
Inverse Algorithm Design of Floor Plans 

Leveraging neural networks to convert floor plans into algorithmic designs 

João David1, Inês Pereira2, Catarina Belém3, António Leitão4 
1,2,4INESC-ID/Instituto Superior Técnico 3University of California Irvine 
1,2,4{joaodavid|ines.pereira|antonio.menezes.leitao}@tecnico.ulisboa.pt  3cbelem@uci.edu 

Algorithmic design enables architects to create building designs using parametric 

algorithms, which can then be used in optimization workflows to enhance performance 

across various criteria. Unfortunately, algorithmic design has a steep learning curve, and 

it is difficult to convert existing designs to an algorithm-based representation. To address 

this problem, we propose inverse algorithmic design to automatically generate a 

building's algorithmic description from its digital representation. We focus on the 

common case of floor plans represented in raster images, and we explore recent computer 

vision techniques for floor plan interpretation. As part of our solution, we propose a new 

floor plan reconstruction method and a process to generate algorithmic design programs 

through metaprogramming.  By leveraging prior knowledge of floor plan drafting 

conventions, we generate programs that are both parametric and easy to comprehend. 

Keywords: Computer Vision, Machine Learning, Algorithmic Design, Floor Plan 

Reconstruction, Metaprogramming, Parametric Design.

INTRODUCTION 
The architectural practice has come a long way 

since its beginning. Nowadays, Computer-Aided 

Drafting (CAD) and Building Information 

Modeling (BIM) tools are essential parts of 

architectural practice, enabling architects to draft 

their designs more accurately and efficiently. Even 

so, the traditional iterative design method suffers 

from the inherent difficulty of modifying designs 

once they have been defined (Jabi, 2013). 

Algorithmic Design (AD) is a design paradigm 

that entails the use of algorithms to create digital 

representations of buildings (Caetano, Santos and 

Leitão, 2020). On one hand, AD is useful because 

the algorithmic steps can be defined in terms of 

parameters, allowing the architect to quickly try 

different variations of a given design just by 

adjusting the values of those parameters. 

Additionally, this parametric model of the design 

can be coupled with evaluation functions and 

optimization algorithms to automatically search 

for the best design solution regarding one or 

multiple performance aspects, such as daylight 

availability, energy consumption, or construction 

costs (Belém and Leitão, 2018). On the other 

hand, AD requires architects to learn how to 

depict buildings using algorithms, which is a 

considerable shift in perspective for those who 

come from a traditional background. Another 

significant problem, particularly for renovations, is 

that, currently, there is no easy way to convert 

existing work into an algorithmic representation: 

the algorithm would have to be written from 

scratch, a time-consuming task requiring 

specialized knowledge. 

In this work, we propose Inverse Algorithmic 

Design (IAD), a process to generate an AD 

program from a digital representation of a 
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building. We focus on the interpretation of floor 

plan images through Computer Vision (CV) 

techniques and the use of metaprogramming to 

generate the AD program. We also compare our 

approach to one based on the extraction of basic 

geometric entities from digital floor plan models. 

RELATED WORK 
IAD entails two main problems. One is the 

interpretation of floor plan images, and the other 

is the generation of equivalent algorithmic 

representations.  

Concerning the first problem, traditional 

approaches usually make a set of assumptions 

about the floor plans’ appearance and resort to 

low-level image processing techniques to identify 

the graphic elements. For example, Dosch et al 

(2000) separate thick from thin lines, assuming 

that only exterior walls are modeled by thick lines. 

More recently, there has been a focus on 

Machine Learning (ML) techniques for 

recognizing floor plan images.  Liu et al (2017) 

propose a system to convert raster floor plans to 

a vector format by using a neural network to 

segment the image and find junction points, and 

then formulate an Integer Linear Programming 

(ILP) problem to build a vector representation of 

the building. Their approach has three main 

setbacks: only axis-aligned walls are considered, 

wall thickness is discarded, and the formulated 

ILPs may be unfeasible. Lv et al (2021) propose a 

method for residential floor plan recognition and 

3D model reconstruction. Unlike the previous 

work, (1.) vectorization is performed by an 

iterative process using segmented rooms, and (2.) 

the authors propose a method to recover wall 

thickness after vectorizing the results. 

Other investigations try to improve the 

segmentation models that are crucial for these 

vectorization systems. Dodge, Xu and Stenger 

(2017) explore the use of fully convolutional 

networks with different strides for wall 

segmentation. Zeng et al (2019) propose an 

attention-inspired architecture for floor plan 

images with direction-aware convolutional 

kernels. Zhang et al (2020) improve on the results 

by making the direction-aware kernels learnable 

and by introducing an adversarial module 

through a generative adversarial network 

discriminator. Knechtel et al (2024) proposes a 

graph-convolutional network to predict room 

boundaries and their semantic labels. 

There is also a large body of research on the 

use of ML for building design reconstruction from 

point clouds instead of architectural drawings. 

However, as Schönfelder et al (2023) argue, 

architectural drawings are more valuable for 

accurate building reconstruction because they 

provide additional information beyond what is 

visible in point clouds. In their systematic review, 

authors further emphasize the need for ML-based 

studies to not only consider architectural 

drawings but also to focus on modeling intricate 

components, since they significantly contribute to 

the overall building performance. 

Regarding the second main problem of IAD, 

i.e., the generation of an equivalent AD 

representation, most research in this field 

addresses the inference of generative grammar-

based systems, such as parametric L-systems 

(Št'ava et al, 2010), probabilistic grammars (Talton 

et al, 2012), shape grammars (Bokeloh, Wand and 

Seidel, 2010), and set grammars (Wu et al, 2013). 

Many of the strategies of grammar inference 

involve shape decomposition, based on 

similarities of the elements of the input dataset, 

including symmetry detection. However, these 

approaches were only tested on designs with 

repeating elements and simple geometry that 

were far from real-world complex designs. 

The approach proposed by Leitão and Garcia 

(2022) explores the design information stored in 

CAD applications to quickly generate a low-level 

non-parametric AD program that is isomorphic to 

the digital design represented in the CAD tool. 

This program is then mechanically transformed 

under the guidance of a designer/programmer to 

increase its legibility and parametricity. 
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Unfortunately, this second step still requires a 

considerable amount of human effort, making it 

an obstacle to its widespread adoption. 

INVERSE ALGORITHMIC DESIGN 
This section introduces IAD, our proposal for 

generating an AD program from a building’s 

digital representation (see figure 1). Our solution 

is based on structured floor plan recognition (Liu 

et al, 2017; Lv et al, 2021) and consists of two main 

components: (1.) Floor plan recognition, which 

detects and structures key elements in the input 

image; and (2.) Floor plan reconstruction. which 

converts this structured output into an AD format. 

Recognition 
Our recognition process involves two sequential 

steps: segmentation, to classify image pixels 

based on the architectural elements they 

represent, and vectorization, to convert the pixel-

based segmentation into structured data.  

 

Vectorization. Our method combines the 

junction-based approach from Liu et al (2017) and 

the iterative vectorization from Lv et al (2021). As 

such, we require pixel-wise segmentation on the 

input image (with walls, rooms, doors, etc.) and a 

prediction of the position of the junction points. 

Unlike Liu et al (2017), we discard semantics 

regarding the junction types, allowing us to 

reconstruct diagonal walls. 

Similarly, we start by extracting the junction 

points through heat map regression, which are 

then filtered by retaining only the peak values. We 

then go over all combinations of pairs of points 

and, from the closest points to the farthest ones, 

we check whether there is a large portion of wall 

pixels in a thin section between the two points. 

We consider that a wall exists between these two 

points if the fraction of pixels in the direction of 

the wall axis is greater than an empirically defined 

threshold τw.  

By detecting walls based on the closest pairs 

of points first, we prevent walls from overlapping 

junction points, which we consider the 

foundational elements of the building's structure. 

Additionally, for each point, we store the angle of 

the candidate walls that have been tested. As 

such, walls are never placed over junction points, 

as the shortest wall must be tested first, 

invalidating any possible longest wall in the same 

direction. As the extracted points might not be 

perfectly aligned, we define an angle tolerance 

parameter τt. We also record the angle of placed 

walls to avoid placing two walls that make a tight 

angle according to a threshold τp. We set τw=0.75, 

τp=67.5°, and τt=5° from empirical observation. 

Unlike Lv et al‘s (2021) work, our method is 

not capable of detecting curved walls, whereas 

theirs approximates them with small segments. 

This is not a concern, as curved walls are rare, and 

approximating them with small segments would 

only increase the number of points and 

parameters in the reconstructed floor plan. 

As for recovering wall thickness, we follow the 

approach proposed by Lv et al (2021). For each 

identified wall, an optimization process is run to 

find which wall thickness is a better match to the 

segmented image. The authors used Intersection 

Over Union (IoU) as a fitness function; however, in 

our experiments, IoU performs poorly on small 

walls, as increasing wall thickness often boosts the 

metric by capturing surrounding walls. Instead, 

we use weighted subtraction between the 

number of intersecting pixels (true positives—TP) 

and the generated pixels that do not intersect the 

segmentation results (false positives—FP):  

fitness = λ1TP − λ2FP. 

We set λ1=1 and λ2=1.1 so that we only grow 

wall thickness as long as there are more true 

positives than false positives, giving slightly more 

importance to false positives when the amount of 

both is very similar. 

 

Segmentation. Our vectorization algorithm 

requires a model capable of (1.) segmenting walls, 

rooms, and structural and decorative elements, 

and (2.) predicting junction points. 
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Figure 1 

Overview of our 

IAD proposal. The 

recognition phase 

is composed of 

segmentation, 

vectorization, and 

semantics 

recovery. The 

reconstruction 

phase defines 

parameters from 

shared values and 

writes the final AD 

program. 
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We use the model proposed by Kalervo et al 

(2019), which employs the same ResNet-152-

based architecture (He et al, 2016) used in Raster-

to-Vector (Liu et al, 2017), and we train it on the 

CubiCasa5K  dataset (Kalervo et al, 2019).  This 

dataset supports three tasks: room type 

prediction (including walls), icon prediction, and 

junction point prediction. The model’s output 

consists of 13+4+4 heat maps (wall, icon, and wall 

element junctions), plus 12 segmentation maps 

for room types and 11 for icons. Then, to convert 

junction-point predictions into a list of candidate 

points, we must set a confidence threshold t.  

As our vectorization method is agnostic to 

junction types, we merge all 13 heat maps into a 

single one by taking their maximum values and 

extract the junction points on the combined map.  

Then, we followed the evaluation process in 

Raster-to-Vector on the created heat map and 

ignored the ground truth junction types. We 

plotted the precision and recall for threshold 

values t={0.05,0.1,0.2,...,1} and chose the best 

point based on the F1-score. We chose t=0.2 with 

an F1-score of 79.73%, corresponding to 78.14% 

recall and 81.38 % precision. 

Symbol classification 
The next step in our IAD pipeline is enriching the 

identified symbols with additional information. To 

recover finer-grained information about symbols, 

we apply multi-class classifiers to each identified 

symbol. We start with the classification of door 

types and their orientation, and then we explore 

how to recover information regarding the 

orientation of other symbols. 

 

Doors. David and Leitão (2023) proposes a 

method to classify doors in floor plan images: 

they classify them based on its opening direction 

(forward or reverse) and the position of its hinges 

(left or right), yielding four possible classifications 

for a normal swing door. The same rationale is 

applied to double doors and doors that open in 

both directions. For the remaining door types, no 

information regarding their orientation is added. 

We then integrate this door classifier into the 

general floor plan recognition process. We find 

the contours of the segmented wall openings and 

approximate them with a rectangle. The start and 

endpoints are extracted from the rectangles by 

considering their longest sides. As doors are 

embedded in walls and, at this point, their 

orientation might not match perfectly, we first 

embed them into their closest wall and use that 

to correct the doors’ orientation. Then, the points 

are ordered to maintain consistency with the 

annotated images, and the rectangle is expanded 

so that it can fit any type of door, including the 

arc. Finally, the rectangle is used to extract a 

cropped area from the original image, and the 

trained model classifies it, yielding the door type. 

 

Toilets and sinks. In this section, we focus on 

recovering the orientation of other symbols, 

focusing on toilets and sinks. The same approach 

can be applied to other symbols, like furniture, 

just by training the model with an adequate 

dataset. We simply extract a rotated bounding 

box from the segmentation contours, and we 

recover their orientation by using a value between 

0° and 359° to denote their angle. 

For the toilets, we create a dataset using a 

method similar to the one used for doors. By 

analyzing the annotations in the CubiCasa5K  

dataset, we note that toilet symbols include a 

bounding box; thus, we extract the bounding 

boxes’ points in the same order so that all images 

have the same orientation.  The final images are 

similar, containing the symbol with its centroid at 

the center and the same orientation. The images 

are cropped into a square shape,  considering the 

longest side with an additional margin for more 

context. The generated dataset contains 6894 

images. Figure 2 shows examples of images 

extracted from these datasets. 
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To label the data, we follow the classification 

approach in RotNet, i.e., the training images are 

rotated by a random number of degrees x that we 

use as the class for the generated example. This 

method is, however, inappropriate for the 

validation and test datasets, as those would 

become non-deterministic. For these datasets, we  

generate all possible combinations of (image, 

rotation). To speed up training, we randomly pick 

a sample of 1000 combinations to use across all 

epochs, rather than using all 4248 images after 

splitting. As for transformations, we use random 

cropping, color jittering, and horizontal flipping. 

We simplify the rotation classification by 

focusing on 45 ° rotations instead of 1-degree 

rotations, leading to 8 classes instead of 360. This 

assumption also reflects the vast majority of real 

buildings, and it can be further refined using the 

surrounding context, as toilets must be attached 

to walls. We then train a ConvNeXt-Tiny using 

cross-entropy loss and the Adam optimizer until 

convergence. 

We extracted the sinks likewise, generating 

12983 images. Unlike toilet symbols, sinks contain 

additional information indicating the type of sink. 

We noticed that sinks installed in corners were 

identified with a distinct “CornerSink” class, and 

their orientation did not match the orientation of 

the sinks of the remaining types. Out of the 12983 

images, only 47 are labeled as corner sinks. 

We tackle the data balancing problem by 

following an oversampling approach so that the 

minority class makes up 40% of the training data. 

We chose this fraction as this class contains 9 

possible orientations, while the other classes 

correspond to a single orientation. We use the 

same ConvNeXt-Tiny with the same 45° 

granularity for classification and add one 

additional class for corner sinks. As previously, we 

use a smaller sample of 1000 examples during 

validation and cross-entropy loss, and train the 

model until the validation loss stops improving.  

Algorithmic design generation 
In this section, we cover our method of converting 

the previously extracted elements (i.e., walls, 

doors, windows, toilets, and sinks) into an 

executable AD program. 

 

Reconstruction and integration. Khepri (Leitão, 

Castelo-Branco and Santos, 2019) is an AD tool 

that allows one to create designs through 

programs written in the Julia programming 

language. One of its main advantages is that the 

same program is portable across different tools, 

not only CAD and BIM tools but also game 

engines and analysis tools. We use Khepri to 

easily map the extracted information about walls 

and symbols to code. As our final program is 

written in Julia, we use the same language to 

implement our IAD system, thus enabling the use 

of Julia’s metaprogramming capabilities. 

Having introduced how we integrate the 

recognition component and the reconstruction 

component, we now cover how the 

reconstruction is processed. The system receives 

a path to an image as input, returning the 

detected elements. We focus mainly on 

parameterizing the structural elements, as those 

are the most important for potential building 

optimization. We start by analyzing which 

parameters can be shared between elements. 

Figure 2 

Two images from 

the toilets dataset 

(top) and two 

from the sinks 

dataset (bottom). 
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As it is common for walls to share lines, even 

when not adjacent, we start by extracting all 

junction points and their respective x and y 

components. Then, we cluster these components 

together by defining a maximum distance for the 

values within each cluster. 

To create these clusters, we use a hierarchical 

clustering algorithm with the complete-linkage 

criterion, as it ensures that points inside a cluster 

do not have a distance greater than an empirically 

defined threshold. The points are replaced by 

tuples containing the cluster index for each 

component, and the mean value of each cluster is 

used as the real value for the assigned 

components. Figure 3 illustrates the clustering 

process when applied to points. 

Besides coordinates, we also cluster other 

often-used values. As architectural drawings 

usually use conventionalized wall thickness for 

exterior walls and a different thickness for interior 

walls, we create two clusters for wall thickness. We 

also cluster door and window lengths, but in the 

case of these two elements, we use a length-

difference threshold rather than a predefined 

number of clusters. 

One important aspect when defining these 

thresholds is that they should be meaningful, 

which is hard to achieve with raw pixel numbers. 

We use the clustering process to estimate the 

building’s scale based on thickness. Because 

exterior walls are usually more consistent across 

buildings, we pick the second wall thickness 

cluster (the thickest walls) and calculate the 

median pixel thickness.  

These steps allow us to gather all 

the necessary information to generate an 

AD program capable of accurately 

describing a building. To achieve this, we 

leverage Julia’s metaprogramming capabilities. 

Generated code. The generated program 

consists of two main files: (1.) an auxiliary file used 

by all generated programs that contains data 

structures and utility functions to make the 

generated code more readable, and (2.) the file 

with the program generated for the specific input 

floor plan.  

We also generate lines and text labels to aid 

with visualization. For each x value, we draw a 

vertical line as well as its corresponding variable 

name. The same process is applied to y values, 

and text labels are also placed near each junction 

point, identifying their corresponding variable. 

This allows the user to easily identify where each 

variable is being used, facilitating its 

manipulation. Finally, we run a code formatter to 

improve the readability of the program by 

ensuring consistency with some common styling 

conventions. 

The automatic labeling step is important for 

the next phase of the process, where a 

designer/programmer analyses the generated 

program and refactors it to make it more abstract 

and more parametric. This phase explores the 

semi-automatic refactoring techniques presented 

by Leitão and Garcia (2022) to improve the 

parametricity of the generated program without 

introducing bugs. The resulting program can then 

be used to generate the design variations needed 

for the optimization of the design. 

EVALUATION 
Here, we present an evaluation of our solution, 

starting with a quantitative evaluation of its 

components, showing examples generated by our 

program, and ending with a comparison between 

our method and other approaches. 

Our segmentation model is the same as the 

one provided by the CubiCasa5K authors, but we 

got slightly different results. The overall accuracy 

and mean IoU for room segmentation are 82.5% 

and 57.3%, respectively. For the icons, these 

metrics are 97.5% and 55%. 
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We analyzed junction points without 

considering their types, as our vectorization 

method does not depend on them. The results on 

the test set are consistent with those on the 

validation set, maxing out the F1-score at 76.7% 

with a detection threshold t=0.2. 

For toilet classification, our model achieves 

98.9% overall accuracy on the test set. As the data 

is balanced, this value serves as a good indicator 

of the model’s performance. For the sink dataset, 

the model achieves 98.5% overall accuracy and 

correctly classifies most corner sinks (minority 

class) without affecting other classes. The model 

achieves 95.8% accuracy for corner sinks and an 

average of 98.6% for the remaining ones. 

In Figure 4, we show a few generated 

examples, all from the CubiCasa5K test set. All 

examples were generated with the assumption 

that the exterior walls are 35cm thick. We use 

30cm for the maximum cluster distance. No 

manual intervention was performed on the 

resulting programs and 3D models.  

We also compare the proposed solution with 

that of a non-CV-based one, namely the Reverse 

Algorithmic Design (RAD) (Leitão and Garcia, 

2022), which directly explores the vectorial 

information contained in CAD applications. The 

RAD approach consists of two main steps: (1.) 

Extraction, which uses metaprogramming to 

generate a low-level, AD program from a CAD 

design, and (2.) Refactoring, where a human 

designer-programmer transforms the program to 

improve its abstraction level and readability. The 

initial program is not only very low-level but also 

non-parametric, making the second step essential 

for usability. This step is supported by a 

refactoring tool to avoid introducing bugs during 

the transformation and a traceability tool to map 

program components to their corresponding 

design elements. However, refactoring is still a 

human-guided and time-consuming process, 

often taking hours even for simple floor plans. 

CONCLUSIONS AND FUTURE WORK 
AD is an intrinsically parametric design paradigm 

that enables iterative design and optimization. 

However, it faces several challenges such as a 

steep learning curve, a low adoption rate, and 

difficulty in converting existing projects. To 

address these issues, we propose IAD, a process 

that automatically generates an AD program from 

floor plan images using CV techniques and 

metaprogramming.  

The generated program is parametric and 

tailored to a portable AD tool—Khepri. This 

means that the same algorithmic description can 

be used to generate the model in different tools, 

including CAD and BIM tools. Among the 

parameterizable program elements, we include 

(1.) the position and axis of the walls, which can 

be used to change the size of the rooms and 

corridors, (2.) the size, direction, and type of the 

Figure 3 

The individual 

components are 

first clustered, and 

an indexed 

description of 

each point is 

created. The 

points are then 

generated by 

assigning the 

clusters’ mean to 

their values, and 

the points use the 

clusters’ indices 

directly. 

Additionally, p1 

and p2 are 

switched on the 

last step to 

facilitate reading. 
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doors, and (3.) the position and size of the 

windows. These parameters can then be used to 

optimize the design, such as by maximizing 

natural light in the rooms or minimizing the 

construction materials. 

Although our proposal advances the state of 

the art, there is still room for improvement. One 

obvious move would be to improve the models’ 

performance by finding better ML architectures or 

training with more data. Our method assumes the 

input floor plan is a raster image. However, floor 

plans are often available in vector format. 

Therefore, we plan to extend our method to 

support vector floor plans, which can improve 

measurement accuracy and simplify element 

extraction. We also note that our vectorization 

method cannot recognize curved walls or other 

more complex geometries. Recognizing these 

would be an interesting addition. Curved walls, for 

instance, could be represented by parametric 

curves such as arcs and Bézier curves. 

DATA AVAILABILITY 
The data and code are available in the following 

repositories: 

• https://github.com/joaocmd/CubiCasa5k

• https://github.com/joaocmd/Inverse-

Algorithmic-Design
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