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ABSTRACT
Amyotrophic Lateral Sclerosis is a devastating neurodegen-
erative disease characterized by a usually fast progression of
muscular denervation, generally leading to death in a few
years from onset. In this context, any significant improve-
ment of the patient’s life expectancy and quality is of major
relevance. Several studies have been made to address prob-
lems such as ALS diagnosis, and more recently, prognosis.
However, these analysis have been mostly restricted to clas-
sical statistical approaches used to find the most associated
features to a given outcome of interest. In this work we ex-
plore an innovative approach to the analysis of clinical data
characterized by multivariate time series. We use a distance
measure between patients as a reflection of their relation-
ship, to build a network of patients, that in turn can be
studied from a modularity point of view, in order to search
for communities (groups of similar patients). Preliminary
results show that it is possible to extract relevant informa-
tion from such groups, each presenting a particular behavior
for some of the features (patient characteristics) under anal-
ysis.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems; H.2.8
[Database applications]: Data Mining; H.3.3
[Information Search and Retrieval]: Clustering;
J.3 [Computer Applications]: Life and Medical Sciences

General Terms
Algorithms, Experimentation

Keywords
Graph mining, ALS, patient network, patient similarity.

1. INTRODUCTION
Included in the category of neurodegenerative diseases,

Amyotrophic Lateral Sclerosis (ALS) is characterized by a
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progressive muscular deterioration, leading to a (usually)
fast progressing weakness due to the denervation of critical
skeletal and respiratory muscles, which can ultimately result
in death [1]. Nonetheless, while devastating from a motor
impairment point of view, ALS is somewhat (or even com-
pletely) unconnected to any cognitive decline [2]. Taking
these aspects into account, and given that ALS currently
ranks third in the incidence of neurodegenerative diseases,
maintaining, or even improving, the patients’ quality of life
is a problem of crucial importance.

1.1 Related Work on Data Mining in ALS
In the context of ALS, the related work is mostly associ-

ated to a population based approach, focusing on common
features significantly associated to reduced survival. In fact,
we can divide the ALS studies in two problems. The first
is related to the patients’ diagnosis, investigating the het-
erogeneity in ALS subtypes [3], or the relevance of certain
clinical features in the diagnosis, such as the paraspinal mus-
cle EMG and motor-unit potentials (MUP) [4].

The second problem concerns the prognostic prediction,
which, in turn, can be divided in two different analysis. The
most explored is the study of ALS survival, and the most
significantly associated features, including respiratory mea-
sures [5], but also the site of onset [6] and the ALS Func-
tional Rating Scale (ALSFRS) score [6]. The other, least
explored, type of studies is related to the prediction of aux-
iliary respiration requirement, either with tracheostomy, or
non-invasive ventilation (NIV).

A patient-driven model for ALS prognosis prediction of
respiratory failure has been recently proposed [7]. We note,
however, that the strategies adopted for the most part of
these studies rely on statistical tests, Kaplan-Meier survival
tables, and multivariable Cox proportional hazard regression
models, which are typical of population based studies.

1.2 Related Work on Patient Similarity
The topic of patient similarity has been increasingly ex-

plored in the last years, mainly motivated by the need of
patient cohort identification for comparative clinical trials
or decision support applications [8], but also due to the aris-
ing of the so called patient social networks, where patients
try to find people with similar experiences and conditions.
Nevertheless, patient similarity, or distance, poses several
different challenges, where the subjective notion of similar-
ity rises as one of the most critical. In fact, each physician
may have a different perspective about how similar two pa-
tients are, as they assign different weights to different fea-
tures. Some studies have proposed a way of learning these
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Figure 1: Workflow used in this work for community finding and interpretation using a network of ALS
patients.

weights automatically [9], and others suggested that the ex-
pert knowledge can be integrated, and used to learn a new
unified similarity measure [8]. Nonetheless, in the network
context, research has been focused on the visualization, or
on the aforementioned social network, where patient sim-
ilarity is used to build a recommendation system for the
user [9]. Moreover, these studies rely on supervised learning
approaches, and it is not clear how temporal data can be
addressed.

In this context, this work proposes a novel unsupervised
learning strategy using a distance measure capable of dealing
with multivariate time series in order to build a network
of patients, which can then be analyzed from a modular
point of view. The found modules, or patient communities,
can be studied according to their particular characteristics,
possibly reflecting ALS subtypes, which might help to better
understand the disease. Moreover, such modules can then be
used in a supervised learning fashion to train expert models
for discriminating subgroups of patients.

2. METHODS
This section presents and discusses the methodology used

in this work. The workflow is in Figure 1.

2.1 Data and Preprocessing
In this work we use the data made available at the

DREAM-Phil Bowen ALS Prediction Prize4Life Challenge
(or ALS Prediction Prize) (https://www.innocentive.com/
ar/challenge/9933047), where the goal was to predict the
rate of disease progression as measured by the slope of the
functional scale ALSFRS between the 3 and 12 months af-
ter the beginning of the trial. However, in this paper we go
beyond the regression problem, moving towards the search
for groups of similar patients, or communities. We note
that this dataset was later extended, and now counts over
8500 clinical ALS patient records, available in the Pro-ACT
database (https://nctu.partners.org/ProACT). This par-
ticular dataset, consists of information for 918 ALS patients,
and comprises features such as demographics, discriminated
ALSFRS features, medical and family history, respiratory
measurements and other general lab data. Given that these
data come from merged trials, the first step of preprocess-
ing consisted in cleaning the outlier values (e.g. unrealistic
age or weight), followed by unit standardization (e.g. height
in cm or in). This is a major challenge in clinical data
and reinforces the need for a standardized input and stor-
age model, as it is being slowly implemented with electronic
health records (EHR). Another challenge was the presence
of missing values. In fact, many of the available features
present a missing value percentage close to or over 90%.
We chose to proceed with the features with less than 50% of
missing values. For the experiments that required it, we per-

formed missing values estimation using a probabilistic PCA
method implemented in Matlab [10]. One important aspect
of this dataset is that it can be divided into two distinct sub-
sets: static data, including demographics, medical and fam-
ily history as well as the disease onset data; and temporal
data, with all the measurements varying between appoint-
ments, as the ALSFRS, respiratory features and other lab
data. The number of evaluations (time points) spans from
7 to 23, with an average of 13 evaluations per patient.

2.2 Distance/Similarity Measures
In order to build a network of patients, we need a mea-

sure which reflects the relationship between two patients.
However, since we have both static and temporal partitions,
in the latter we are dealing with multivariate time series
(MTS). Thus, and according to the considered partition, we
use different distance metrics to summarize how closely re-
lated two different patients are.

2.2.1 Static data
In the static partition, each patient is represented by a

row containing the values of the static features including
type and time of onset, first symptoms, demographics, etc.
As such, we compute the normalized difference for numeri-
cal features and perform a string comparison for categorical.
We note, however, that when a feature has a set of simul-
taneous categories, we compute the minimum proportion of
shared strings (“Weakness, Speech” vs. “Weakness” results
in a distance score of 1/2). The static distance is then the
average value computed for all static features.

2.2.2 Eros Distance for Temporal Data
For temporal data, characterized by MTS with different

number of time points, we use the Extended Frobenius Norm
(Eros) as a distance measure [11]. Essentially, this measure
is based on the application of PCA to the MTS data, thus
generating principal components which in turn can be used
to compute a distance based on the angle formed by the
corresponding principal components for both patients. We
note that for this measure, the missing values are estimated
as aforementioned. This measure was shown to outperform
the more traditional distance measures for MTS (for more
details refer to [11]). In this work, the Eros distance was
normalized so that it would be contained in the interval
[0,1].

2.2.3 Combined Distance
We consider that a global distance measure can be a sim-

ple average of the distance computed for both partitions,
although a weighted version can be used to assign a higher
relevance to one type of data. Assigning different weights
to the individual features, either automatically or based on
expert knowledge, is also possible.



2.3 Building a Network of Patients
After computing the distance matrix for all patients, we

can build the network (graph) using the distances. However,
in network analysis, it is usual to use similarities instead of
distances, and thus we get these in two distinct ways. The
first is computing the similarities as Sij = 1−Dij , where S
is the similarities matrix and D the distances matrix. The
other is based on the binary adjacencies matrix A, defined
as

Aij = 1 ⇐⇒ Dij ≤ τ, (1)

where τ is a given threshold. Both matrices can be used
as input to Gephi [12], an open-source software for network
analysis. In the network context, the graph nodes represent
the patients, whereas the edges represent their connection.
When the similarities matrix is used, each edge has an asso-
ciated weight representing the similarity between both pa-
tients. Eventually, some edges with lower similarities can
be filtered out. In the case where we use the adjacencies
matrix, each edge states that the two patients it connects
are similar (their distance is below the threshold τ). With
this tool, we can quickly analyze and visualize the built net-
works, apply several filters to delete outlier nodes or edges,
and compute metrics such as the network density, modular-
ity, average path length and many others.

2.4 Finding Communities in a Network of Pa-
tients

The goal of this work is to investigate if we can find com-
munities within networks of patients, each presenting par-
ticular characteristics which might bring new insights to the
disease. Hence, the most relevant metric is the modular-
ity, since it is related to how well the network can be di-
vided into modules. Essentially, modularity can be seen as
the difference between the number of edges within identi-
fied communitites in given network and the random expec-
tation [13]. A higher value means that the network presents
a more modular structure and, hence, vertices in each com-
munity are more similar. The algorithm used in Gephi is
time-efficient [14], and assigns a modularity class (or com-
munity) label to each patient, which we can then visualize
with different colors.

2.5 Feature Selection and Retrieving Mean-
ingful Information

Gephi allows us to export the similarities/adjacencies ma-
trix together with the assigned community label. Neverthe-
less, we still have to extract relevant information from the
communities found. Which features (patients characteris-
tics) are more important to these modules? Can this infor-
mation be used to help the clinicians in the disease diagno-
sis and/or prognosis? In order to answer these questions,
we started by performing feature selection to assess which
features were more correlated with the discovered commu-
nities. We chose to use the minimum redundancy maximum
relevance (mRMR) method [15], with a parallelized imple-
mentation in R: mRMRe package [16]. The basic idea is
to select features that are highly correlated with the tar-
get class (the community) and mostly uncorrelated between
themselves. Besides the selected features, this implemen-
tation can also return the causality values for each feature
(as defined in [16]), where more negative scores indicate a
stronger putative causality of the feature to the target. We

Figure 2: Distribution of number of edges vs. dis-
tance (average of static and temporal - Eros - dis-
tances).

started by applying this method to the dataset with all the
communities, and then proceeded with a pairwise analysis,
searching for features that better explain the differences be-
tween each pair of modules.

3. RESULTS
As shown in the previous section, we used a distinct dis-

tance measure for static and temporal data, and the final
distance was the average for the two values, although weights
can be used, whether to reinforce some type of data or, more
specifically, to give more importance to certain features. Re-
sorting to Gephi, we analyzed the two types of networks,
either based on the similarities or adjacencies matrices. In
fact, when filtering the edges with a given weight threshold
to match the threshold used for the creation of the adja-
cencies matrix, the results of modularity are very similar,
as well as the found communities. As such, we decided to
present here the results obtained when adjacencies matrices
are used.

Figure 2 shows the distribution of the computed distances
by the number of links between patients (or edges). This
distribution seems to follow a mixture of two Gaussian dis-
tributions, with peaks around the distance of 0.4 and 0.65,
approximately.

3.1 Community Finding
We tested several values for the threshold τ , while as-

sessing the modularity metric, as well the size of the found
communities and of the giant connected component (largest
connected group of patients). In fact, with lower values of
τ , we end up with many disconnected patients. These net-

Table 1: Modularity, Giant Component (GC) size
and Edges statistics vs. distance threshold τ

τ Mod. GC # Edges Weight (µ± σ) σ2/µ
0.25 0.67 383 3791 0.23± 0.019 0.0016
0.30 0.52 647 15362 0.27± 0.028 0.0029
0.35 0.35 773 41632 0.31± 0.036 0.0042
0.40 0.23 862 83074 0.34± 0.045 0.0060
1.00 0.05 918 420903 0.53± 0.136 0.0349
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Figure 3: Layout of the patients network when using
an adjacency matrix with distance threshold τ of 0.3,
and using only the giant component. Different colors
represent different patient communities.

work nodes can be filtered out, and a usual way to achieve
this is to keep only the giant component, although we tested
also with smaller disconnected groups of patients. In these
situations, however, there are never disconnected groups of
significant size (over 10 patients), and so we proceeded with
only the giant component.

Table 1 shows the modularity value and giant component
size for each distance threshold τ (or similarity threshold
1 − τ). From these results, we chose to proceed with a τ
distance threshold of 0.3, since it presented the best ratio
GCsize/(1−Modularity), as we want to preserve as many
patients as possible, while achieving a good modularity. As
explained in Section 2.4, the modularity metric was com-
puted and communities were assigned using Gephi. One of
the strengths of this network analysis tool is that we can
color the nodes with different colors corresponding to the
different modules, and use an automatic layout to better
visualize them. Such result is shown in Figure 3, for an ad-
jacency matrix with distance threshold of 0.3 and keeping
only the giant component, which resulted in 8 different com-
munities (although two of them are very small, with only 2
patients).

Regarding this subnetwork, when we compare its index of
dispersion (σ2/µ = 0.0029) to the one of the original network
(0.0349) we can see that the latter is approximately 12 times
larger, although this value already suggests that the original
network is under-dispersed. Edges in the filtered network are
only within the 2.5% of edges among more similar nodes,
which provides a good degree of confidence on our ability to
avoid spurious connections.

3.2 Feature Selection
As aforementioned in Section 2.5, after the communities

are discovered, we still cannot understand what particular
characteristics each group presents. To achieve this goal,

we use the classic implementation of the mRMR feature
selection method in the mRMRe package [16]. The first
analysis was performed with all the communities, trying to
find which features best explain the different groups. Ta-
ble 2 shows the causality values, according to [16], com-
puted for the top 10 features (more negative values). Most
of the features presenting a more putative causality to the
communities are related to the functional scale for the dis-
ease (ALSFRS). However, we can see that the Treatment
Group Delta ranks first with the Swallowing portion of the
functional scale ALSFRS. This is interesting, since this fea-
ture provides information not only about the time when
the patient started undergoing treatment or placebo, but
also if it participated in such a trial, since a missing value
means that the patient was not assigned to a Treatment or
Placebo group. Other features include the Respiratory rate
and Gamma-Glutamyltransferase. We now know which fea-
tures are more relevant to the formation of the discovered
communities. Nonetheless, we decided to proceed with a
pairwise analysis, so we can better identify which features
are best correlated with each pair of patient communities.
We note that only 6 of the 8 discovered communities were
investigated. Two of them (2 and 7) were too small to be
considered (only 2 or 3 patients). Due to space constraints,
it is not possible to show all the features and causalities for
each pair of modules, and since a more negative causality
value is associated with a stronger putative causality to the
community assignment, Table 3 shows only the 1st and 10th
causality values, in order to provide a general idea of which
pairs of communities are more easily distinguished.

Table 3 suggests that some pairs are more separable than
others. For instance, community 3 seems to be the more sep-
arable community, given that the causality values of pairs
containing these patients are always much more negative.
Moreover, modules 5 and 6 appear to be somewhat distinct
from each other. On the other hand, community 4 seems
to be less separable than the others, although it may be
more distinct from communities 3 and 5. Nevertheless, after
this analysis we still cannot answer the more specific ques-
tion: What particular characteristics do these communities
present?

3.3 Studying the Communities
To analyze what characterizes the different communities

and distinguishes them from each other, we studied the dis-
tribution of the evaluations for each of the features selected
in the previous step. We restricted the shown results to the
first four features, which can be seen in Figure 4.

The distribution for the Treatment Group Delta feature
is the most peculiar, since the modules 0 and 6 only pre-
sented null values for this feature, meaning that these pa-
tients did not participate in the trial where individuals were
divided into Treatment and Placebo groups. For the other
four communities, we can observe that almost all the pa-
tients in module 3 were assigned into Treatment or Placebo
at day 0, which is very different from modules 1 and 4, where
patients were only assigned beyond the 100 days from the
beginning of the trial. In what concerns the feature Swal-
lowing of the functional scale, we can see an almost clear
separation between two sets of modules: 1, 3 and 4 present
a lower functional score than modules 0, 5 and 6. In a similar
analysis, for features representing the Salivation and Speech
scores, modules 3 and 4 present a lower value, while the pa-



Table 2: Causalities for the 10 top scoring features. More negative causality values mean a stronger putative
causality of the feature to the target (community) [16].

Treatment Respiratory Gamma- 9.Climbing
Group 3.Swallowing 2.Salivation 1.Speech 10.Respiratory 8.Walking 4.Handwriting Rate Glutamyl- stairs
Delta transferase
−0.1408 −0.1408 −0.1237 −0.0829 −0.0427 −0.0285 −0.0190 −0.0158 −0.0130 −0.0121

Table 3: Causalities for the 1st and 10th top scoring features. More negative causality values mean a stronger
putative causality of the feature to the target (community) [16].

0 vs 1 0 vs 3 0 vs 4 0 vs 5 0 vs 6 1 vs 3 1 vs 4 1 vs 5 1 vs 6 3 vs 4 3 vs 5 3 vs 6 4 vs 5 4 vs 6 5 vs 6
1st −0.047 −1.960 −0.058 −0.197 −0.127 −1.820 −0.052 −0.307 −0.303 −0.435 −1.731 −1.456 −0.204 −0.085 −0.810

10th −0.025 −0.372 −0.008 −0.084 −0.031 −0.404 −0.022 −0.010 −0.080 −0.193 −0.218 −0.487 −0.073 −0.054 −0.138

Figure 4: Normalized distribution of the patients’ evaluations, according to the discovered modules (Mod),
for the 4 top scoring features.

tients from module 1 are now in the same set as 0, 5 and 6,
presenting a better salivation and speech conditions. Using
only the four highest ranked selected features in terms of
causality, we can already extract some characteristics that
can distinguish between some of the modules. However, it

seems to be the combination of all these features which al-
lows the modular structure in the network shown in Figure 3.
In what concerns the pairwise analysis, we decided not to
show new figures of distribution due to space constraints,
and also because the features shown in Figure 4 are already



present when we compare the pairs of communities, with the
characteristics already discussed.

4. CONCLUSIONS AND FUTURE WORK
In this work we propose a novel unsupervised learning ap-

proach to find communities in a network of patients, and
then extract meaningful information from the discovered
modules of similar patients. One of the crucial aspects of
this study is the choice of the distance measure, as we deal
with both static and temporal data. Nonetheless, Eros dis-
tance seems to be a suitable choice to handle temporal data,
preserving particular characteristics which can be retrieved
later, as shown in Figure 4. One of the future directions
will be to further investigate what weights should be given
to each type of data, and to each particular feature. This
weighting could be performed automatically [9], or based on
expert knowledge. Moreover, we would like to proceed with
a feedback analysis, and recalculate the distance/similarity
between patients using only the features we found relevant
for the modular structure. Methodologies such as this look
promising in terms of knowledge discovery with little or no
prior knowledge, where the conclusions are achieved in a
totally unsupervised fashion, and may help to gain new in-
sights on different diseases. Furthermore, we intend to apply
this strategy on different datasets, and if possible, to explore
a supervised learning approach that could allow us to learn
the distance metric from the data [8], and search for com-
munities of different classes. Finally, such modules could be
used to train expert models for classification problems re-
garding subgroups of patients, possibly discriminating the
ones with different disease progression rates.
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