
Inverse Algorithm Design of Floor Plans

Leveraging neural networks to convert floor plans into algorithmic designs

João David1, Inês Pereira2, Catarina Belém3, António Leitão4
1,2,4INESC-ID/Instituto Superior Técnico 3University of California Irvine
1,2,4{joaodavid|ines.pereira|antonio.menezes.leitao}@tecnico.ulisboa.pt 3cbelem@uci.edu

Algorithmic design enables architects to create building designs using parametric

algorithms, which can then be used in optimization workflows to enhance performance

across various criteria. Unfortunately, algorithmic design has a steep learning curve, and

it is difficult to convert existing designs to an algorithm-based representation. To address

this problem, we propose inverse algorithmic design to automatically generate a

building's algorithmic description from its digital representation. We focus on the

common case of floor plans represented in raster images, and we explore recent computer

vision techniques for floor plan interpretation. As part of our solution, we propose a new

floor plan reconstruction method and a process to generate algorithmic design programs

through metaprogramming. By leveraging prior knowledge of floor plan drafting

conventions, we generate programs that are both parametric and easy to comprehend.

Keywords: Computer Vision, Machine Learning, Algorithmic Design, Floor Plan

Reconstruction, Metaprogramming, Parametric Design.

INTRODUCTION
The architectural practice has come a long way

since its beginning. Nowadays, Computer-Aided

Drafting (CAD) and Building Information

Modeling (BIM) tools are essential parts of

architectural practice, enabling architects to draft

their designs more accurately and efficiently. Even

so, the traditional iterative design method suffers

from the inherent difficulty of modifying designs

once they have been defined (Jabi, 2013).

Algorithmic Design (AD) is a design paradigm

that entails the use of algorithms to create digital

representations of buildings (Caetano, Santos and

Leitão, 2020). On one hand, AD is useful because

the algorithmic steps can be defined in terms of

parameters, allowing the architect to quickly try

different variations of a given design just by

adjusting the values of those parameters.

Additionally, this parametric model of the design

can be coupled with evaluation functions and

optimization algorithms to automatically search

for the best design solution regarding one or

multiple performance aspects, such as daylight

availability, energy consumption, or construction

costs (Belém and Leitão, 2018). On the other

hand, AD requires architects to learn how to

depict buildings using algorithms, which is a

considerable shift in perspective for those who

come from a traditional background. Another

significant problem, particularly for renovations, is

that, currently, there is no easy way to convert

existing work into an algorithmic representation:

the algorithm would have to be written from

scratch, a time-consuming task requiring

specialized knowledge.

In this work, we propose Inverse Algorithmic

Design (IAD), a process to generate an AD

program from a digital representation of a

Volume 1 – Confluence – eCAADe 43 | 81

building. We focus on the interpretation of floor

plan images through Computer Vision (CV)

techniques and the use of metaprogramming to

generate the AD program. We also compare our

approach to one based on the extraction of basic

geometric entities from digital floor plan models.

RELATED WORK
IAD entails two main problems. One is the

interpretation of floor plan images, and the other

is the generation of equivalent algorithmic

representations.

Concerning the first problem, traditional

approaches usually make a set of assumptions

about the floor plans’ appearance and resort to

low-level image processing techniques to identify

the graphic elements. For example, Dosch et al

(2000) separate thick from thin lines, assuming

that only exterior walls are modeled by thick lines.

More recently, there has been a focus on

Machine Learning (ML) techniques for

recognizing floor plan images. Liu et al (2017)

propose a system to convert raster floor plans to

a vector format by using a neural network to

segment the image and find junction points, and

then formulate an Integer Linear Programming

(ILP) problem to build a vector representation of

the building. Their approach has three main

setbacks: only axis-aligned walls are considered,

wall thickness is discarded, and the formulated

ILPs may be unfeasible. Lv et al (2021) propose a

method for residential floor plan recognition and

3D model reconstruction. Unlike the previous

work, (1.) vectorization is performed by an

iterative process using segmented rooms, and (2.)

the authors propose a method to recover wall

thickness after vectorizing the results.

Other investigations try to improve the

segmentation models that are crucial for these

vectorization systems. Dodge, Xu and Stenger

(2017) explore the use of fully convolutional

networks with different strides for wall

segmentation. Zeng et al (2019) propose an

attention-inspired architecture for floor plan

images with direction-aware convolutional

kernels. Zhang et al (2020) improve on the results

by making the direction-aware kernels learnable

and by introducing an adversarial module

through a generative adversarial network

discriminator. Knechtel et al (2024) proposes a

graph-convolutional network to predict room

boundaries and their semantic labels.

There is also a large body of research on the

use of ML for building design reconstruction from

point clouds instead of architectural drawings.

However, as Schönfelder et al (2023) argue,

architectural drawings are more valuable for

accurate building reconstruction because they

provide additional information beyond what is

visible in point clouds. In their systematic review,

authors further emphasize the need for ML-based

studies to not only consider architectural

drawings but also to focus on modeling intricate

components, since they significantly contribute to

the overall building performance.

Regarding the second main problem of IAD,

i.e., the generation of an equivalent AD

representation, most research in this field

addresses the inference of generative grammar-

based systems, such as parametric L-systems

(Št'ava et al, 2010), probabilistic grammars (Talton

et al, 2012), shape grammars (Bokeloh, Wand and

Seidel, 2010), and set grammars (Wu et al, 2013).

Many of the strategies of grammar inference

involve shape decomposition, based on

similarities of the elements of the input dataset,

including symmetry detection. However, these

approaches were only tested on designs with

repeating elements and simple geometry that

were far from real-world complex designs.

The approach proposed by Leitão and Garcia

(2022) explores the design information stored in

CAD applications to quickly generate a low-level

non-parametric AD program that is isomorphic to

the digital design represented in the CAD tool.

This program is then mechanically transformed

under the guidance of a designer/programmer to

increase its legibility and parametricity.

82 | eCAADe 43 – Volume 1 – Confluence

Unfortunately, this second step still requires a

considerable amount of human effort, making it

an obstacle to its widespread adoption.

INVERSE ALGORITHMIC DESIGN
This section introduces IAD, our proposal for

generating an AD program from a building’s

digital representation (see figure 1). Our solution

is based on structured floor plan recognition (Liu

et al, 2017; Lv et al, 2021) and consists of two main

components: (1.) Floor plan recognition, which

detects and structures key elements in the input

image; and (2.) Floor plan reconstruction. which

converts this structured output into an AD format.

Recognition
Our recognition process involves two sequential

steps: segmentation, to classify image pixels

based on the architectural elements they

represent, and vectorization, to convert the pixel-

based segmentation into structured data.

Vectorization. Our method combines the

junction-based approach from Liu et al (2017) and

the iterative vectorization from Lv et al (2021). As

such, we require pixel-wise segmentation on the

input image (with walls, rooms, doors, etc.) and a

prediction of the position of the junction points.

Unlike Liu et al (2017), we discard semantics

regarding the junction types, allowing us to

reconstruct diagonal walls.

Similarly, we start by extracting the junction

points through heat map regression, which are

then filtered by retaining only the peak values. We

then go over all combinations of pairs of points

and, from the closest points to the farthest ones,

we check whether there is a large portion of wall

pixels in a thin section between the two points.

We consider that a wall exists between these two

points if the fraction of pixels in the direction of

the wall axis is greater than an empirically defined

threshold τw.

By detecting walls based on the closest pairs

of points first, we prevent walls from overlapping

junction points, which we consider the

foundational elements of the building's structure.

Additionally, for each point, we store the angle of

the candidate walls that have been tested. As

such, walls are never placed over junction points,

as the shortest wall must be tested first,

invalidating any possible longest wall in the same

direction. As the extracted points might not be

perfectly aligned, we define an angle tolerance

parameter τt. We also record the angle of placed

walls to avoid placing two walls that make a tight

angle according to a threshold τp. We set τw=0.75,

τp=67.5°, and τt=5° from empirical observation.

Unlike Lv et al‘s (2021) work, our method is

not capable of detecting curved walls, whereas

theirs approximates them with small segments.

This is not a concern, as curved walls are rare, and

approximating them with small segments would

only increase the number of points and

parameters in the reconstructed floor plan.

As for recovering wall thickness, we follow the

approach proposed by Lv et al (2021). For each

identified wall, an optimization process is run to

find which wall thickness is a better match to the

segmented image. The authors used Intersection

Over Union (IoU) as a fitness function; however, in

our experiments, IoU performs poorly on small

walls, as increasing wall thickness often boosts the

metric by capturing surrounding walls. Instead,

we use weighted subtraction between the

number of intersecting pixels (true positives—TP)

and the generated pixels that do not intersect the

segmentation results (false positives—FP):

fitness = λ1TP − λ2FP.

We set λ1=1 and λ2=1.1 so that we only grow

wall thickness as long as there are more true

positives than false positives, giving slightly more

importance to false positives when the amount of

both is very similar.

Segmentation. Our vectorization algorithm

requires a model capable of (1.) segmenting walls,

rooms, and structural and decorative elements,

and (2.) predicting junction points.

Volume 1 – Confluence – eCAADe 43 | 83

Figure 1

Overview of our

IAD proposal. The

recognition phase

is composed of

segmentation,

vectorization, and

semantics

recovery. The

reconstruction

phase defines

parameters from

shared values and

writes the final AD

program.

84 | eCAADe 43 – Volume 1 – Confluence

We use the model proposed by Kalervo et al

(2019), which employs the same ResNet-152-

based architecture (He et al, 2016) used in Raster-

to-Vector (Liu et al, 2017), and we train it on the

CubiCasa5K dataset (Kalervo et al, 2019). This

dataset supports three tasks: room type

prediction (including walls), icon prediction, and

junction point prediction. The model’s output

consists of 13+4+4 heat maps (wall, icon, and wall

element junctions), plus 12 segmentation maps

for room types and 11 for icons. Then, to convert

junction-point predictions into a list of candidate

points, we must set a confidence threshold t.

As our vectorization method is agnostic to

junction types, we merge all 13 heat maps into a

single one by taking their maximum values and

extract the junction points on the combined map.

Then, we followed the evaluation process in

Raster-to-Vector on the created heat map and

ignored the ground truth junction types. We

plotted the precision and recall for threshold

values t={0.05,0.1,0.2,...,1} and chose the best

point based on the F1-score. We chose t=0.2 with

an F1-score of 79.73%, corresponding to 78.14%

recall and 81.38 % precision.

Symbol classification
The next step in our IAD pipeline is enriching the

identified symbols with additional information. To

recover finer-grained information about symbols,

we apply multi-class classifiers to each identified

symbol. We start with the classification of door

types and their orientation, and then we explore

how to recover information regarding the

orientation of other symbols.

Doors. David and Leitão (2023) proposes a

method to classify doors in floor plan images:

they classify them based on its opening direction

(forward or reverse) and the position of its hinges

(left or right), yielding four possible classifications

for a normal swing door. The same rationale is

applied to double doors and doors that open in

both directions. For the remaining door types, no

information regarding their orientation is added.

We then integrate this door classifier into the

general floor plan recognition process. We find

the contours of the segmented wall openings and

approximate them with a rectangle. The start and

endpoints are extracted from the rectangles by

considering their longest sides. As doors are

embedded in walls and, at this point, their

orientation might not match perfectly, we first

embed them into their closest wall and use that

to correct the doors’ orientation. Then, the points

are ordered to maintain consistency with the

annotated images, and the rectangle is expanded

so that it can fit any type of door, including the

arc. Finally, the rectangle is used to extract a

cropped area from the original image, and the

trained model classifies it, yielding the door type.

Toilets and sinks. In this section, we focus on

recovering the orientation of other symbols,

focusing on toilets and sinks. The same approach

can be applied to other symbols, like furniture,

just by training the model with an adequate

dataset. We simply extract a rotated bounding

box from the segmentation contours, and we

recover their orientation by using a value between

0° and 359° to denote their angle.

For the toilets, we create a dataset using a

method similar to the one used for doors. By

analyzing the annotations in the CubiCasa5K

dataset, we note that toilet symbols include a

bounding box; thus, we extract the bounding

boxes’ points in the same order so that all images

have the same orientation. The final images are

similar, containing the symbol with its centroid at

the center and the same orientation. The images

are cropped into a square shape, considering the

longest side with an additional margin for more

context. The generated dataset contains 6894

images. Figure 2 shows examples of images

extracted from these datasets.

Volume 1 – Confluence – eCAADe 43 | 85

To label the data, we follow the classification

approach in RotNet, i.e., the training images are

rotated by a random number of degrees x that we

use as the class for the generated example. This

method is, however, inappropriate for the

validation and test datasets, as those would

become non-deterministic. For these datasets, we

generate all possible combinations of (image,

rotation). To speed up training, we randomly pick

a sample of 1000 combinations to use across all

epochs, rather than using all 4248 images after

splitting. As for transformations, we use random

cropping, color jittering, and horizontal flipping.

We simplify the rotation classification by

focusing on 45 ° rotations instead of 1-degree

rotations, leading to 8 classes instead of 360. This

assumption also reflects the vast majority of real

buildings, and it can be further refined using the

surrounding context, as toilets must be attached

to walls. We then train a ConvNeXt-Tiny using

cross-entropy loss and the Adam optimizer until

convergence.

We extracted the sinks likewise, generating

12983 images. Unlike toilet symbols, sinks contain

additional information indicating the type of sink.

We noticed that sinks installed in corners were

identified with a distinct “CornerSink” class, and

their orientation did not match the orientation of

the sinks of the remaining types. Out of the 12983

images, only 47 are labeled as corner sinks.

We tackle the data balancing problem by

following an oversampling approach so that the

minority class makes up 40% of the training data.

We chose this fraction as this class contains 9

possible orientations, while the other classes

correspond to a single orientation. We use the

same ConvNeXt-Tiny with the same 45°

granularity for classification and add one

additional class for corner sinks. As previously, we

use a smaller sample of 1000 examples during

validation and cross-entropy loss, and train the

model until the validation loss stops improving.

Algorithmic design generation
In this section, we cover our method of converting

the previously extracted elements (i.e., walls,

doors, windows, toilets, and sinks) into an

executable AD program.

Reconstruction and integration. Khepri (Leitão,

Castelo-Branco and Santos, 2019) is an AD tool

that allows one to create designs through

programs written in the Julia programming

language. One of its main advantages is that the

same program is portable across different tools,

not only CAD and BIM tools but also game

engines and analysis tools. We use Khepri to

easily map the extracted information about walls

and symbols to code. As our final program is

written in Julia, we use the same language to

implement our IAD system, thus enabling the use

of Julia’s metaprogramming capabilities.

Having introduced how we integrate the

recognition component and the reconstruction

component, we now cover how the

reconstruction is processed. The system receives

a path to an image as input, returning the

detected elements. We focus mainly on

parameterizing the structural elements, as those

are the most important for potential building

optimization. We start by analyzing which

parameters can be shared between elements.

Figure 2

Two images from

the toilets dataset

(top) and two

from the sinks

dataset (bottom).

86 | eCAADe 43 – Volume 1 – Confluence

As it is common for walls to share lines, even

when not adjacent, we start by extracting all

junction points and their respective x and y

components. Then, we cluster these components

together by defining a maximum distance for the

values within each cluster.

To create these clusters, we use a hierarchical

clustering algorithm with the complete-linkage

criterion, as it ensures that points inside a cluster

do not have a distance greater than an empirically

defined threshold. The points are replaced by

tuples containing the cluster index for each

component, and the mean value of each cluster is

used as the real value for the assigned

components. Figure 3 illustrates the clustering

process when applied to points.

Besides coordinates, we also cluster other

often-used values. As architectural drawings

usually use conventionalized wall thickness for

exterior walls and a different thickness for interior

walls, we create two clusters for wall thickness. We

also cluster door and window lengths, but in the

case of these two elements, we use a length-

difference threshold rather than a predefined

number of clusters.

One important aspect when defining these

thresholds is that they should be meaningful,

which is hard to achieve with raw pixel numbers.

We use the clustering process to estimate the

building’s scale based on thickness. Because

exterior walls are usually more consistent across

buildings, we pick the second wall thickness

cluster (the thickest walls) and calculate the

median pixel thickness.

These steps allow us to gather all

the necessary information to generate an

AD program capable of accurately

describing a building. To achieve this, we

leverage Julia’s metaprogramming capabilities.

Generated code. The generated program

consists of two main files: (1.) an auxiliary file used

by all generated programs that contains data

structures and utility functions to make the

generated code more readable, and (2.) the file

with the program generated for the specific input

floor plan.

We also generate lines and text labels to aid

with visualization. For each x value, we draw a

vertical line as well as its corresponding variable

name. The same process is applied to y values,

and text labels are also placed near each junction

point, identifying their corresponding variable.

This allows the user to easily identify where each

variable is being used, facilitating its

manipulation. Finally, we run a code formatter to

improve the readability of the program by

ensuring consistency with some common styling

conventions.

The automatic labeling step is important for

the next phase of the process, where a

designer/programmer analyses the generated

program and refactors it to make it more abstract

and more parametric. This phase explores the

semi-automatic refactoring techniques presented

by Leitão and Garcia (2022) to improve the

parametricity of the generated program without

introducing bugs. The resulting program can then

be used to generate the design variations needed

for the optimization of the design.

EVALUATION
Here, we present an evaluation of our solution,

starting with a quantitative evaluation of its

components, showing examples generated by our

program, and ending with a comparison between

our method and other approaches.

Our segmentation model is the same as the

one provided by the CubiCasa5K authors, but we

got slightly different results. The overall accuracy

and mean IoU for room segmentation are 82.5%

and 57.3%, respectively. For the icons, these

metrics are 97.5% and 55%.

Volume 1 – Confluence – eCAADe 43 | 87

We analyzed junction points without

considering their types, as our vectorization

method does not depend on them. The results on

the test set are consistent with those on the

validation set, maxing out the F1-score at 76.7%

with a detection threshold t=0.2.

For toilet classification, our model achieves

98.9% overall accuracy on the test set. As the data

is balanced, this value serves as a good indicator

of the model’s performance. For the sink dataset,

the model achieves 98.5% overall accuracy and

correctly classifies most corner sinks (minority

class) without affecting other classes. The model

achieves 95.8% accuracy for corner sinks and an

average of 98.6% for the remaining ones.

In Figure 4, we show a few generated

examples, all from the CubiCasa5K test set. All

examples were generated with the assumption

that the exterior walls are 35cm thick. We use

30cm for the maximum cluster distance. No

manual intervention was performed on the

resulting programs and 3D models.

We also compare the proposed solution with

that of a non-CV-based one, namely the Reverse

Algorithmic Design (RAD) (Leitão and Garcia,

2022), which directly explores the vectorial

information contained in CAD applications. The

RAD approach consists of two main steps: (1.)

Extraction, which uses metaprogramming to

generate a low-level, AD program from a CAD

design, and (2.) Refactoring, where a human

designer-programmer transforms the program to

improve its abstraction level and readability. The

initial program is not only very low-level but also

non-parametric, making the second step essential

for usability. This step is supported by a

refactoring tool to avoid introducing bugs during

the transformation and a traceability tool to map

program components to their corresponding

design elements. However, refactoring is still a

human-guided and time-consuming process,

often taking hours even for simple floor plans.

CONCLUSIONS AND FUTURE WORK
AD is an intrinsically parametric design paradigm

that enables iterative design and optimization.

However, it faces several challenges such as a

steep learning curve, a low adoption rate, and

difficulty in converting existing projects. To

address these issues, we propose IAD, a process

that automatically generates an AD program from

floor plan images using CV techniques and

metaprogramming.

The generated program is parametric and

tailored to a portable AD tool—Khepri. This

means that the same algorithmic description can

be used to generate the model in different tools,

including CAD and BIM tools. Among the

parameterizable program elements, we include

(1.) the position and axis of the walls, which can

be used to change the size of the rooms and

corridors, (2.) the size, direction, and type of the

Figure 3

The individual

components are

first clustered, and

an indexed

description of

each point is

created. The

points are then

generated by

assigning the

clusters’ mean to

their values, and

the points use the

clusters’ indices

directly.

Additionally, p1

and p2 are

switched on the

last step to

facilitate reading.

88 | eCAADe 43 – Volume 1 – Confluence

doors, and (3.) the position and size of the

windows. These parameters can then be used to

optimize the design, such as by maximizing

natural light in the rooms or minimizing the

construction materials.

Although our proposal advances the state of

the art, there is still room for improvement. One

obvious move would be to improve the models’

performance by finding better ML architectures or

training with more data. Our method assumes the

input floor plan is a raster image. However, floor

plans are often available in vector format.

Therefore, we plan to extend our method to

support vector floor plans, which can improve

measurement accuracy and simplify element

extraction. We also note that our vectorization

method cannot recognize curved walls or other

more complex geometries. Recognizing these

would be an interesting addition. Curved walls, for

instance, could be represented by parametric

curves such as arcs and Bézier curves.

DATA AVAILABILITY
The data and code are available in the following

repositories:

• https://github.com/joaocmd/CubiCasa5k

• https://github.com/joaocmd/Inverse-

Algorithmic-Design

ACKNOWLEDGMENTS
This work was supported by national funds

through Fundação para a Ciência e a Tecnologia

(FCT) with reference UIDB/50021/2020 (DOI:

10.54499/UIDB/50021/2020) and by the PhD

grant under contract with FCT, reference

2021.06302.BD (DOI: 10.54499/2021.06302.BD).

REFERENCES
Belém, C. and Leitão, A. (2018). ‘From design to

optimized design: An algorithmic-based

approach’, in Kępczyńska-Walczak, A. and

Bialkowski, S. (eds.) Computing for a Better

Tomorrow - Proceedings of the 36th eCAADe

Conference, 17-21 September, Lodz, Poland,

pp. 549-558.

Bokeloh, M., Wand, M. and Seidel, H.P. (2010). ’A

connection between partial symmetry and

inverse procedural modeling’, ACM

Transactions on Graphics, 29(4), pp. 1-10.

Caetano, I., Santos, L. and Leitão, A. (2020).

‘Computational design in architecture:

Defining parametric, generative, and

Figure 4

Input floor plans

(on the left) and

their

corresponding 3D

models created by

our system (on the

right).

Volume 1 – Confluence – eCAADe 43 | 89

algorithmic design’, Frontiers of Architectural

Research, 9(2), pp. 287-300.

David, J. and Leitão, A. (2023). ’Getting a handle

on floor plan analysis: Door classification in

floor plans and a survey on existing datasets’,

Architecture & Planning Journal, 28(3), art. 6.

Dodge, S., Xu, J. and Stenger, B. (2017). ‘Parsing

floor plan images’, in Proceedings of the 15th

IAPR MVA Conference, 8-12 May 2017,

Nagoya, Japan, pp. 358-361.

Dosch, P., Tombre, K., Ah-Soon, C. and Masini, G.

(2000). ‘A complete system for the analysis of

architectural drawings’, IJDAR, 3(2), pp. 102-

116.

He, K., Zhang, X., Ren, S. and Sun, J. (2016). ‘Deep

residual learning for image recognition’, in

Proceedings of the IEEE CVPR Conference, 27-

30 June 2016, Las Vegas, USA. pp. 770-778.

Jabi, W. (2013). Parametric design for

Architecture. 1st edn. United Kingdom:

Laurence King Publishing.

Knechtel, J., Rottmann, P., Haunert, J. H. and

Dehbi, Y. (2024). ‘Semantic floorplan

segmentation using self-constructing graph

networks’. Automation in Construction,

166(10), pp. 105649.

Kalervo, A., Ylioinas, J., Haikio, M., Karhu, A. and

Kannala, J. (2019). ‘CubiCasa5k: A dataset and

an improved multi-task model for floorplan

image analysis’, in Felsberg, M., Forssén, PE.,

Sintorn, I.M. and Unger, J. (eds.) Image

Analysis - Proceedings of the 21st SCIA, 11-13

June 2019, Norrköping, Sweden, pp. 28-40.

Leitão, A., Castelo-Branco, R. and Santos, G.

(2019). ‘Game of renders: The use of game

engines for architectural visualization’, in

Haeusler, M.H., Schnabel, M.A. and Fukuda, T.

(eds.) Intelligent & Informed - Proceedings of

the 24th CAADRIA, 15-18 April 2019,

Wellington, New Zealand, pp. 655-664.

Leitão, A. and Garcia, S. (2022). ‘Reverse

algorithmic design’, in Gero, J.S. (ed.) Design

Computing and Cognition’20, 14-16

December 2020. Atlanta, USA, pp. 317-328.

Liu, C., Wu, J., Kohli, P. and Furukawa, Y. (2017).

‘Raster-to-vector: Revisiting floorplan

transformation’, in Proceedings of the IEEE

ICCV Conference, 22-29 October 2017,

Venice, Italy, pp. 2195-2203.

Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C.,

Darrell, T. and Xie, S. (2022). ‘A ConvNet for

the 2020s’, in Proceedings of the IEEE/CVF

CVPR Conference, 18-24 June 2022, New

Orleans, USA, pp. 11976-11986.

Lv, X., Zhao, S., Yu, X. and Zhao, B. (2021).

‘Residential floor plan recognition and

reconstruction’, in Proceedings of the

IEEE/CVF CVPR Conference, 20-25 June 2021,

Nashville, USA, pp. 16717-16726.

Schönfelder, P., Aziz, A., Faltin, B. and König, M.

(2023). ‘Automating the retrospective

generation of As-is BIM models using

machine learning’, Automation in

Construction, 152(8), pp. 104937.

Št'ava, O., Beneš, B., Mĕch, R., Aliaga, G. and Kriš
tof, P. (2010) ‘Inverse procedural modeling by

automatic generation of L-systems’,

Computer graphics forum, 29(2), pp. 665-674.

Talton, J., Yang, L., Kumar, R., Lim, M., Goodman,

N. and Mĕch, R. (2012). ‘Learning design

patterns with Bayesian grammar induction’,

in Proceedings of the 25th ACM symposium on

UIST, 7-10 October 2012, Cambridge, USA,

pp. 63-74.

Wu, F., Yan, D.M., Dong, W., Zhang, X. and

Wonka, P. (2013) ‘Inverse procedural

modeling of facade layouts’, in

arXiv:1308.0419.

Zeng, Z., Li, X., Yu, Y.K. and Fu, C.W. (2019). ‘Deep

floor plan recognition using a multi-task

network with room-boundary-guided

attention’, in Proceedings of the IEEE/CVF

ICCV Conference, 27 October - 02 November

2019, Seoul, Korea (South), pp. 9096-9104.

Zhang, Y., He, Y., Zhu, S. and Di, X. (2020). ‘The

direction-aware, learnable, additive kernels

and the adversarial network for deep floor

plan recognition’, in arXiv:2001.11194.

90 | eCAADe 43 – Volume 1 – Confluence

