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Abstract

The Becquerel (compressed hyperbola) decay law is analyzed in detail and shown to be an interesting approach for the analysis of
complex luminescence decays. A decay function unifying the modified Kohlrausch and Becquerel decay laws is also introduced. It is
proposed that the analysis of luminescence decays with a sum of Becquerel functions is a powerful alternative to the usual sum of
exponentials. It is also shown that some complex decay laws can be written as a sum of an infinite number of exponentials and have
for this reason an infinite but discrete spectrum of rate constants.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The first quantitative studies of the time evolution of
luminescence (following flash excitation) were carried
out by Edmond Becquerel (1820–1891) and published
in 1861. The functions used by this author for the
description of the experimental decays already included
an exponential of time, and also a sum of two such
exponentials [1]. Becquerel also noticed that for some
of his experimental systems (inorganic solids), an empir-
ical decay function of the form

IðtÞ ¼ 1

ð1þ atÞ2
ð1Þ
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gave better fits than a sum of two exponentials. Later
on, he proposed a more general equation in the form
Im(t + a) = b that can be rewritten as

IðtÞ ¼ 1

ð1þ atÞp ð2Þ

with p taking values between 1 and 2 [1].
This function that decays faster than a hyperbola (for

which p = 1) can be called compressed or squeezed hyper-
bola. But owing to Becquerel pioneering studies, and
reviving a now almost forgotten denomination [2], we
shall also call this function the Becquerel decay law.

The luminescence decay of phosphors is often com-
plicated on account of the trapping and re-trapping pro-
cesses. A distribution of traps with different depths
originates a distribution of decay times, even when inter-
action of different luminescent centers and hence
re-trapping is neglected. On the other hand, when the
trapping probability is negligible, all luminescent centers
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interact, and the process is analogous to an elementary
bimolecular reaction where both reactants (electrons
and holes) are present with identical concentration,
and can be described by

dN
dt

¼ �kN 2; ð3Þ

where N is the number of luminescent centers (in a given
volume) after d-pulse excitation. Integration leads to a
normalized decay law I(t) = N(t)/N0 that is formally
identical to Eq. (1).

Eq. (2) can be obtained from an interpolating rate
equation of the type

dN
dt

¼ �kN 2�b; ð4Þ

where 0 6 b 6 1. The extreme values b = 0 and b = 1
correspond to second-order (p = 1) and first-order
kinetics, respectively. Integration of Eq. (4) leads to Bec-
querel�s decay law written in the following form:

IðtÞ ¼ 1

1þ ð1� bÞ t
s0

h i1=ð1�bÞ . ð5Þ

The control parameter b has a role similar to that
played in the stretched exponential or Kohlrausch func-
tion that was discussed in the preceding paper of this
series [3],

IðtÞ ¼ exp½�ðt=s0Þb�. ð6Þ
In fact, the Kohlrausch and Becquerel laws become

both a single exponential law in the limiting case where
b = 1. For phosphors, this occurs when the excitation is
localized and the electron never leaves the initial lumi-
nescent center, where a single type of trap exists.

In the preceding paper of this series, we discussed the
use of the Kohlrausch decay law for analyzing complex
luminescence decays with underlying distributions [3].
The Kohlrausch decay law is in fact convenient as a fit-
ting function, even in the absence of a model, given that
it allows gauging in simple way deviations to the
‘‘canonical’’ single exponential behavior through
parameter b. The same can be said about the Becquerel
function, although its less direct relation to the exponen-
tial decay has limited its use up to now mainly to the
luminescence of phosphors [4–6]. The few examples re-
ported in other fields deserve citation. Wlodarczyk and
Kierdaszuk [7] rediscovered the Becquerel function
and showed that it provides good fits for fluorescence
decays that slightly depart from the exponential behav-
ior, implying a relatively narrow distribution of decay
times around a mean value. The same authors used
the Becquerel function for analyzing luminescence de-
cays when triplet excitation transport occurs in disor-
dered organic solids [8]. This function was also used
for describing the decay of delayed fluorescence result-
ing from triplet–triplet annihilation in polyphenylquin-
oxalines in frozen solutions or films [9]. Another
example that is not relevant to photophysics concerns
the dynamics of ligand binding to myoglobin [10].

We show in the present paper that the Becquerel de-
cay law is an interesting approach for the analysis of
complex luminescence decay laws. Moreover, we intro-
duce a decay function unifying the Kohlrausch and Bec-
querel decay laws.
2. Becquerel decay function

Let us consider the first-order kinetic equation

dN
dt

¼ �kðtÞN ; ð7Þ

where k is time-dependent according to

kðtÞ ¼ 1

s0 þ ð1� bÞt ; ð8Þ

where 0 6 b 6 1. The solution of Eq. (7) is the Becquerel
decay function, Eq. (5).

It should be noted that values of b outside the range
defined above yield unphysical results: for b 6 0 the
integrated intensity (total intensity) diverges, and for
b > 1 the intensity becomes zero at a finite value of t.

Let us examine now the relationship with an underly-
ing distribution H(k) of rate constants in the fluores-
cence decay according to

IðtÞ ¼
Z 1

0

HðkÞe�kt dk. ð9Þ

The time-dependent rate coefficient is then given by

kðtÞ ¼
R1
0

kHðkÞe�kt dkR1
0

HðkÞe�kt dk
. ð10Þ

The average rate constant defined as

hki ¼
Z 1

0

kHðkÞdk ¼ �I 0ð0Þ ¼ kð0Þ ð11Þ

takes the following value for the Becquerel function:

hki ¼ 1

s0
: ð12Þ

Hence, the decay can be rewritten as

IðtÞ ¼ 1

½1þ ð1� bÞhkit�1=ð1�bÞ . ð13Þ

As in the preceding paper, we define a time-averaged
rate constant defined by

�k ¼
R1
0 kðtÞIðtÞdtR1

0 IðtÞdt
¼ 1R1

0 IðtÞdt
. ð14Þ

The convention of a bar for the time average, and of
brackets for the distribution (‘‘ensemble’’) average will
be followed throughout.
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For the Becquerel function, we have

�k ¼ b
s0
. ð15Þ

Let us consider now a distribution of lifetimes f(s) in-
stead of rate constants so that the decay is written as

IðtÞ ¼
Z 1

0

f ðsÞe�1=s ds. ð16Þ

An average time constant can then be defined as

hsi ¼
Z 1

0

sf ðsÞds ¼
Z 1

0

IðtÞdt ð17Þ

and its value for the Becquerel function is

hsi ¼ s0
b
: ð18Þ

The average decay time defined as

�s ¼
R1
0

tIðtÞdtR1
0

IðtÞdt
ð19Þ

is, in the present case, given by

�s ¼ s0
2b� 1

ð20Þ

for b > 1/2. For b < 1/2 the average decay time is
infinite.

For b close to 1, the decay approaches a single expo-
nential decay with lifetime s0, while for small b the de-
cay slows down dramatically, see Fig. 1. From Eq. (13)
it follows that for small b the decay becomes
hyperbolic

IðtÞ ¼ 1

1þ hkit ð21Þ

a result exact for b = 0, and is therefore controlled by a
single parameter hki, while for other values of b there
are two independent parameters, b and s0, or b and
hki, as is always the case for the Kohlrausch function.
Fig. 1. Becquerel decay law, Eq. (13). Numbers next to each curve are
the respective values of parameter b. The decay is hyperbolic for b = 0
and exponential for b = 1.
The Becquerel decay law has also the advantage of
possessing a simple inverse Laplace transform,

HðkÞ ¼
1

1�b
k
hki

� �b=ð1�bÞ
exp � 1

1�b
k
hki

� �
ð1� bÞhkiC 1

1�b

� � ; ð22Þ

which is a Gamma distribution, and whose mean and
standard deviation are hki and hki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� bÞ

p
, respec-

tively. This distribution is shown in Fig. 2 for several
values of b. For b = 0, the distribution of rate constants
is exponential. On the other hand, for b sufficiently close
to 1 (b > 0.95, say), the rate constant distribution be-
comes a relatively narrow normal (gaussian) distribution
with mean and standard deviation given by the previous
expressions. When b ! 1, the standard deviation goes to
zero, and the distribution becomes dðk � 1

s0
Þ, as could be

expected.
The Becquerel decay is initially exponential,

IðtÞ ¼ expð�hkitÞ ð23Þ
and the initial decay rate is always finite. This short-time
behavior is more realistic than that displayed by the
primitive Kohlrausch function, but is shared by the
modified Kohlraush function proposed before [3].

For sufficiently long times, the Becquerel decay be-
comes a power law,

IðtÞ ¼ ½ð1� bÞhkit�1=ðb�1Þ ð24Þ
and the decay is the slower, the smaller the b parameter,
see Fig. 1.

The slowing down of the decay rate can also be seen
in the time-dependent rate coefficient, Eq. (8). For b 5 1
it always decays with t�1, while for the Kohlrausch func-
tion the decay of the rate coefficient is slower, with tb�1

[3], and only approaches that of the Becquerel function
for very small b.

It is interesting to remark that a decay law of the
form [11,12]
Fig. 2. Distribution of rate constants for the Becquerel decay law
(Gamma density function), as a function of parameter b.
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IðtÞ ¼ 1

1þ t
s0

� �a ð25Þ

with a < 1, that has been suggested for ground-state
peptide folding kinetics [12], as an alternative to a
stretched exponential, and indeed also successfully fit-
ted experimental data spanning 7 orders of magnitude
[12], cannot be a fully valid luminescence decay law
over the entire time range, given that

R1
0

IðtÞdt is diver-
gent for a < 1. Its distribution of rate constants is given
in [13]. As mentioned before [3], these restrictions are
lifted if the full decay contains a multiplicative
exponential.
3. Mixed first- and second-order decay

It also worthwhile to compare the Becquerel decay
law with a decay law that interpolates between first-
and second-order kinetics in a different way. This law
is the mixed first- and second-order kinetics that can
be obtained from the following equation:

dN
dt

¼ �k1N � k2N 2 ð26Þ

with time-independent and nonzero k1 and k2. Integra-
tion yields

IðtÞ ¼ k1
ðk1 þ k2N 0Þek1t � k2N 0

; ð27Þ

where N0 is the initial number of excited luminophores.
This equation can be rewritten as

IðtÞ ¼ b
ek1t � 1þ b

; ð28Þ

where

b ¼ k1
k1 þ k2 N 0

; ð29Þ

where b is again the control parameter: For b = 0 the
decay is second-order, while for b = 1 the decay is
first-order.

The time-dependent rate coefficient is

kðtÞ ¼ k1
1� ð1� bÞe�k1t

ð30Þ

hence,

hki ¼ k1 ð31Þ
and

hsi ¼ 1
�k
¼ ln b

ðb� 1Þk1
. ð32Þ

The average decay time is

�s ¼ � Li2ð1� bÞ
k1 ln b

; ð33Þ
where Lin(x) is the polylogarithmic function,

LinðxÞ ¼
X1
p¼1

xp

pn
. ð34Þ

Eq. (28) can be rewritten as

IðtÞ ¼ be�k1t

1� ð1� bÞe�k1t
ð35Þ

or, expanding

IðtÞ ¼ be�k1t½1þ ð1� bÞe�k1t þ ð1� bÞ2e�2k1t þ � � ��

¼ b
X1
n¼1

ð1� bÞn�1e�nk1t. ð36Þ

Hence, the rate constant distribution is

HðkÞ ¼ b
X1
n¼1

ð1� bÞn�1dðk � nk1Þ ð37Þ

and therefore the decay law corresponds to an infinite
(but discrete) sum of exponentials with equally spaced
rate constants, and of decreasing amplitude. Interest-
ingly, the rate constants are independent of k2 that af-
fects only the amplitudes, and acts therefore like a
perturbation. For b = 1, only the first term survives,
and the decay is single exponential. For b < 1, a fixed
comb-like pattern of eigenvalues exists, with decreasing
weights as k increases. For b = 0, (second-order decay)
the decay is

IðtÞ ¼ 1

1þ k2N 0t
. ð38Þ

Eq. (37) is not valid, and the distribution of rate con-
stants is exponential,

HðkÞ ¼ 1

hki exp � k
hki

� �
ð39Þ

with hki = k2N0, cf. Eq. (22) with b = 0.
The mixed decay function given by Eq. (28) is reason-

ably well adjusted by the Becquerel decay function, espe-
cially for values of b close to the upper and lower limits.
A fitting with a common �k gives

bb ¼ bmð0.801b2
m � 1.948bm þ 2.151Þ; ð40Þ

where bb is the parameter of the Becquerel decay law
corresponding to the bm parameter of the mixed first-
and second-order decay. Note however the different
asymptotic behavior of the two functions. In fact, the
mixed decay law Eq. (28) is asymptotically exponential,
with rate constant k1.

The above decay law applies to the phosphores-
cence arising from triplet–triplet annihilation. How-
ever, if one considers the decay of delayed
fluorescence, which is proportional to N2, the appro-
priate decay law is
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IðtÞ ¼ b
ek1t � 1þ b

� �2

ð41Þ

that gives, upon expansion

IðtÞ ¼ b2e�2k1t½1þ 2ð1� bÞe�k1t þ 3ð1� bÞ3e�2k1t þ � � ��

¼ b2
X1
n¼1

nð1� bÞn�1e�ðnþ1Þk1t. ð42Þ

Hence, the rate constant distribution is

HðkÞ ¼ b2
X1
n¼1

nð1� bÞn�1d½k � ðnþ 1Þk1�. ð43Þ

For b = 0 the decay is

IðtÞ ¼ 1

ð1þ k2N 0tÞ2
. ð44Þ

Eq. (43) is not valid, and the distribution of rate con-
stants is

HðkÞ ¼ k

hki2
exp � k

hki

� �
ð45Þ

with hki = k2N0.
4. A decay law with extreme sub-exponential behavior

If one considers a rate coefficient that decays very fast
to zero, like

kðtÞ ¼ k0e�at ð46Þ
one obtains from Eq. (7),

IðtÞ ¼ exp � k0
a
ð1� e�atÞ

� �
. ð47Þ

This decay law applies to quenching in micelles and
other compartmentalized systems, see [14] and refer-
ences therein.

The corresponding H(k) is

HðkÞ ¼ e�k0=a
X1
n¼0

1

n!
k0
a

� �n

dðk � naÞ. ð48Þ

The rate coefficient for this law goes so fast to zero
that the integral

R1
0

kðuÞdu is convergent and therefore
the decay at infinite time, I(1), is larger than zero. In
the absence of a multiplicative exponential, the integralR1
0

IðtÞdt is clearly divergent.
Fig. 3. Parameter space (a,b) for the unified decay law, Eq. (49). The
number next to each curve is the power a of the asymptote t�a. In
corner A (0,0) the decay law is second-order (hyperbolic). In corner B
(1,0) there is no decay. In corners C (1,1) and D (0,1), as well as along
the line CD, the decay is exponential. Along line AB, the decay has
asymptote t�1. Along line BC, the decay law is the modified
Kohlrausch law. Along line AD, the decay law is the Becquerel law.
5. A decay function unifying the modified Kohlrausch and

Becquerel decay laws

A simple formula interpolating between the modified
Kohlrausch and Becquerel decay laws is
IðtÞ ¼ exp½a1�að1�bÞ�

� exp � aþ
ln 1þ ð1� aÞð1� bÞ t

s0

h i
ð1� aÞð1� bÞ

2
4

3
5

1�að1�bÞ8><
>:

9>=
>;;

ð49Þ
where a is a parameter taking values between 0 (Becque-
rel) and 1 (modified Kohlrausch). For the recovery of
the modified Kohlrausch law, one has to take the limit
a ! 1 in Eq. (49).

The rate coefficient for the unified decay law is

kðtÞ ¼
1� að1� bÞ

1þ ð1� aÞð1� bÞ t
s0

h i
aþ

ln 1þð1�aÞð1�bÞ t
s0

h i
ð1�aÞð1�bÞ

2
4

3
5

að1�bÞ
1

s0

ð50Þ
and therefore

hki ¼ kð0Þ ¼ 1� að1� bÞ
aað1�bÞ

1

s0
ð51Þ

and the decay law can be rewritten as

IðtÞ ¼ exp½a1�að1�bÞ�

� exp � aþ
ln 1þ ð1�aÞð1�bÞ

1�að1�bÞ a
að1�bÞhkit

h i
ð1� aÞð1� bÞ

2
4

3
5

1�að1�bÞ8><
>:

9>=
>;.

ð52Þ
The asymptotic behavior of the unified decay law is

(for a 5 1)
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IðtÞ / t�
1�að1�bÞ
ð1�aÞð1�bÞ. ð53Þ

In Fig. 3 the type of decay law obtained is shown dia-
grammatically as a function of a and b. For b = 1, the
decay is single exponential, irrespective of a. For
b = 0, the decay is

IðtÞ ¼ exp a1�a � aþ 1

1� a
ln 1þ ð1� aÞ t

s0

� �� �1�a
" #

ð54Þ
or

IðtÞ ¼ exp a1�a � aþ 1

1� a
ln½1þ aahkit�

� �1�a
" #

ð55Þ

and the asymptote is t�1 for all a < 1, hence the integralR1
0 IðtÞdt is divergent.
6. Analysis of complex decays with a sum of Becquerel

functions

As discussed previously [3], two approaches to fit de-
cay laws with a discrete sum of terms are the use of expo-
nentials and hyperbolae as base functions. Since the
Becquerel decay law interpolates between these two ex-
treme cases, it seems reasonable to assume that a sum
of a few Becquerel functions, appropriately weighted,
will be a powerful fitting function for complex decays,

IðtÞ ¼
X
i

aið1þ citÞ
1=ðbi�1Þ ð56Þ

withX
i

ai ¼ 1 ð57Þ

and

ci ¼ ð1� biÞhkii ¼
1� bi

si
. ð58Þ

The corresponding distribution of rate constants will be
a weighted sum of Gamma density functions.

The average lifetime is

hsi ¼
X
i

aihsii ¼
X
i

aisi
bi

ð59Þ

while the average decay time is, for bi > 1/2,

�s ¼ hs2i
hsi ¼

P
iaihs2i iP
iaihsii

¼
P

iaihsii�siP
iaihsii

¼
P

i
ais2i

bið2bi�1ÞP
i
aisi
bi

ð60Þ
and the average rate constant and the average rate coef-
ficient are

hki ¼
X
i

aihkii ¼
X
i

aibi

si
; ð61Þ

�k ¼ 1

hsi ¼
1P
i
aisi
bi

. ð62Þ
7. Conclusions

We showed in the present paper that the Becquerel
decay law is an interesting approach for the analysis of
complex luminescence decays. A decay function unify-
ing the modified Kohlrausch and Becquerel decay laws
was also introduced. It is proposed that the analysis of
luminescence decays with a sum of Becquerel functions,
Eq. (56), is a powerful alternative to the usual sum of
exponentials. Finally, analysis of some known decay
laws, Eqs. (28), (41) and (47), showed that they can be
written as a sum of an infinite number of exponentials
and have an infinite but discrete spectrum of rate
constants.
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