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Abstract

A statistical approach and Monte Carlo simulations in regular lattices were used to study the dynamics of triplet–triplet anni-
hilation (TTA) in 1D, 2D and 3D nanodomains. It was shown that the phosphorescence and triplet–triplet absorption decays
can generally be fitted with a sum of two exponentials. The first exponential corresponds to domains containing initially one triplet
and the second exponential to domains initially with two triplets. The triplet survival probability and the dependence of the anni-
hilation rate constant on the energy migration rate, W, annihilation rate, V, and size of the domain, M, was obtained by Monte
Carlo simulations in the diffusion-influenced limit (V� W).
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The spectral properties of multichromophoric nano-
systems, as well as their excited state time and space evo-
lution, are critically dependent on their size and
topology. This has been observed for singlet excitation
energy migration and trapping in multichromophoric
rings [1], linear polymer chains [2,3], small regular lat-
tices [4], dendrimers [5,6] and photosynthetic systems
[7]. More recently, this was also observed for singlet–sin-
glet annihilation [8–12] and triplet–triplet annihilation
(TTA) [13,14] in multichromophoric systems.

Triplet–triplet annihilation is an important process at
relatively high excitation intensities that strongly influ-
ences the optical and optoelectronic properties of homo-
geneous liquid solutions [15,16], micellar solutions [13],
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molecular crystals [17], polymers [14,18,19] and Lang-
muir–Blodgett films [20].

TTA corresponds to the short-range energy transfer
process T1 + T1 ! S1 + S0, whereby two molecules in
the lowest excited triplet state yield a molecule in the sin-
glet ground state an the other in the first excited singlet
state [21]. Several processes can then follow, namely uni-
molecular ones, S1 ! S0 (including delayed fluorescence
and internal conversion), and S1 ! T1 (intersystem
crossing). A bimolecular process is also possible, namely
excimer formation S1 þ S0 ! S0

1 , where the prime de-
notes an excimer electronic state. The singlet excimer
can then dissociate according to unimolecular processes:
S0
1 ! S0 þ S0 (delayed fluorescence, internal conver-

sion), and S0
1 ! T1 þ S0 (intersystem crossing).

TTA thus generates one excited singlet that yields a
ground state singlet either by internal conversion or by
delayed fluorescence, or reverts back into a triplet, di-
rectly by intersystem crossing or indirectly via excimer
formation–dissociation. As a result, either zero or one
triplet can result from the annihilation of two triplets [21].

In systems with a high density of chromophores, the
motion of the excitation occurs not only by molecular
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displacement (molecular diffusion), but also by migra-
tion due to the short-range triplet–triplet energy hop-
ping [17,21], T1 + S0 ! S0 + T1.

The aim of this work is the study of TTA and of the
associated delayed fluorescence in 1D, 2D and 3D nano-
systems (linear chains and particles) with efficient trip-
let–triplet energy migration. The standard and
statistical formalisms of TTA are presented in Sections
2 and 3. In Section 4, the survival probability for an
annihilating pair of triplets is calculated for 1D nanosys-
tems. In Section 5, Monte Carlo simulations in 1D, 2D
and 3D nanosystems were performed and the survival
probability for the annihilation of a pair of triplets
was calculated. The delayed fluorescence kinetics are
discussed in Section 6 and the main results are summa-
rized in Section 7.
2. Standard approach to TTA

The standard approach used to describe TTA, as-
sumes that the annihilation is a bimolecular process with
rate proportional to the density of triplet excitations.
Then, the rate equation can be written as [7,18,19,21]

dN
dt

¼ �kN � c0N
2; ð1Þ

where N represents the average triplet excitation density,
understood here as the number of excitations per closed
domain (a linear polymer chain, micelle, nanoparticle,
etc.), k is the reciprocal lifetime of the triplet, and c0 is
the so-called annihilation rate constant, with dimensions
of reciprocal time. For a time-independent c0 the solu-
tion of Eq. (1) is well known

NðtÞ ¼ kN 0

kekt þ c0N 0 ekt � 1ð Þ ¼
N 0e

�kt

1þ c0N 0=kð Þ� c0N 0=kð Þe�kt
;

ð2Þ
where N0 is the initial number of triplet states in the do-
main. When modeling TTA by Eq. (1), it is usually as-
sumed that: (i) the triplet excitations are molecular
excitations as a result of strong disorder and/or high
temperatures; (ii) the excitations move by diffusion with-
in the system. If the diffusion rate is large compared to
the nearest-neighbor annihilation rate, V (with dimen-
sions of reciprocal time), the decay is annihilation-con-
trolled, and c0 = V/2. However, when the annihilation
dominates over diffusion, the process is diffusion-influ-
enced and the global annihilation rate constant c0 is
determined not only by the annihilation rate, V, but also
by the time-evolution of the triplets pair correlation
function. In this case the annihilation rate can be time-
dependent, this dependence being determined by the
dimensionality of the domains [7,22–27].

Using the expansion 1/(1 � x) = 1 + x + x2 + � � �
(x < 1), it follows from Eq. (2) that the phosphorescence
intensity, normalized to unity at t = 0, IP(t) = N(t)/N0,
can be written as a series:

IPðtÞ ¼
e�kt

1þ c0N 0=k
1

1� c0N0=k
1þc0N0=k

e�kt

 !

¼ 1

1þ c0N 0=k
e�kt þ c0N 0=k

1þ c0N 0=kð Þ2
e�2kt

þ c0N 0=kð Þ2

1þ c0N 0=kð Þ3
e�3kt þ � � � ð3Þ

Each term of the series decays exponentially with time,
the time dependence being determined by the intrinsic
relaxation rate of the triplet, k. The annihilation con-
stant, c0 only appears in the pre-exponential factors of
the decay components.

The above description has limitations, which can be-
come rather important at very low temperatures, where
triplet excitations can be delocalized over several mole-
cules and form excitons [28,29].
3. Statistical approach to TTA

A more general approach for the description of TTA
is the so-called statistical approach proposed by Paillo-
tin et al. [30] (see also [7,10]). In this approach, ensem-
bles of closed domains (e.g., non-interacting polymer
chains, micelles, or nanoparticles) are considered. After
a pulse of excitation light, followed by singlet–triplet
conversion, each domain contains N0 triplets. Consider-
ing that: (i) excitations in different domains do not inter-
act with each other; (ii) the distribution of excitations
over domains follows a Poisson distribution; (iii) The
annihilation occurs by two bimolecular processes with
constants, c(1) and c(2) corresponding to the disappear-
ance of one or two triplets, respectively, the phosphores-
cence intensity, IP(t), is given by [30]

IP ðtÞ ¼
X1
p¼0

bpþ1 exp �ðp þ 1Þðp þ rÞct=2½ �

¼ b1e�kt þ b2e�ct�2kt þ b3e�3ct�3kt þ b4e�6ct�4kt

þ b5e�10ct�5kt þ � � � ; ð4Þ

where

bpþ1 ¼
X1
m¼0

ð�1ÞmðpþmÞ!Zpþmðrþ1þ2pÞ
p!m!ðrþpþ1Þðrþpþ2Þ . . .ðrþpþ1þpþmÞ .

ð5Þ

and c = c(1) + c(2); r = 2k/c and Z = N0(1 + c(2)/c).
Both approaches (Eqs. (3) and (4)) predict that the

time resolved phosphorescence intensity decay as a
sum of exponentials. However, the corresponding relax-
ation constants and the pre-exponential factors in each
model are different.
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Fig. 1 shows the dependence of coefficients bp on r for
two different values of the parameter Z that measures
the average number of triplet excitations per domain.
The plot shows that the first two or three terms of Eq.
(4) are enough to describe the overall decay.

It was shown previously [30] that Eq. (4) simplifies
into Eq. (3) in the limit of r ! 1 (i.e., 2k/c ! 1), with
Z = N0 and c = 2c0. This means that both approaches
are similar when the rate of bimolecular annihilation is
much smaller than the intrinsic decay rate. Nevertheless,
the statistical approach is more general and can be used
to describe the TTA in both small and large domains,
whatever the value of the annihilation constant.

The statistical approach allows a simple interpreta-
tion of each term in Eq. (4). The first term corresponds
to domains containing initially only one triplet that de-
cays with the intrinsic rate constant k. The second term
considers the domains containing two excitations and
that therefore decay individually with rate constant k

or by annihilation with rate constant, c. The third term
takes into account the decay of domains containing
three excitations and therefore the excitation decays
individually or by annihilation with rate constant, 3c.
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Fig. 1. Dependence of coefficients bp on r for two different values of Z
(proportional to the average number of triplet excitations per domain):
Z = 2 (a) and Z = 4 (b). Values of parameter p are indicated next to
each curve.
The coefficient 3 in c is the number of ways (in two or
three-dimensional cases) by which three excitations can
meet in pairs. Analogously, the nth term considers do-
mains containing n excitations that decay by the intrin-
sic process or by annihilation with the rate constant C2

nc,
where C2

n ¼ nðn� 1Þ=2 is the number of pairs that can
be formed from n elements (the binomial coefficient C2

n).
Both the standard and the statistical approaches do

not show the dependence of the annihilation constant
on the rate of excitation diffusion, W (i.e., the frequency
of hops between nearest-neighbor chromophores in the
domain), the rate of nearest-neighbor annihilation, V,
and on the size and dimension of the domain. To our
knowledge, the first and single attempt to answer some
of these questions was done by Onipko and Zozulenko
[31], for the case of a one-dimensional lattice and
V =1.
4. Survival probability for an annihilating pair of triplets

The survival probability for an annihilating pair of
triplets, qð2Þ

M ðtÞ, diffusing in one-dimensional domain
(e.g., a polymer chain with M chromophores) was ob-
tained by Onipko and Zozulenko [31], after solving the
corresponding master equation for a one-dimensional
lattice. It was assumed that the excitation jumps be-
tween neighboring lattice sites with a unit time probabil-
ity W; when two excitations meet at the same site, the
annihilation occurs with unit efficiency, i.e., the annihi-
lation rate is infinite, V =1. The solution for an initial
uniform excitation and, M � 1; Wt� 1, is

qð2Þ
M ðtÞ¼ exp �2ktð Þ2

6

p4
�

X1
l¼1

1

ð2l�1Þ4

(
exp �ð2l�1Þ2p

2Wt

M2

� �

þ2
X1
l¼1

X1
m¼1

1

ð2mÞ2�ð2l�1Þ2
� �2

� exp � ð2mÞ2þð2l�1Þ2
� �p2Wt

M2

� �)
. ð6Þ

This equation has asymptotes for short and long times

qð2Þ
M ðtÞ¼ expð�2ktÞ�

1� 4
ffiffi
2

pffiffi
p

p
ffiffiffiffiffi
Wt
M2

q
; if Wt

M2 �1 ðaÞ

26

p4 exp �p2 Wt
M2

� �
; if Wt

M2 �1 ðbÞ

8><
>:

ð7Þ

The asymptote for long times can simply be obtained by
considering that on the average, each of the two excita-
tions can freely move in half of the chain and that anni-
hilation occurs when both excitations encounter in the
middle of the chain. Therefore, to a first approximation,
the behavior of each excitation is equivalent to the
migration along a chain of length M/2 that contains a
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quencher at one end. The long-time asymptote for large
M, (8/p2)exp(�p2Wt/M2), was obtained before [32] and
coincides, apart from a numerical factor, with the long-
time asymptote in Eq. (7b).

Based on this interpretation, it is possible to obtain
the annihilation rate constant, c, by comparing the
asymptote (Eq. (7b)) with the second term of Eq. (4)

c ¼ p2W =M2. ð8Þ
As expected, c, decreases when the size of the domain

increases.
An approximate equation for qð2Þ

M ðtÞ, more adequate
for the analysis of experimental results, was obtained
from the numerical computation of Eq. (6) and from
its asymptotic behavior, Eq. (7), and is

qð2Þ
M ðtÞ ¼ expð�2ktÞ� 1� 26

p4

� �
exp � 4

ffiffiffi
2

p

ð1� 26=p4Þ
ffiffiffi
p

p
ffiffiffiffiffiffiffi
Wt

M2

r"(

� 30
Wt

M2

� �3=2
#
þ 26

p4
exp �p2 Wt

M2

� �)
; ð9Þ

Fig. 2 shows that this equation is a very good approxi-
mation to the exact solution (Eq. (6)), with a precision
better than 2% for all times.
5. Monte Carlo simulations

Monte Carlo (MC) simulations were carried out on
1D, 2D and 3D nanodomains of several sizes. The sim-
ulations were performed following the procedure of
Pearlstein [32], considering that the rate of energy hop-
ing between lattice sites is W, and that the annihilation
occurs with rate V when two excitations encounter in
neighboring sites. The initial distribution of the excita-
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Fig. 2. Survival probability for an annihilating pair of excitations in a
linear lattice, qð2Þ

M ðtÞ, for V/W =1. (solid line 1) Exact solution from
Eq. (6); (dotted line 2) approximate decay from Eq. (9); (dotted line 3)
Long time 2 asymptote from Eq. (7b).
tion in the domain is uniform. The final results are aver-
ages over 50000 (1D and 2D) and 20000 (3D)
trajectories.

5.1. One dimensional domain

The survival probability over a small polymer chain
of size M = 25, 50, and 100 was obtained consider-
ing the procedure outlined before. There are initial
configurations for which the two excitations exist
at nearest-neighbor sites. Their relative number is
ðM � 1Þ=C2

M ¼ 2=M and then the decay begins at 1–2/
M instead of 1 for V = 1.

For sufficiently long times ðqð2Þ
M ðtÞ expð2ktÞ < 0.4Þ, the

pair survival probability qð2Þ
M ðtÞ is, irrespective of size,

very similar to the long-time asymptote (Eq. (7b)). The
accuracy between the asymptote and MC simulations
improves with the number of sites M. The simulations
were carried out also for finite values of the V/W ratio.
It was found that for V/W P 0.5, qð2Þ

M ðtÞ is independent
of V/W and very similar to the case with V = 1.

In order to verify the accuracy of the third term in
Eq. (4) the survival probability for an annihilating trip-
let of excitations, qð3Þ

M ðtÞ was calculated. There are initial
configurations for which two or even three excitations
exist initially at nearest-neighbor sites. Their relative
number is ðM � 1ÞðM � 2Þ=C3

M ¼ 6=M ; and as these
configurations decay instantaneously (V = 1), the over-
all decay begins at 1–6/M instead of 1. Fig. 3 shows the
survival probability qð3Þ

M ðtÞ expð3ktÞ for M = 25, 50, 100.
The long-time survival probability ðqð3Þ

M ðtÞ expð3ktÞ
< 0.4Þ for both V/W = 1 and 1, is well described by

qð3Þ
M ðtÞ expð3ktÞ � 0.5 exp �52

Wt

M2

� �
. ð10Þ
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Fig. 3. Survival probability for an annihilating triplet of excitations
on a linear lattice, qð3Þ

M ðtÞ, for V/W =1 and 1. (Lines 1–3) qð3Þ
M ðtÞ, with

V/W =1 and M = 25, 50, and 100, respectively. For V/W = 1 and
M = 25 or 50, the corresponding curves practically coincide with line
3; (line 4) qð2Þ

M ðtÞ expð2ktÞ values for comparison (V/W = 1, M = 50).
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In comparison with Eq. (7b) the same type of depen-
dence was observed, apart from the numerical coefficient
of the exponent that changes by more than 5 times, from
p2 to 52. This is expected, because, on the average, each
of the three excitations can freely move along a section
of the chain of size M/3. Upon an encounter, one or
two excitations disappear and therefore, the motion of
every excitation is to a first approximation equivalent
to a motion along a chain of length, M/3. Two of these
chains have a quencher at one end and the third has
quenchers at both ends.

The decay function, qð3Þ
M ðtÞ decreases very fast with

time, and this explains why only the two first terms of
the series in Eq. (4) are generally needed to fit phospho-
rescence decays in linear polymer chains.

5.2. Square lattice

In the case of a square lattice having L = M · M sites
(e.g., a polymer monolayer), there are initial configura-
tions for which two excitations exist at nearest-neighbor
sites. Their relative number is 2MðM � 1Þ=C2

M2 ¼
4= MðM � 1Þ½ �, and the overall decay (V = 1), begins
at 1 � 4/[M(M � 1)] instead of 1. The MC simulations
were performed on square lattices of several sizes
(M = 5, 10, 20, 40). The survival probability for an anni-
hilating pair of excitations, qð2Þ

M ðtÞ, for 10 < V/W < 1
can be expressed by

qð2Þ
M ðtÞexpð2ktÞ ¼ Asq exp �Bsq

Wt

M2 2 lnM � 1þ 1=
ffiffiffiffiffi
M

p� 	
" #

;

ð11Þ
with Asq = 0.86 ± 0.01. The Bsq parameter depends on
the V/W ratio as shown in Fig. 4.
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Fig. 4. Dependence of parameter Bsq on V/W. Circles correspond to
Monte Carlo simulations, and the solid line are the values given by Eq.
(12).
This dependence is well described by

Bsq ¼
20.7ðV =W Þ1.5

2.65þ ðV =W Þ1.5
� 0.2. ð12Þ

The choice of the form of the empirical function
Eq. (11) is motivated by a simple analytical calculation
for a circle with radius R � Ma, where a is a distance be-
tween neighboring sites in the lattice. The excitations
move in the circle with a diffusion constant D � Wa2.
Let us consider that one triplet is immobile and located
at the center of the circle, while the motion of the other
obeys the diffusion equation

o

ot
qðr; tÞ ¼ D

1

r
o

or
r
o

or
qðr; tÞ ð13Þ

with initial and boundary conditions: q(r,t) = 1/S (S
being the area of the circle); q(a,t) = 0 (V = 1); oq/
orjr=R = 0.

Let us look for a solution of Eq. (13) in the form
q(r,t) = exp(�Csqt)qst(r), where Csq is a constant. The
pair survival probability for long times is
qð2Þ
M ðtÞ ¼ 2p

R
V qðr; tÞrdr / expð�CsqtÞ. After introducing

q(r,t) into Eq. (13), we obtain

�CsqqstðrÞ ¼ D
1

r
o

or
r
o

or
qstðrÞ. ð14Þ

That by integration over r gives

Csq ¼
2paD o

or qstðrÞjr¼a

2p
R R
a qstðrÞrdr

. ð15Þ

The solution of Eq. (14) for small r (near a) is qst(r) ln(r/a),
as can be checked by integrating Eq. (14) using
qst(r) � qst(a) = 0 on its right-hand side. To a first
approximation, this solution can be used for a 6 r 6 R.
Inserting this into Eq. (15),

Csq ¼
4D

a2 � R2 þ 2R2 lnðR=aÞ
ð16Þ

and as a � R; R � Ma and D � Wa2, we obtain

Csq �
4W

M2ð2 lnM � 1Þ
. ð17Þ

The expression for Csq shows that the dependence on M

is practically equal to the dependence obtained by simu-
lation (Eq. (11)).

Then, it follows that for a two-dimensional lattice,
the dependence of the long-time limit of the TTA rate
constant is

csq ¼
20.7ðV =W Þ1.5

2.65þ ðV =W Þ1.5
W

M2 2 lnM � 1þ 1=
ffiffiffiffiffi
M

p� 	 . ð18Þ
5.3. Cubic lattice

Consider now TTA in three-dimensional domains de-
scribed by a cubic lattice of L = M · M · M sites. Fig. 5
shows the MC simulations for M = 5, 10, 15, and sev-
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eral values of V. The parameter M has no important ef-
fect except for V/W = 1.

The survival probability for an annihilating pair of
triplets in a cubic lattice, qð2Þ

M ðtÞ, can be written as

qð2Þ
M ðtÞ expð2ktÞ ¼ Acub exp �Bcub

Wt

M3

� �
ð19Þ

for 1 < V/W < 1. The parameter, Acub = 0.96 ± 0.02
for all values of V. The dependence of Bcub on the
V/W ratio is shown in Fig. 6.

A good fit to these values can be obtained by

Bcub ¼
19.5 V =Wð Þ0.93

2þ V =Wð Þ0.93
� 0.5. ð20Þ

The dependence of the survival probability, qð2Þ
M ðtÞ, onW

and M can be confirmed from the analytical results of
TTA in a continuous three-dimensional sphere with a
radius R � (La3)1/3 =Ma, where a is a distance between
nearest-neighbor sites in the lattice. Let us consider that
one triplet is immobile and located in the center of the
sphere, while the other moves in its interior with diffu-
sion constant, D = Wa2. The evolution of the mobile
triplet is described by the diffusion equation

o

ot
qðr; tÞ ¼ D

1

r2
o

or
r2

o

or
qðr; tÞ ð21Þ

with initial and boundary conditions: q(r,t) = 1/V (V is
the volume of the sphere); q(a,t) = 0 (V = 1); oq/
orjr=R = 0.

Let us look for a solution of Eq. (21) in the form of
q(r,t) = exp(�Ccubt)qst(r), where Ccub is a constant.
The long-time behavior of the survival probability
qð2Þ
M ðtÞ ¼ 4p

R
V qðr; tÞr2 dr / expð�CcubtÞ. After introduc-

ing q(r,t) into Eq. (21), we obtain

�CcubqstðrÞ ¼ D
1

r2
o

or
r2

o

or
qstðrÞ. ð22Þ
The integration over r on both sides of this equation,
gives

Ccub ¼
4pa2D o

or qstðrÞjr¼a

4p
R R
a qstðrÞr2 dr

. ð23Þ

The solution of Eq. (22) for small r (near a) is
qst(r)/F(1 � a/r), where F is a constant. This can be
used to a first approximation as a solution for a 6 r 6 R

Inserting this solution into Eq. (23), and knowing that
a � R, we get

Ccub �
3Da

R3
ð24Þ

and as R �Ma and D �Wa2, we obtain

Ccub �
3W

M3
. ð25Þ

The expression for Ccub (Eq. (25)) shows that the depen-
dence observed by Monte Carlo is appropriate (see Eq.
(19)).

Thus, in a three-dimensional lattice, the dependence
of the long-time limit TTA rate constant, ccub, is given
by

ccub ¼
19.5 V =Wð Þ0.93

2þ V =Wð Þ0.93
W

M3
. ð26Þ
6. Delayed fluorescence

The decay of domains containing more than two exci-
tations is very fast, which means that the overall decay is
determined by domains initially containing one and two
excitations. As the singlet lifetime is orders of magnitude
shorter than the triplet lifetime the delayed fluorescence
is well described by the survival probability of an anni-
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hilating pair of triplets. Thus, for long times, the nor-
malized decay of delayed fluorescence, IDF(t), is

IDFðtÞ � expð�2kt � ctÞ; ð27Þ
where the annihilation constant c is given by Eqs. (8),
(18), or (26), according to the dimensionality of the do-
mains under consideration.
7. Conclusions

In this paper, we showed that the usual TTA
observables (delayed fluorescence, phosphorescence,
triplet–triplet absorption), are well described by a sin-
gle exponential decay (delayed fluorescence) or by a
sum of two exponentials (phosphorescence, triplet–trip-
let absorption). In the last case, the first term describes
the decay of domains containing exactly one excitation,
while the second one reflects the disappearance of do-
mains containing exactly two excitations. In the case
of delayed fluorescence, the first term, describing the
decay of domains containing exactly one excitation, is
usually negligible (unless unimolecular thermally acti-
vated delayed fluorescence also occurs), and only the
second term is important. In all cases, the higher terms
of the infinite series expansion, describing domains
containing three or more excitations, decay much faster
and can be neglected for the intensities of excitation
usually used.

From Monte Carlo calculations the survival proba-
bility for an annihilating pair of triplets was obtained
and the dependence of the rate constant of TTA on
the size of the domain, M, on the rate of excitation
migration, W, and on the rate of excitation annihilation,
V, for 1D, 2D and 3D nanodomains was obtained. It
should be noted that an independent procedure for the
determination of the rate of triplet migration, W, is
the measurement of time-resolved phosphorescence
anisotropy under conditions where rotational motion
of the chromophores is negligible during the triplet life-
time, e.g., a low temperature glass, and for low excita-
tion intensities. This approach will be adequate only
when the chromophores are randomly oriented, so that
transfer will result in depolarization.

We considered mainly the diffusion-influenced limit
(V� W) where the rate of nearest-neighbor annihila-
tion, V, dominates over the diffusion rate, W. In the
opposite case, the diffusion rate is larger than the rate
of nearest-neighbor annihilation, and the distribution
of excitations over the domains is homogeneous (diffu-
sion displacement of triplet excitation during the life-
time,

ffiffiffiffiffiffiffiffiffi
D=k

p
, large compared to the size of the

domains, Ma, i.e.,
ffiffiffiffiffiffiffiffiffiffi
W =k

p
> M) for all times. Then,

c = V and the triplet survival probability is well de-
scribed by Eq. (4) in the context of the statistical
approach.
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