

TOWARDS LIGHTING OPTIMIZATION

A PERFORMANCE-BASED APPROACH

INÊS PEREIRA

SUPERVISOR | ANTÓNIO LEITÃO

MOTIVATION

KOLDING CAMPUS

HENNING LARSEN ARCHITECTS

ANALYSIS TOOLS

ANALYSIS TOOLS

3D model

3D model

PERFORMANCE-BASED DESIGN

LONDON CITY HALL

FOSTER + PARTNERS

ALGORITHMIC DESIGN AND ANALYSIS

HEYDAR ALIYEV CENTER

ZAHA HADID ARCHITECTS

ALGORITHIMIC DESIGN AND ANALYSIS

PARAMETRIC MODEL

ALGORITHIMIC DESIGN AND ANALYSIS

ANALYTICAL MODEL + ANALYSIS

KOSHINO HOUSE

TADAO ANDO

OBJECTIVES ιа analysis optimization parametric model tools processes

performance-based design solution

performance-based design solution

KETING ST

SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS

establish correlations

SENSITIVITY ANALYSIS

establish correlations

inform decisions

SENSITIVITY ANALYSIS

establish correlations

inform decisions

reduce design space

MULTI-OBJECTIVE WORKFLOW

architect

MULTI-OBJECTIVE WORKFLOW

parametric model

architect

MULTI-OBJECTIVE WORKFLOW

parametric model

architect

MULTI-OBJECTIVE WORKFLOW

architect

parametric model

analysis 2

MULTI-OBJECTIVE WORKFLOW

architect

model

analysis 2

MULTI-OBJECTIVE WORKFLOW

analysis 2

MULTI-OBJECTIVE WORKFLOW

analysis 2

مرجم analysis ...

MULTI-OBJECTIVE WORKFLOW

architect

analysis 2

analysis ...

results

MULTI-OBJECTIVE WORKFLOW

architect

model

visualization

METHODOLOGY

MULTI-OBJECTIVE WORKFLOW

architect

model

visualization

analysis 2

evaluate solutions

BLACK PAVILION

RENOVATION BY ATELIER DOS REMÉDIOS

VARIABLE PARAMETERS

VARIABLE PARAMETERS

skylight height

skylight length

skylight width

skylight and curtain-wall material

DAYLIGHT OPTIMIZATION

SPATIAL USEFUL DAYLIGHT ILLUMINANCE [sUDI]

SPATIAL USEFUL DAYLIGHT ILLUMINANCE [sUDI]

climate-based

SPATIAL USEFUL DAYLIGHT ILLUMINANCE [sUDI]

climate-based

annual

SPATIAL USEFUL DAYLIGHT ILLUMINANCE [sUDI]

climate-based

annual

occupancy schedule

ILLUMINANCE VALUES

ILLUMINANCE VALUES

category	material classification	example of materials	lighting illuminance	limiting annual exposure
I	insensitive	metal, stone, glass, ceramic	no limit	no limit
Ш	low sensitivity	canvas, frescos, wood, leather	200 lux	600 000 lux h/yr
111	medium sensitivity	watercolor, pastel, various paper	50 lux	150 000 lux h/yr
IV	high sensitivity	silk, newspaper, sensitive pigments	50 lux	15 000 lux h/yr

source: CIE TC 3-22 "Museum lighting and protection against radiation damage"

ILLUMINANCE VALUES

category	material classification	example of materials	lighting illuminance	limiting annual exposure
I	insensitive	metal, stone, glass, ceramic	no limit	no limit
Ш	low sensitivity	canvas, frescos, wood, leather	200 lux	600 000 lux h/yr
111	medium sensitivity	watercolor, pastel, various paper	50 lux	150 000 lux h/yr
IV	high sensitivity	silk, newspaper, sensitive pigments	50 lux	15 000 lux h/yr

source: CIE TC 3-22 "Museum lighting and protection against radiation damage"

SUDI

from 0 lux to 220 lux

ILLUMINANCE VALUES

category	material classification	example of materials	lighting illuminance	limiting annual exposure
1	insensitive	metal, stone, glass, ceramic	no limit	no limit
Ш	low sensitivity	canvas, frescos, wood, leather	200 lux	600 000 lux h/yr
111	medium sensitivity	watercolor, pastel, various paper	50 lux	150 000 lux h/yr
IV	high sensitivity	silk, newspaper, sensitive pigments	50 lux	15 000 lux h/yr

source: CIE TC 3-22 "Museum lighting and protection against radiation damage"

SUDI

from 0 lux to 220 lux

CURRENT SUDI

70 %

height = 4.3 m

height = 1.5 m

height = 4.3 m

height = 1.5 m

height = 4.3 m

height = 1.5 m

RESULTS DISCUSSION

RESULTS DISCUSSION

IMPROVE DAYLIGHT CONDITIONS

RESULTS DISCUSSION

IMPROVE DAYLIGHT CONDITIONS

height = 1.5 m

higher area

translucent panel 25%

RESULTS DISCUSSION

IMPROVE DAYLIGHT CONDITIONS CONSTRAINTS FOR THE MULTI-OBJECTIVE WORKFLOW

height = 1.5 m

higher area

translucent panel 25%

RESULTS DISCUSSION

IMPROVE DAYLIGHT CONDITIONS CONSTRAINTS FOR THE MULTI-OBJECTIVE WORKFLOW

height = 1.5 m

fix height at 1.5 m

higher area

translucent panel 25%

length [6.5 m , 17.5 m]

width [1.5 m , 4.0 m]

translucent panels 25%, 35%, 45%

MULTI-OBJECTIVE OPTIMIZATION

OBJECTIVES

GENETIC ALGORITHM

create population

PARETO FRONT

importance of evaluate performance

importance of evaluate performance

relevance of parametric models

importance of evaluate performance

relevance of parametric models

small scale buildings also benefit from AD

test different optimization algorithms

test different optimization algorithms add more objectives

test different optimization algorithms add more objectives

automate the creation of parametric models

CONTRIBUTIONS

Optimizing Exhibition Spaces

A Multi-Objective Approach

Pereira, I., Belém, C. and Leitão, A.

(2019)

Proceedings of the 37th eCAADe Conference

Porto University, Portugal

THANK YOU QUESTIONS?

CONSTRAINTS

a [a₁,a₂]

b [b₁, b₂]

DESIGN SPACE

CONSTRAINTS

a [a₁,a₂]

CONSTRAINTS

a [a₁,a₂]

CONSTRAINTS

a [a₁,a₂]

CONSTRAINTS

a [a₁,a₂]

CONSTRAINTS

- a [a₁,a₂]
- b [b₁, b₂]

CURRENT CONDITIONS

POINT-IN-TIME LUMINANCE

CURRENT CONDITIONS

POINT-IN-TIME LUMINANCE

CURRENT CONDITIONS

POINT-IN-TIME LUMINANCE

