

ALGORITHMIC DESIGN EXPLAINED

Decomposing parametric 3D problems into 2D visual illustrations

RENATA CASTELO-BRANCO 1 and INÊS CAETANO2 and ANTÓ-
NIO LEITÃO3
1,2,3INESC-ID, Instituto Superior Técnico, Universidade de Lisboa.
2BUILT CoLAB
1renata.castelo.branco@tecnico.ulisboa.pt, ORCID: 0001-9965-9558
2ines.caetano@tecnico.ulisboa.pt, ORCID: 0003-3178-7785
3antonio.menezes.leitao@tecnico.ulisboa.pt, ORCID: 0001-7216-4934

Abstract. Algorithmic Design (AD) is a promising approach that
merges two distinct processes - design thinking and computational
thinking. However, it requires converting design concepts into
algorithmic descriptions, which not only deviates from architecture's
visual nature, but also tends to result in unstructured programs that are
difficult to understand. Sketches or diagrams can help explain AD
programs by capitalizing on their geometric nature, but they rapidly
become outdated as designs progress. In ongoing research, an automatic
illustration system was proposed to reduce the effort associated with
updating 2D diagrams as ADs evolve. This paper discusses the ability
of this system to improve the comprehension of AD programs that
represent complex 3D architectural structures. To understand how to
best explain parametric 3D models using 2D drawings, this research
explores problem decomposition techniques, applying them in the
visual documentation of two case studies, where illustration aids
different comprehension scenarios: illustrating for future use, and
illustrating while designing as part of the AD process.

Keywords. Algorithmic Design, Automatic Illustration, Design
Documentation, Design Representation.

1. Introduction

Algorithmic Design (AD) defines architectural designs through algorithms (Gerber &
Ibañez, 2014), merging two very distinct but complementary processes, design
thinking and computational thinking (Kelly & Gero, 2021). In doing so, AD increases
design flexibility and reduces the effort required to explore several design ideas (Burry,
2013). Besides, AD can be coupled with analysis and simulation tools, facilitating the
search for more sustainable and cost-efficient design solutions (Nguyen et al., 2014).

Despite AD’s numerous advantages (Peters, 2013), the conversion of design
thinking into computer programs (Woodbury, 2010) tends to result in unstructured

ACCELERATED DESIGN, Proceedings of the 29th International Conference of the Association for Computer-Aided Architec-

tural Design Research in Asia (CAADRIA) 2024, Volume 3, 9-18. © 2024 and published by the Association for Computer-

Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.

mailto:1renata.castelo.branco@tecnico.ulisboa.pt

10 R. CASTELO-BRANCO, I. CAETANO AND A. LEITÃO

products (Davis et al., 2011). The problem is aggravated with programs representing
extensive 3D projects handled by multiple colleagues. Therefore, in addition to the
challenging task of using algorithms to represent design concepts, members of the
development team also struggle to understand the structure and behaviour of the AD
programs developed, by others or by themselves in the past. In fact, comprehending
programs is so central to the programming task that we spend more time reading code
than writing it (Martin, 2008).

This paper extends previous research on the comprehension of AD programs that
represent parametric architectural structures. It explores problem decomposition
techniques to find the best strategies to visually explain these structures using static 2D
drawings, while assessing the ability of an automatic illustration system to improve the
comprehension of the corresponding AD programs.

1.1. DOCUMENTATION

Computer science addresses the program comprehension issue through textual
documentation that explains the programs' structure and behaviour. Sadly, despite its
importance for software maintenance, documentation is a dreadfully tiresome task
often avoided by programmers (Bass et al., 2012). This has motivated the creation of
automatic documentation tools (Allamanis et al., 2016; Iyer et al., 2016), which
essentially translate algorithms into textual descriptions.

Nevertheless, AD often represents geometric concepts that are better expressed
through sketches or diagrams rather than text (Self, 2019). Including these means of
expression in AD documentation, particularly the drawings architects do during the
creative process, is essential for a proper understanding of the architects’ intentions
toward their ADs. We can capitalize on the generated model, overlaying labels to
visually illustrate parametric dimensions (Kelly et al., 2015). However, this is but a
small part of the algorithmic logic in need of comprehension aid.

This belief triggered the creation of tools that allow for the integration of imagery
in AD programs, serving as visual documentation (Castelo-Branco et al., 2022;
Castelo-Branco & Leitão, 2022). Click or tap here to enter text.However, using hand-
made drawings as documentation also has downsides; the most serious being that they
rapidly become outdated as the design evolves.

1.2. AUTOMATIC ILLUSTRATION

Just as it happened with textual documentation, automation can alleviate the
shortcomings of visual documentation. Castelo-Branco & Leitão (2023) proposed an
automatic illustration system for AD that generates computer-made geometric
illustrations explaining relevant aspects of the algorithmic description. Their
envisioned workflow is for architects to generate illustrations with as little extra work
as possible, and then automatically update them whenever changes are made to the
AD. The illustration system promotes the decomposition and simplification of complex
problems into smaller, manageable bundles of information, with a focus on 2D
geometric illustrations. However, it has, thus far, only been used for the creation of
proof-of-concept examples. The decomposition of large-scale and/or complex
architectural solutions raises several other questions, which will be addressed next.

11 ALGORITHMIC DESIGN EXPLAINED

1.3. PROBLEM DECOMPOSITION

Architectural solutions are intrinsically 3D, thus posing some challenges to their textual
or even 2D representation. Although the production technical drawings (such as plans
and sections) allow architects to represent 3D elements through 2D descriptions with
some rigor, the effort involved becomes unfeasible when the designs do not follow
clear patterns of symmetry and orthogonality. The potential of AD to explore less
conventional and more complex solutions only worsens the problem.

This research is inspired by the typical architectural design workflow and is based
on the decomposition of the design problem into independent parts that can be
described in 2D line-based schematics. This allows designers to expose a complicated
design idea in simpler terms, by scaling down the complexity of the algorithmic
description through incremental explanations. For such, we explore the capabilities of
the automatic illustration system proposed in (Castelo-Branco & Leitão, 2023) to
explain complex 3D shapes using 2D drawings.

2. Automatic Illustration Application

The above-mentioned illustration system, hereby referred to as illustrator, is evaluated
in two architectural case studies. The evaluation focuses on its ability to improve the
comprehension of (1) the AD programs’ structure and behaviour; (2) their relationship
with the corresponding 3D models; and (3) the impact of each design parameter on the
3D models’ shape. The two case studies are parametric interpretations of existing
buildings – the Al-Bahar Towers and the Lusail Stadium. Both were modelled using
the Khepri AD tool running on top of the Julia programming language, to which the
automatic illustration system is coupled.

Figure 1. Al-Bahar Towers parametric interpretation variations.

2.1. AL-BAHAR TOWERS

The Al-Bahar towers in Abu Dhabi (Figure 1), UAE, designed by the Aedas studio,
have one of the largest interactive sun-shading façade systems. To adapt to the local

12 R. CASTELO-BRANCO, I. CAETANO AND A. LEITÃO

climate and reduce heat gains and glare, the two office towers were covered with a
shading system inspired by the Islamic traditional wood-lattice screens (mashrabiya)
that reacts to sun exposure by opening and closing its 1000 panels. The following
analysis will address the parametric modelling of the building slabs and façade lattices.

2.1.1. Slabs

The building floor plan is shaped like an isosceles triangle with rounded corners, whose
diameter varies across the building’s height. In this AD interpretation, the shape of the
slabs is described through a circular sinusoid that allows for multiple shape variations
and contour deformations (see Figure 2).

Figure 2. Slab illustration with different shapes (number of sinusoid cycles - npc parameter) and
contour deformations (a 0 to 1 factor affects the sinusoid’s amplitude - △rf parameter).

Figure 3. Slab function algorithm and illustration.

Figure 3 presents the algorithm describing the slabs’ shape and the illustration

13 ALGORITHMIC DESIGN EXPLAINED

produced. Upon calling the illustrator (with the annotation @illustrator), the algorithm
complements the generation of the slab’s contour with a descriptive explanation of its
parameters. The resulting illustration visually explains (1) the creation, using polar
coordinates (function pol_pts), of spatial locations around point p, at a radial distance
of r+sind(△rf*r,npc,0,β) and angular distance β; and (2) the materialization of such
coordinates by passing a spline curve through them (function slab_contour).

Although we use the illustrator on a specific function call, this function typically
calls another, and that one calls another, and so on, creating a cascade of function calls
- the call chain. To control the depth in the call chain up until which the illustrator will
illustrate, users may modify the call_depth parameter. In this case, we only wanted the
illustrator to access one level, since slab_contour calls pol_pts within it, but we also
call it, separately, for illustration purposes with a smaller number of points.

Finally, to include additional illustrations, other than the default ones provided by
the illustrator, we can use the annotation @illustrator_plus. Figure 3 exemplifies this
functionality with the addition of the imaginary circle around which the polar
sinusoidal coordinates develop.

2.1.2. Façade Lattices

The building’s façade lattices are mobile three-point stars that open and close in
response to sunlight. In this AD interpretation, these elements have a variable number
of vertices and aperture factors (Figure 4).

Figure 4. Illustration of the lattice with different number of vertices (n in pol_pts) and f factors
controlling the lattice’s aperture.

Figure 5 presents the algorithm that shapes the lattice and its illustration. In this
case, we can identify a cascade of at least 3 function calls: lattice calls mid_locs and
mid_locs calls mid_loc. The illustrator discriminates each function call by using
different colours in the illustration. Moreover, to prevent cluttery illustrations, it also
decreases the opacity level of the annotations as it goes down the call chain.

Upon calling the illustrator with the call_depth set to 3, we obtain the lattice’s star-
shape contours together with a three-color illustration scheme. In this scheme, the
illustrations in purple (relative to the mid_locs function) represent the star's outer point
pairs (v1 and v2), which are used to calculate the intermediate locations m, and then
the intermediate locations between the multiple ms and the centre c, given factor f
(computations made by the mid_loc function and represented in yellow). The
illustrations in blue represent the centre, inner and outer points of the lattice’s star-shape
(in and out pairs over which polygons are mapped).

14 R. CASTELO-BRANCO, I. CAETANO AND A. LEITÃO

In this case study, we showed the illustrator's default operations, which recognize
and illustrate Julia primitives (such as array comprehensions) and Khepri primitives
(such as vpol or intermediate_loc). Nevertheless, the default illustrations might be too
general to properly explain any given case. As such, users can also create custom
illustrations that explain specific functions. In the following case study, we devise
custom illustrations to document the program and support the modelling process.

Figure 5. Lattice algorithm and illustration.

2.2. LUSAIL STADIUM

The Lusail Stadium, designed by Foster + Partners for the 2022 FIFA World Cup,
resembles a golden cup with perforations that mirror the inside truss structure and
control the amount of natural light passing through. Matching the sinuous movement
of the facade, the pringle-shaped roof structure is composed of plastic membranes
distributed in a radial pattern. Figure 6 shows two variations allowed by our AD
interpretation of the stadium. The ensuing analysis will elaborate on the modelling of
the façade supporting truss and the roof point matrix (see Figure 7).

Figure 6. Lusail Stadium parametric variations.

15 ALGORITHMIC DESIGN EXPLAINED

2.2.1. Truss Structure

To create the planar Warren truss with verticals that sustains the façade, as shown in
Figure 7 (left), we implemented the planar_warren_truss function (Figure 8 top) that
receives two sets of locations (as and bs). Based on the given locations, the function
creates truss bars according to the proposed layout. Along with the function, we defined
a custom illustration to place numbered labels on the provided sets of points and to
replace the truss_bar instruction with a line.

Figure 7. Details of the planar Warren truss structure holding up the façade (left) and the radial
plastic membrane distribution on the roof (right).

Figure 8. Planar Warren truss algorithm and illustration of its successive versions.

As shown in Figure 8 (top), we started by connecting all as with the following as
and all bs with the following bs to create the upper and lower frames. We then
connected all as to all bs to create the verticals; and all as to following bs, and the
following bs to their ensuing as to create the slanted bars. The result, however, was not
the intended one, with the illustration clearly showing that there were too many bars
(Figure 8 bottom left) and that we should only connect odd as to even bs. After
rewriting the algorithm (by replacing the red lines), we obtained the intended truss
(Figure 8 bottom right).

16 R. CASTELO-BRANCO, I. CAETANO AND A. LEITÃO

2.2.2. Roof Matrix

The plastic membranes composing the roof have one of two shapes: diamonds in the
inner rows and triangles in the rims (see Figure 7 right). We developed an algorithm to
produce the roof point matrix and two other algorithms to produce each type of
membrane based on either 3 or 4 of these points. However, with the first point
configuration we developed for the matrix, it was difficult to identify the sequences of
3 and 4 points required for each membrane. Figure 9B shows the erroneous
connections between the points of the original matrix.

To understand this problem, we developed a custom illustration for point matrices,
which exposes the matrix’s structure through numbered rows and columns (Figure
9A). With this visual aid, we could understand how to rearrange the matrix's columns
to get the correct diamonds and triangle points. The result after modifying the matrix
is illustrated in Figure 9C and the resulting point connections are shown in Figure 9D.

Figure 9. Roof point matrix illustration and application of polygons representing the membranes.

2.3. DISCUSSION

Each case study evaluated the illustrator in two scenarios: supporting comprehension
and debug during the development of the algorithms and explaining them after
development. To do so, we elaborated on how problem decomposition techniques can
help document 3D elements in 2D illustrations.

For example, in the Al-Bahar towers, the complex façade pattern problem can be
decomposed in three steps: (1) defining the lattice shape, (2) defining the façade point
matrix, and (3) mapping the lattices onto the 3D matrix. The illustration presented here
focused on the first step, where the problem is further decomposed into 3 functions.
The descriptive scheme generated by the illustrator explains how, from an aperture
factor and a set of vertices provided for the lattices contour, we can form a star-shaped
lattice. More specifically, the illustration exposes the role of each of the 3 functions in
this task: calculating one intermediate location, calculating multiple intermediate
locations, and combining those location with the original vertices.

Naturally, limiting the illustrations to 2 dimensions leaves several AD
computations out of the scope. In the Al-Bahar example, we are ignoring the 3D

17 ALGORITHMIC DESIGN EXPLAINED

volumetry of the lattice, which is later achieved by adding to its central point a vector
normal to the lattice surface plane. A second scheme could have been developed for
this modified version of the lattice, depicting this additional computation. Withal, we
argue that this is a rather typical design workflow: starting with small and simplified
versions of the problem (in this case, a 2D lattice made of polygons) and eventually
progressing to more refined and complex versions (a 3D lattice with sets of extruded
surfaces instead of polygons).

The same applies to the slab case. Further developments to the slab algorithm
transform the closed spline into an extruded 3D object and affect the slabs' radius with
another sinusoid function responsible for the building's curvature along its height.

The Lusail Stadium roof structure is initially processed with polygons as well, for
performance and debugging sake, but the final plastic membranes were achieved by
lofting a series of curves. Applying the latter algorithms to the original point matrix
would have likely yielded several modelling failure errors.

The truss case in the Lusail Stadium bypassed this workflow by starting off directly
with the final 3D geometry (a truss bar) and defining the illustration as line depictions
instead. It is, however, also resorting to a simplification of the problem by developing
the algorithm over a simple 2D truss test. As can be seen in Figure 7 (left), the Planar
Warren truss algorithm is later applied to more elaborate sets of locations in space.

In sum, both examples revealed the illustrator's capabilities to automate the
documentation task, reducing the time and effort spent in creating descriptive schemes
and in adjusting them as the AD evolves. They also demonstrated that there can hardly
ever be a one-size-fits-all solution. Therefore, the illustrator allows users to extend its
capabilities as needed. When reasonably abstract, these custom illustrations may then
be integrated in the illustrator, enriching the existing domain library for future use.

3. Conclusion

This paper extended research on the comprehension of Algorithmic Design (AD)
programs representing parametric 3D architectural structures, by combining program
decomposition techniques with the creation of semi-automatic 2D drawings. It applied
an automatic illustration system (the illustrator) to visually document two case studies.
As is typical in design processes, to reduce the complexity of documenting 3D
elements, problem decomposition techniques are used to break down the
tridimensionality of these elements into simpler hierarchical 2D parts. The case studies
assessed the capability of the illustrator to document each of these parts in different
stages of the design process, particularly during and after design exploration - to boost
comprehension while developing and to enhance comprehension in future use - as well
as its capacity to adapt to the specific requirements of each design. In the latter case,
the paper elaborated on how the illustration features can be extended or customized.

Although still under development, the illustrator has proved to be advantageous for
automating visual documentation tasks, creating, and adapting 2D schemes that explain
AD programs. We are currently conducting user studies to assess the impact of
illustrations on the comprehension of AD programs. Future developments for the
automatic illustration system include the extension of the operations currently
supported and the program patterns recognized. The more patterns the illustrator is

https://www.thesaurus.com/browse/therefore

18 R. CASTELO-BRANCO, I. CAETANO AND A. LEITÃO

taught to recognize, the more design details it will know how to illustrate, and less work
is required on the user's part. We also plan to explore the creation of 3D illustrations.

Acknowledgements

This work was supported by national funds of Fundação para a Ciência e a Tecnologia
(FCT) with references UIDB/50021/2020 (DOI:10.54499/UIDB/50021/2020) and
DFA/BD/4682/2020.

References

Allamanis, M., Peng, H., & Sutton, C. (2016). A convolutional attention network for extreme

summarization of source code. In Proceedings of the 33rd International Conference on

Machine Learning, 48, 2091–2100. https://proceedings.mlr.press/v48/allamanis16.html

Bass, L., Kazman, R., & Clements, P. (2012). Software Architecture in Practice (3rd ed.).

Pearson Education (US).

Burry, M. (2013). Scripting Cultures: Architectural Design and Programming. In

Architectural Design Primer. John Wiley & Sons.

https://doi.org/10.1002/9781118670538

Castelo-Branco, R., Caetano, I., Pereira, I., & Leitão, A. (2022). Sketching Algorithmic

Design. Journal of Architectural Engineering, 28(2).

https://doi.org/10.1061/(ASCE)AE.1943-5568.0000539

Castelo-Branco, R., & Leitão, A. (2022). Comprehending Algorithmic Design. In Computer-

Aided Architectural Design Futures - Design Imperatives: The future is now! (pp. 15–35).

Springer, Cham. https://doi.org/10.1007/978-981-19-1280-1_2

Castelo-Branco, R., & Leitão, A. (2023). Illustrating algorithmic design. In Computer-Aided

Architectural Design. INTERCONNECTIONS: Co-computing Beyond Boundaries (Issue

1819, pp. 36–50). Springer, Cham. https://doi.org/10.1007/978-3-031-37189-9_3

Davis, D., Burry, J., & Burry, M. (2011). Understanding visual scripts: Improving

collaboration through modular programming. International Journal of Architectural

Computing, 09(04), 361–376. https://doi.org/10.1260/1478-0771.9.4.361

Gerber, D., & Ibañez, M. (Eds.). (2014). Paradigms in Computing: Making, Machines, and

Models for Design Agency in Architecture. eVolo Press.

Iyer, S., Konstas, I., Cheung, A., & Zettlemoyer, L. (2016). Summarizing source code using a

neural attention model. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, 1, 2073–2083. https://doi.org/10.18653/v1/P16-1195

Kelly, N., & Gero, J. S. (2021). Design thinking and computational thinking: a dual process

model for addressing design problems. Design Science, 7, e8.

https://doi.org/10.1017/dsj.2021.7

Kelly, T., Wonka, P., & Mueller, P. (2015). Interactive Dimensioning of Parametric Models.

Computer Graphics Forum, 34(2), 117–129. https://doi.org/10.1111/cgf.12546

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship. Pearson.

Nguyen, A.-T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization

methods applied to building performance analysis. Applied Energy, 113, 1043–1058.

https://doi.org/10.1016/j.apenergy.2013.08.061

Peters, B. (2013). Computation works: the Building of Algorithmic Thought. Architectural

Design: Computation Works: The Building of Algorithmic Thought, 222(02), 8–16.

https://doi.org/10.1002/ad.1545

Self, J. A. (2019). Communication through design sketches: Implications for stakeholder

interpretation during concept design. Design Studies, 63, 1–36.

https://doi.org/10.1016/j.destud.2019.02.003

Woodbury, R. (2010). Elements of Parametric Design. Routledge.

