect of
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such a cut-off can be statistically and/or experimentally
negligible, given a certain time window. Furthermore, a
distribution of rate constants H(k) is in most cases
introduced to take into account additional decay processes,
and the intrinsic unimolecular decay (that includes the
radiative decay) appears as a multiplicative exponential [2].

An upper integration limit kmax is in general physically
justified (there are no infinitely fast relaxation processes),
but again it can be statistically irrelevant and mathemati-
cally inconvenient: for instance, in a study of fluorescence
anisotropy decays in heptachromophoric systems under-
going excitation energy hopping [5,6], a distribution of rate
constants with a hyperbolic decay toward infinity was
successfully used, while a maximum rate constant had been
identified and computed [6]; nevertheless, this upper limit
was located well into the tail of the distribution, whose
contribution to the overall decay was negligible.

3. Conditions that a decay law must satisfy in order to have

a distribution of rate constants

3.1. Sufficient condition for I(t)

If H(k) is a PDF, then

ð�1ÞnI ðnÞðtÞ40 ðn ¼ 0; 1; 2; . . .Þ, (7)

where I ðnÞðtÞ is the nth derivative of IðtÞ. Eq. (7) defines IðtÞ

as a completely monotonic function [7]. This follows directly
from Eq. (1), as

I ðnÞðtÞ ¼ ð�1Þn
Z 1
0

kn HðkÞ e�kt dk, (8)

since H(k)X0, the integral is positive for all t. The
condition that all moments hkn

i ¼ ð�1ÞnI ðnÞð0Þ must be
positive is a special case of Eq. (7) for t ¼ 0.

3.2. Necessary conditions for w(t)

If the decay is written as

IðtÞ ¼ exp �

Z t

0

wðuÞdu

� �
, (9)

where w(t) is a time-dependent rate coefficient, then

wðtÞ ¼ �
d ln IðtÞ

dt
¼ �

1

IðtÞ

d IðtÞ

dt
, (10)

or

wðtÞ ¼

R1
0 k HðkÞe�kt dkR1
0 HðkÞ e�kt dk

¼

Z 1
0

k Jðk; tÞdk, (11)

where

Jðk; tÞ ¼
HðkÞ e�ktR1

0 HðkÞ e�kt dk
(12)

is a ‘‘renormalized’’ distribution of rate constants (valid for
all times). This time-dependent PDF will play a central role
in the remaining development. Note that Eq. (11) allows
the calculation of w(t) from H(k).
One has from Eq. (11) that

dnw

dtn
¼

Z 1
0

k
qnJðk; tÞ

qtn
dk (13)

We now proceed to obtain the form of w(n)(t) explicitly.

3.2.1. First derivative of w(t)

It follows from Eq. (12) that

qJðk; tÞ

qt
¼ wðtÞ � k½ � Jðk; tÞ, (14)

hence, using Eqs. (13) and (14)

dw

dt
¼

Z 1
0

k Jðk; tÞdk

� �2

�

Z 1
0

k2 Jðk; tÞdk

" #
, (15)

or

dw

dt
¼M1ðtÞ

2
�M2ðtÞ ¼ �C2ðtÞ, (16)

where the Mi(t) are the raw moments of J(k, t),

MiðtÞ ¼

Z 1
0

ki Jðk; tÞdk, (17)

and Ci(t) its cumulants. The first cumulants of a PDF are
[8]

C1 ¼M1,

C2 ¼M2 �M2
1,

C3 ¼ 2M3
1 � 3M1M2 þM3,

C4 ¼ �6M4
1 þ 12M2

1M2 � 3M2
2 � 4M1M3 þM4. ð18Þ

From Eq. (16) we see that w0ðtÞ is the symmetrical of the
variance of Jðk; tÞ, which is a non-negative quantity. It is
thus concluded that the decay must be either exponential
ðw0ðtÞ ¼ 0Þ or sub-exponential ðw0ðtÞo0Þ for all times, if
HðkÞ is to be a PDF. This also follows from an
examination of Eq. (12), and its effect on Eq. (11), since
Eq. (12) implies that in general the function Jðk; tÞ is
progressively ‘‘compressed’’ to the left, as t increases. If
HðkÞ ¼ dðk � k0Þ, no shape change in Jðk; tÞ occurs, wðtÞ is
a non-zero constant, and the decay is exponential for all
times. If HðkÞ is a non-delta distribution, but is equal to
zero below some positive value of k, k0, the ‘‘compression’’
process is effective and ultimately yields a delta function,
Jðk;1Þ ¼ dðk � k0Þ, wðtÞ attains a non-zero constant value,
and the decay becomes essentially exponential for suffi-
ciently long times. If k0 ¼ 0 (with both Hð0Þ ¼ 0 and with
Hð0Þ40), then wðtÞ will approach zero for long times, and
the decay goes to zero according to a slower-than-
exponential function. A more detailed discussion will be
presented in Section 6.
It is also to be noted that the conditions expressed by Eq.

(7) can be rewritten as MnðtÞ40, i.e., all moments of Jðk; tÞ
must be positive.
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3.2.2. Higher derivatives of w(t)

From Eqs. (14) and (17) it follows that

dMi

dt
¼M1Mi �Miþ1 ði ¼ 2; 3; . . .Þ. (19)

Using this identity, it is easy to compute the higher
derivatives of wðtÞ, starting from Eq. (16),

d2w

dt2
¼

d

dt
ðM2

1 �M2Þ ¼ 2M3
1 � 3M1M2 þM3, (20)

d3w

dt3
¼

d

dt
ð2M3

1 � 3M1M2 þM3Þ

¼ 6M4
1 � 12M2

1M2 þ 4M1M3 �M4, ð21Þ

etc. Comparison with Eqs. (18) leads to the compact forms:

dnw

dtn
¼ �

dn�1C1

dtn�1
¼ ð�1ÞnCnþ1ðtÞ. (22)

Constraints on wðtÞ also follow from these equalities. For
instance, C3ðtÞ should be negative for a so-called negative
asymmetric distribution (i.e. a left asymmetric distribution)
Jðk; tÞ, as must happen to any sub-exponential decay for
sufficiently long times.

Incidentally, Eq. (22) provides an easy (but sequential)
way of obtaining the explicit form of a cumulant of any
order.
4. Construction of the decay from cumulant and moment

expansions

Eq. (22) implies that a Maclaurin expansion of wðtÞ is

wðtÞ ¼ C1ð0Þ � C2ð0Þtþ C3ð0Þ
t2

2!
� . . . , (23)

where the cumulants of Jðk; tÞ at time zero are also the
cumulants of HðkÞ. Insertion of this equation into Eq. (9)
gives

IðtÞ ¼ exp �C1ð0Þtþ C2ð0Þ
t2

2!
� C3ð0Þ

t3

3!
þ . . .

� �
, (24)

that allows to reconstruct the decay IðtÞ from the
cumulants of HðkÞ. An analogous equation is used for
the analysis of dynamic light-scattering data, in order to
recover the distribution of particle sizes from the auto-
correlation function [9,10].

The interesting aspect is that with Eq. (22) we can
generalize Eq. (24), by using a Taylor series expansion
around any time t0:

IðtÞ ¼ exp �C1ðt0Þ t� t0ð Þ þ C2ðt0Þ
ðt� t0Þ

2

2!

�

�C3ðt0Þ
ðt� t0Þ

3

3!
þ . . .

�
, ð25Þ

where the cumulants now refer to Jðk; tÞ.
Similarly, the moment expansion:

IðtÞ ¼ 1�M1ð0ÞtþM2ð0Þ
t2

2!
�M3ð0Þ

t3

3!
þ . . . (26)

can be generalized to give

IðtÞ ¼ ðt0Þ 1�M1ðt0Þðt� t0Þ þM2ðt0Þ
ðt� t0Þ

2

2!

�

�M3ðt0Þ
ðt� t0Þ

3

3!
þ . . .

�
. ð27Þ
5. Calculation of H(k) from the cumulants

The probability density function H(k) can be formally
written in terms of the respective cumulants, by means of
the analytical inversion formula for Laplace transforms
[11,12]:

HðkÞ ¼
2

p

Z 1
0

Re½IðioÞ� cosðkoÞdo. (28)

Using Eq. (24), Eq. (28) becomes

HðkÞ ¼
2

p

Z 1
0

e�
o2

2!C2þ
o4

4!C4�:::::

� cos C1o� C3
o3

3!
þ :::

� �
cosðkoÞ do. ð29Þ

Eq. (29) allows—at least formally—the calculation of HðkÞ

from wðtÞ. There are in fact two problems with its practical
use: (i) with the exception of the delta and Gaussian
distributions, all PDFs have an infinite number of non-zero
cumulants (Marcinkiewicz theorem [13]) and (ii) the
cumulant series that appear in Eq. (29) usually have a
finite radius of convergence [12].
We now compute the cumulants for the stretched

exponential [2] and compressed hyperbola [3] decay laws.
In the first case, we consider only a modified form [2]:

IðtÞ ¼ exp 1� 1þ
t

t0

� �b
" #

. (30)

The respective cumulants are obtained from a Maclaurin
expansion of ln IðtÞ,

ln IðtÞ ¼ 1� 1þ
t

t0

� �b

¼ �b
t

t0

� �
�

1

2!
bðb� 1Þ

t

t0

� �2

�
1

3!
bðb� 1Þðb� 2Þ

t

t0

� �3

� . . . , ð31Þ

hence,

Cnð0Þ ¼
ð�1Þnþ1

tn
0

bðb� 1Þ . . . ðb� nþ 1Þ. (32)



ARTICLE IN PRESS
M.N. Berberan-Santos, B. Valeur / Journal of Luminescence 126 (2007) 263–272 267
For the compressed hyperbola decay law,

ln IðtÞ ¼
1

b� 1
ln 1þ 1� bð Þ

t

t0

� �� �

¼
1

b� 1
1� bð Þ

t

t0

� �
�

1

2
1� bð Þ

t

t0

� �� �2(

þ
1

3
1� bð Þ

t

t0

� �� �3
� ::::

)
, ð33Þ

hence,

Cnð0Þ ¼
ðn� 1Þ!

tn
0

ð1� bÞn�1. (34)

In both cases, the cumulants are always positive and
increase indefinitely with n, after eventually passing
through a minimum.

Consider the truncated Gaussian (i.e., for kX0 only)
PDF [12]:

HðkÞ ¼

ffiffiffiffiffiffiffiffi
2

ps2

r
exp �1=2 k � m=s

	 
2h i
1þ erf m=

ffiffiffi
2
p

s
	 
 . (35)

It has the following associated decay law:

IðtÞ ¼
erfc s2t� m=

ffiffiffi
2
p

s
	 

erfc �m

ffiffiffi
2
p

s
	 
 exp �mtþ

1

2
s2t2

� �
(36)

and has an infinite number of cumulants. Its first cumulant
(the mean) is

hki ¼ mþ

ffiffiffi
2

p

r
s

e�1=2 m=sð Þ
2

erfc �m=
ffiffiffi
2
p

s
	 
 . (37)

For t5m=s2, IðtÞ coincides with that of a normal
distribution, and the first two cumulants of this PDF
suffice to describe its behavior,

IðtÞ ’ exp �mtþ
1

2
s2t2

� �
. (38)

This equation has been used for the analysis of dynamic
light-scattering data, in order to recover the distribution of
particle sizes from the autocorrelation function [9,10], and
applies to some luminescence decays for not too long times.
The full Gaussian PDF (or a mixture of Gaussian PDFs)
[14–16] and a Gaussian PDF truncated [4] at k040 have
been used to describe fluorescence decays. The truncated
Gaussian reduces to the full Gaussian distribution for large
m=s ratios.

Up to now, it was implicitly assumed that all moments
and cumulants were finite. For some PDFs, however, not
all moments and cumulants are finite. For the Lévy PDFs,
for instance, only M1 can be (but is not always) finite. This
is precisely the case of the (unmodified) stretched expo-
nential decay. The form of Jðk; tÞ, Eq. (12), ensures that,
even then, all moments will be finite for t40. The
singularity is therefore limited to t ¼ 0. This is one of the
reasons why the expansions Eqs. (25) and (27) are of
interest.
6. Decay law asymptotics

We will obtain relatively general equations relating the
asymptotic behavior of the decay law I(t) (i.e., for large t)
to that of the PDF H(k) for small k. From Eq. (1), it is
indeed obvious that the behavior of H(k) for small k will
define the shape of the decay I(t) for long times.
According to the discussion presented in Section 3, it is

convenient to consider separately the cases where the PDF
of rate constants is non-zero at k ¼ 0, or rises from zero
immediately afterwards, from the case where H(k)40 only
for k4k0, with k0 positive. The special case of partial
relaxation will also be treated in this section.
Consideration of the asymptotic behavior of a decay

function is important, not only because it defines the long
time form, that may or may not be experimentally
accessible, but also because

R1
0 IðtÞdt is often computed

from the decay law in order to obtain a quantity
proportional to the steady-state intensity. This calculation
may be meaningless if the major contribution to the above
integral corresponds to a time window not experimentally
observed, or if the integral diverges.

6.1. H(0+)40

6.1.1. H(k) admits a Maclaurin series expansion

In this case,

HðkÞ ¼ Hð0Þ þ k H 0ð0Þ þ
k2

2!
H 00ð0Þ þ . . . , (39)

and substitution in Eq. (1) gives immediately,

IðtÞ ¼
Hð0Þ

t
þ

H 0ð0Þ

t2
þ

H 00ð0Þ

t3
þ . . . . (40)

The effective power dependence with t for long times
(asymptotic behavior) will be determined by the order of
the first non-zero term of the Maclaurin series.

6.1.2. H(k) is not analytic at the origin

A (so-called Tauberian) theorem in probability theory [7]
that covers a broad range of cases (including the previous
one), is the following, reformulated for our purposes.
If the cumulative distribution function:

UðkÞ ¼

Z k

0

HðuÞdu (41)

has the asymptotic form:

UðkÞ�kpLðkÞ (42)

in the limit k- 0, with p40, where L(k) is a slowly varying

function, i.e., a function that obeys

LðakÞ

LðkÞ
! 1, (43)

also when k- 0, for any constant a, then the decay law will
have the following asymptotic behavior:

IðtÞ�Uð1=tÞ (44)

in the limit t-N.
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In most situations of physical interest, the last equation
can be replaced by

IðtÞ�
1

t
H

1

t

� �
. (45)

Note that PDFs that near the origin vary according to
negative power laws (0opo1) and therefore rise to
infinity, are included.

On the other hand,
R1
0 IðtÞdt diverges for pp1.
6.2. H(0+) ¼ 0

In this case, H(k)40 only for k4k0, with k0 positive,
and the above results are not valid without modification.
But they can be applied by shifting the distribution H(k) to
the left, placing it next to the origin, and then moving it
back to the right by k0, in order to restore the original
position. The distribution next to the origin, to which the
above results apply, is

H0ðkÞ ¼ Hðk þ k0Þ (46)

and the decay law becomes, after restoring the initial
position,

IðtÞ ¼ I0ðtÞ expð�k0tÞ, (47)

where I0(t) corresponds to the shifted distribution H0(k).
The asymptotic behavior will be that of H0(k) times an
exponential, hence dominated by the exponential. Note
that in this case

R1
0 IðtÞdt is not divergent even if I0(t) has

an asymptotic dependence with pp1, owing to the
exponential damping factor.
Table 1

Relation between the type of luminescence decay function, the luminescence d

Exponential

Sub-exponential Asymptotically exponential

Slower-than-exponential Maclaurin or Puiseux valid

Maclaurin or Puiseux invali

Table 2

Examples of PDF of rate constants and respective luminescence decay functio

Exponential

Sub-exponential Asymptotically exponential

Slower-than-exponential Maclaurin or Puiseux v

Maclaurin or Puiseux in
6.3. H(k) contains d(k)

When there is a fraction a of luminophores not decaying
by the mechanism under consideration (e.g. intermolecular
resonance energy transfer to nearby acceptors), H(k) is
given by

HðkÞ ¼ a dðkÞ þ ð1� aÞHþðkÞ, (48)

where H+(k) is the density function of positive rate
constants. Insertion of this PDF in the decay law
expression gives

IðtÞ ¼ aþ ð1� aÞIþðtÞ, (49)

where I+(t) is the decay law corresponding to H+(k). In this
case, the asymptotic form is a numerical constant, andR1
0 IðtÞdt diverges, unless (as must happen in physically
acceptable cases) the overall decay contains a multiplicative
exponential.
6.4. Cases left out

There are some cases that are not covered by the results
of the Tauberian theorem presented, namely PDFs H(k) of
rapid variation near the origin, like exp(�1/k). This is the
case of the stretched exponential PDF. For b ¼ 1

2
, for

instance [2],

H1=2ðkÞ ¼
1

2
ffiffiffiffi
p
p

k3=2
exp �

1

4k

� �
. (50)

Only for very small b, when [2,17],

HðkÞ ’
b

k1þb exp �
1

kb

� �
’

b
e k

exp �
1

2
b ln kð Þ

2

� �
, (51)
ecay asymptotic behavior, and the PDF of rate constants

H(k) w(t) I(t)

dðk � k0Þ k0 e�k0t

0ðkok0Þ �k0 �e�k0t

H(0) ¼ 0 akp
ðp40; small kÞ �t�1 �t�ð1þpÞ

H(0)40 H0 þ . . . ðH040Þ �t�1 �t�1

d H(0) ¼ 0 One-sided Lévy �t�ð1�bÞ e�atb

H(0) ¼N ak�p
ð14p40; small kÞ �t�1 �t�ð1�pÞ

ns

H(k) I(t)

Delta Exponential

Rectangular e�k0tð1� e�DktÞ=ðDktÞ

alid H(0) ¼ 0 Gamma Becquerel

H(0)40 Exponential Hyperbolic

valid H(0) ¼ 0 One-sided Lévy Stretched exponential

H(0) ¼N Weibull (ao1) Weibull
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does the application of the Tauberian theorem yield the
correct result, IðtÞ ¼ expð�tbÞ.

The several asymptotic cases discussed above are
summarized in Table 1, and corresponding specific
examples are given in Table 2.

7. Selected decay functions

As discussed above, PDFs that reduce to the delta
function for some value(s) of the parameter(s), such as
those of the stretched exponential and compressed
hyperbola decay functions, and the Lorentzian and the
Gaussian PDFs, are of special interest and/or of common
use. All these functions may be considered as general-
izations of the exponential function. There are other
interesting generalizations of the exponential function that
we will discuss below, see also Table 2.

There are at least two possible ways to generalize the
exponential function. One is to select H(k) PDFs that are
known to reduce to the delta function d(k�k0) for some
value(s) of the parameter(s). This is obviously the case for
the Lorentzian and the Gaussian functions. Such a
procedure automatically ensures that H(k) will be a PDF.
The other way is to work with the exponential decay law
itself, changing it to a functional form that still reduces to
the exponential for some value(s) of the parameter(s). This
is the case in particular of the stretched exponential
function. In these cases, one must compute H(k), to check
that it is still a PDF. A slightly different approach is to take
the series expansion of the exponential decay function and
to modify it. Distribution functions obtained in this way
deserve attention. But it is of worth to first briefly recall the
main characteristics of the stretched exponential (or
Kohlrausch) function and of the compressed hyperbola
(or Becquerel) function (for more details, the reader is
referred to our recent papers [1,2]).

7.1. Stretched exponential (or Kohlrausch) function

The stretched exponential decay function is given by Eq.
(2). This decay law was first used in luminescence by
Werner [18]. In studies of the relaxation of complex
systems, the Kohlrausch function is frequently used as a
purely empirical decay law, although there are theoretical
arguments to justify its common occurrence. In the field of
molecular luminescence, Eq. (2) has firm grounds on
several models of luminescence quenching, namely diffu-
sion-controlled contact quenching, where b ¼ 1

2
, and

diffusionless resonance energy transfer by the dipole-dipole
mechanism, with b ¼ 1

6
; 1
3
and 1

2
for one-, two- and three-

dimensional systems, respectively. Other rational values of
b are obtained for different multipole interactions, e.g.
b ¼ 3

8
; 3
10
, for the dipole–quadrupole and quadrupole–qua-

drupole mechanisms in three-dimensions. In Huber’s
approximation, energy transport as measured by fluores-
cence anisotropy shows the same time-dependence as direct
energy transfer, and is characterized by the same values of
b. Resonance energy transfer between donor and acceptor
chromophores attached to a polymer chain has been widely
used as a tool for studying polymer structure and
dynamics. Theory shows that the kinetics of donor
luminescence quenching and the kinetics of depolarization
of luminescence in polymer chains exhibit a Kohlrausch
time dependence, where the parameter b of Eq. (2) depends
on the mechanism of transfer, the type of chromophore
attachment (to the ends of the polymer chain or randomly
distributed along the chain), and on the model of polymer
chain considered (Gaussian or self-avoiding chain) [2]. The
Kohlrausch function is also found to apply to some
luminescence decays of disordered and ordered inorganic
solids, and of semiconductor nanoclusters [2,19].
The Kohlrausch decay law is convenient as a fitting

function, even in the absence of a model, given that it
allows gauging in simple way deviations to the ‘‘canonical’’
single exponential behavior through the parameter b.
Stretched exponentials were used for instance to analyze
the fluorescence decay of fluorophores incorporated in a
sol–gel matrix and of fluorophores covalently bound to
silica and alumina surfaces [2]. The Kohlrausch decay
function was also recently used in the analysis of
single-molecule fluorescence, quantum dot luminescence,
and in the fluorescence lifetime imaging of biological
tissues [2].
The corresponding distribution of rate constants, shown

in Fig. 1, is the one-sided Lévy PDF that can be written
as [2]

HbðkÞ ¼
t0
p

Z 1
0

exp �ub cos
bp
2

� �� �

� cos ub sin
bp
2

� �
� kt0u

� �
du. ð52Þ

The stretched exponential luminescence decay function has
an undesirable short-time behavior (infinite initial rate,
faster-than-exponential decay for short times). For this



ARTICLE IN PRESS
M.N. Berberan-Santos, B. Valeur / Journal of Luminescence 126 (2007) 263–272270
reason, a modified form was proposed [2],

IðtÞ ¼ exp ab � aþ
t

t0

� �b
" #

, (53)

where a is a non-negative dimensionless parameter.

7.2. Compressed hyperbola (or Becquerel) function

The compressed hyperbola or Becquerel decay function
is given by Eq. (3). The Becquerel function, as defined here,
is a quite flexible decay function, although its less direct
relation to the exponential decay has limited its use up to
now mainly to the luminescence of phosphors [3]. Never-
theless, there are some recent applications in fluorescence
[3]. For instance, Wlodarczyk and Kierdaszuk [20] showed
that it provides good fits for fluorescence decays that
slightly depart from the exponential behavior, implying a
relatively narrow distribution of decay times around a
mean value. The corresponding distribution of rate
constants, shown in Fig. 2, is the gamma PDF [3],

HbðkÞ ¼
t0

ð1� bÞ G 1=1� b
	 
 t0 k

1� b

� �ðb=1�bÞ

� exp �
t0k

1� b

� �
. ð54Þ

As discussed previously [2], two possible approaches to fit
luminescence decay laws with a discrete sum of terms are
the use of exponentials and hyperbolae as base functions.
Since the Becquerel decay law interpolates between these
two extreme cases, it seems reasonable to assume that a
sum of a few Becquerel functions, appropriately weighted,
will be a powerful fitting function for complex decays [3].
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Fig. 2. Distribution of rate constants (probability density function) for the

Becquerel decay law. The number next to each curve is the respective b.
7.3. Mittag-Leffler and Heaviside functions

We now turn our attention to the series expansion of the
exponential decay function,

e�at ¼
X1
n¼0

ð�atÞn

n!
¼
X1
n¼0

ð�atÞn

Gðnþ 1Þ
, (55)

with the aim of generalizing it. Two simple generalizations
are Mittag-Leffler’s exponential function, or Mittag-Leffler
function Ea(x) [21,23],

Eað�atÞ ¼
X1
n¼0

ð�atÞn

Gðanþ 1Þ
, (56)

and Heaviside’s exponential function, ea(x) [23],

eað�atÞ ¼
X1
n¼0

ð�atÞn

Gðnþ 1þ aÞ
, (57)

where 0oap1 in the first case, and aX0 in the second case.
For our purposes, it is convenient to define a normalized

Heaviside’s exponential function ea(x), so that ea(0) ¼ 1,

�aðxÞ ¼ Gð1þ aÞ eaðxÞ ¼ a GðaÞ eaðxÞ. (58)

The H(k) for these two decay laws are known, and are
indeed PDFs. They are displayed in Figs. 3 and 4,
respectively. The Mittag-Leffler PDF is (with a ¼ 1)
[22,24,25],

HaðkÞ ¼ a�1 k�ð1þa
�1Þ La k�a

�1
� �

, (59)

where La(x) is the one-sided Lévy PDF given by Eq. (52).
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For Heaviside’s normalized exponential, one has [23]
(for a ¼ 1) the following PDF,

HaðkÞ ¼
að1� kÞa�1 if kp1;

0 if k41:

(
(60)

It can be shown that both generalized exponentials
asymptotically decay with t�1. A simple modification of
Heaviside’s normalized exponential PDF is

HaðkÞ ¼
ðbþ 1Þakb

ð1� kbþ1
Þ
a�1 if kp1

0 if k41

(
ðbX0Þ.

(61)
This function, displayed in Figs. 5 and 6 for two positive
values of parameter b, has Ha(0) ¼ 0 for b40, and
asymptotically decays with t�(1+b).
To the best of our knowledge, the Mittag-Leffler and

Heaviside functions have not been used yet in practical
situations, but they are of potential interest.
7.4. Weibull probability density function

Another interesting generalization of the exponential
decay, that also appears not to have been used thus far in
the analysis of fluorescence decays results from the Weibull



ARTICLE IN PRESS
M.N. Berberan-Santos, B. Valeur / Journal of Luminescence 126 (2007) 263–272272
PDF [7,26],

Ha;bðkÞ ¼
a
b

k

b

� �a�1

exp �
k

b

� �a� �
, (62)

where a40. This PDF is displayed in Fig. 7 for a reduced
variable k/b. The mean of Ha(k) is bG(1+a�1). For a ¼ 1
the distribution is exponential, for a ¼ 2 it reduces to the
Rayleigh distribution, and in the limit a-N the delta
distribution d(k�1) is recovered. The asymptotic behavior
of the Weibull decay law illustrates several of the cases
discussed in Section 6 (see Tables 1 and 2). The asymptotic
decay is I(t)�t�a, and HaðkÞ� ka�1. For ao1, Ha(0) is
infinite. For a ¼ 1, Ha(0)40. In both cases

R1
0 IðtÞdt

diverges. Finally, for a41, Ha(0) ¼ 0, and
R1
0 IðtÞdt is

finite.

7.5. Truncated Gaussian probability density function

This PDF was already introduced in Section 5. Writing
t0 ¼ 1=m and the coefficient of variation a ¼ s=m ¼ st0,
Eq. (38) becomes

IðtÞ ¼ exp �
t

t0
þ

1

2
a2

t

t0

� �2
" #

. (63)

This simple decay function, not widely known, is adequate
for t=t0o10 (i.e., the full time range of interest) if ao0:25.
The asymptotic form of the truncated Gaussian is, on the
other hand,

IðtÞ ¼

ffiffiffi
2

p

r
exp �1=2a2
	 


a erfc �1=
ffiffiffi
2
p

a
	 
 t0

t
, (64)

and goes as t�1, as could be expected from the results of
Section 6. Note that this asymptotic behavior switches to
an exponential one if the Gaussian PDF is truncated above
zero, however slightly.

8. Discussion and conclusions

In this work, an analysis of the general properties of the
luminescence decay law was carried out. The conditions
that a luminescence decay law must satisfy in order to
correspond to a probability density function of rate
constants were established. From an analysis of the general
form of the decay law, it was concluded that the decay
must be either exponential or sub-exponential for all times,
if H(k) is to be a probability density function. Take for
instance the hypothetical ‘‘compressed exponential’’ decay
law IðtÞ ¼ exp½�ððt=t0ÞÞ

2
�. This decay law is super-expo-

nential, as w(t) increases monotonically with time. Its H(k)
takes both positive and negative values, and is thus not a
PDF. Sub-exponentiality is nevertheless not a sufficient
condition. For the hypothetical sub-exponential decay law
1=½1þ ðt=t0Þ þ ðt=t0Þ

2=2�, the function H(k) can be ob-
tained in closed form and is 2t0 exp �kt0ð Þ sin kt0ð Þ, taking
both positive and negative values. Only decays that are
completely monotonic have a PDF of rate constants. A
new PDF of rate constants, Jðk; tÞ, emerged as the central
PDF of the problem. Cumulant and moment expansions of
the decay can be obtained from this PDF, that is shown to
be well-behaved and with all moments finite for t40, even
when HðkÞ is of the Lévy type. The asymptotic behavior of
the decay laws was considered in detail, and the relation
between this behavior and the form of HðkÞ for small k was
explored. Finally, several generalizations of the exponential
decay function, namely the Kohlrausch, Becquerel, Mittag-
Leffler and Heaviside decay functions, as well as the
Weibull and truncated Gaussian rate constant distributions
were analyzed in detail.
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