
1

This version of the contribution has been accepted for publication, after peer
review but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
http://dx.doi.org/10.1007/978-3-031-37189-9 3. Use of this Accepted Version is
subject to the publisher’s Accepted Manuscript terms of use.

http://dx.doi.org/10.1007/978-3-031-37189-9_3


Illustrating Algorithmic Design

Renata Castelo-Branco[0001−9965−9558] and António Leitão[0001−7216−4934]

INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal
{renata.castelo.branco,antonio.menezes.leitao}@tecnico.ulisboa.pt

Abstract. Architectural design is strongly based on visual and spatial
reasoning, which is not easy to translate into algorithmic descriptions
and, eventually, running programs, making it difficult for architects to
use computational approaches, such as Algorithmic Design (AD). One
of the most pressing problems is program comprehension. To overcome
it, we propose an automatic illustration system for AD programs that
produces annotated schemes of the program’s meaning.

The illustration system focuses on a basic set of geometric elements used
in most calculations to place geometry in space (points, distances, an-
gles, vectors, etc.), and on the way they are manipulated to create more
complex geometric entities. The proposed system automatically extracts
the information from the AD program and the resulting illustrations
can then be integrated into the AD program itself, intertwined with the
instructions they intend to explain.

This article presents the implementation of this solution using an AD tool
to generate the illustrations and a computational notebook to intertwine
the program and the illustrations. It discusses the choices made on the
system’s implementation, the expected workflow for such a system, and
potential future developments.

Keywords: Algorithmic Design · Illustration · Documentation · Pro-
gram Comprehension.

1 Introduction

In the Algorithmic Design (AD) approach, designs are represented through al-
gorithmic descriptions that, when executed, generate the corresponding digital
model [5,32]. AD’s parametric nature [3] promotes design experimentation, facili-
tates the evaluation of multiple and often conflicting design requirements [33,20],
and promotes the production of large-scale unconventional designs [7].

However, AD is less intuitive than other design methods, and architects still
struggle to understand how the AD program relates to the design it represents,
particularly in programs developed by others, an increasingly common scenario
in collaborative work environments [35]. To help practitioners understand AD
programs, we propose an automatic illustration system that can produce an-
notated 2D schemes explaining parameters and other relevant relations that
compose the AD. The proposed system provides illustrations for a set of basic



Illustrating Algorithmic Design 3

geometric elements, such as distances, angles, points, vectors, etc., which can
then be intelligently combined to produce useful illustrations.

To support the natural evolution of the design, the planned use is for archi-
tects to piggyback the generation of illustrations on top of the AD program they
are developing, making it generate not only the intended architectural model but
also the illustrations explaining it. Combined with existing visual documenta-
tion techniques for AD [8,9], these illustrations can then be intertwined with the
program itself. By promoting a dialog between the algorithm and the design it
represents, this proposal aims to reduce AD’s comprehension-related drawbacks,
improving the development, maintenance, and sharing of AD programs.

2 A challenging practice

Although initially met with resistance, the paper-to-digital transition brought
considerable advantages to architectural design [21,6] and the adoption of digital-
based design methods rapidly increased, especially because the developed digital
design tools emulated existing representation methods, only with more precision
and efficiency. Currently, another big leap is taking place with the use of AD,
a design approach that represents designs through algorithmic descriptions [31],
i.e., computer programs with rigorous instructions for a computer to perform [3].

Even further from the hands-on nature and materiality of traditional archi-
tectural development [22], AD relies on abstractness to transcend the constraints
to representation and imagination that bind prior digital design tools [22], out-
performing them in terms of flexibility and expressiveness [7]. Additionally, AD
can seamlessly integrate analysis and optimization in design exploration pro-
cesses, allowing performance to act as a design principle [4]. This capacity is
becoming increasingly critical in an era where the industry is pressed to reduce
not only time and cost requirements but also its environmental impact [23].

However, with fewer analogies to traditional representation methods than
previous digital design paradigms, AD has some challenges ahead. One of them
is the need for programming skills. Withal, even for experienced programmers,
the ability to achieve design thinking with AD remains difficult, since these are
two very distinct modes of thought [15]. Design representations are meant to
stimulate creativity [28] by extending architects’ imagination to the physical
realm and establishing a feedback loop between both types of representation
(internal and external to the creator’s mind) [12]. Unfortunately, with AD, the
practice seems unable to intuitively allow for this mutual influence.

3 Comprehension mechanisms

The architectural design process is strongly based on visual and spatial reason-
ing, which is not easily translated into algorithmic descriptions. However, the
challenge in converting abstract ideas to and from algorithmic representations is
not a specific drawback of AD. Program comprehension is a well-known problem
in computer science and several solutions have been proposed in the past.



4 Renata Castelo-Branco and António Leitão

3.1 Documentation

Donald Knuth, for instance, proposed the development of programs as literary
works [17]. Other examples include the use of graphical representations to explain
programs, such as flow diagrams [13] and other diagrammatic techniques [14,19],
as well as animations of the program’s fundamental operations [2]. Although
some of these works addressed the use of images as visual explanations for textual
programs, particularly those that fell under the program visualization umbrella
[27,25], they were still based on a computer science outline, which completely
disregarded the intrinsic visual nature of the design process itself.

Architects have learned to think and reflect upon their designs through
sketching, and ADs are no different. The hand-made drawings architects make
during the design process represent their intentions for their AD programs, ex-
plaining the logic behind their conception and what they expect them to produce.
They thus constitute fundamental information for the understanding of the ar-
chitect’s design idea and could be integrated with the algorithmic representation,
illustrating and explaining it.

Some authors developed solutions to accommodate these assets in AD pro-
grams. Leitão et al. [18] proposed the inclusion of sketches, images, and renders in
textual AD descriptions. However, their solution suffered from scalability issues.
Grasshopper allows for the inclusion of imagery in the middle of AD programs,
although, in the visual programming environment, it becomes hard to contain
the clutter that these elements cause.

3.2 Computational Notebooks

Beyond documentation, other theories stress the importance of displaying not
just the program’s structure and behavior but also its evolution [11], which is
crucial in a creative process such as AD. An interesting take on this problem has
been forwarded by computational notebooks [29], which were designed to sup-
port computational narratives, allowing users to create and communicate their
experiments in a comprehensible manner. To that end, they allow incremental
development of programs with immediate feedback on their results, as well as
the intertwining of code with textual and visual documentation.

The immediate feedback provided by computational notebooks touches on
another comprehension aspect, which is liveliness [16]. Liveliness has been dif-
ferently interpreted in different fields [26]. In the case of AD, it means that
changes to the algorithmic description should have immediate repercussions in
the generated design model so that users can relate the changes in the program
to their respective impact on the model. Tools like Grasshopper [10] and Lu-
naMoth [1] do this via live coding [26], whereas computation notebooks rely on
other facets of liveliness, such as interactive evaluation and reactivity [9].

Relying on computational notebooks, previous works also explored the idea
of integrating, in the AD program, hand-made drawings and other digital media
produced during the design process (such as model screenshots and rendered
images) [8,9]. However, there is a downside to these elements. Screenshots and



Illustrating Algorithmic Design 5

renders typically present a global view of the digital model, rarely succeeding in
explaining the relevance of particular program fragments for the generation of the
intended geometry. Hand-made drawings offer finer control over which aspects
the architect wishes to illustrate. The problem, however, lies in their static na-
ture. Scanned drawings incorporated in the program rapidly get outdated as the
design evolves. And whereas repurposing drawings made during design ideation
has little cost for the architect, taking the time to correct outdated drawings
imposes a higher penalty that not many are willing to pay.

4 Automatic illustration

Many of the existing solutions in the field of program comprehension contemplate
or derive from the computational thinking paradigm and do not necessarily
comply with the visual demands of AD. There is still much to explain in the
intricate dependencies that compose a parametric program and there is still
a long way to go to make AD more akin to traditional architectural design
processes. As a first step toward that goal, we turn our attention toward the
essence of design experimentation and the most popular means used to iterate
over design ideas: drawings.

Building upon the solution presented in section 3.2, we propose to overcome
the previously-mentioned shortcomings with (1) the automatic generation of
computer-made geometric illustrations explaining relevant aspects of the algo-
rithmic description, and (2) their subsequent integration in the AD program.
The envisioned workflow is for architects to generate and integrate automatic
illustrations with as little extra work as possible, as well as automatically up-
date them given any changes to the algorithmic description. To that end, the
proposed system extracts as much information as it can from the existing AD
description, requiring users to write additional instructions only if and when
they wish to alter the system’s default behavior. Since the illustrations are auto-
matically extracted from the algorithmic descriptions, they can be regenerated
at any time, ensuring the program’s visual documentation is up to date.

For evaluation purposes, we implemented the proposal on top of the Khepri
AD tool [30], which uses the Julia programming language and communicates
with several modeling, rendering, analysis, and optimization tools. From this
set, we chose two visualization tools to generate the illustrations: TikZ, a proce-
dural drawing tool, and AutoCAD, a 2D drafting and 3D modeling tool known
to most architects. As for the integration of the generated illustrations in the
AD program, we follow the workflow proposed in [9], using computational note-
books to intertwine visual and textual documentation with the AD program and,
thus, create a more comprehensible programming experience. The computational
notebook used to exemplify the proposed system is Pluto [24].

4.1 Geometric elements

Khepri has a large set of pre-defined modeling operations capable of creating
2D and 3D geometry in multiple tools. The shape and positioning of that ge-



6 Renata Castelo-Branco and António Leitão

ometry typically depend on a series of calculations performed with the most
basic geometric elements, such as points, vectors, distances, and angles. Using
a multiplicity of coordinate systems (namely, cartesian, polar, cylindrical, and
spherical) these elements can be used to form more complex geometric enti-
ties, such as arcs, circles, polygons, etc. These eventually get extruded, sweeped,
lofted, and combined in other ways to create 3D shapes. However, more often
than not, it is in these first steps that most geometric calculations are done and
that most design parameters imprint their influence. These operations are thus
the focus of our illustration proposal.

Fig. 1 shows, on the left, a 3D model generated by an AD program. The
building’s profile mimics an Islamic pattern and is achieved with two superim-
posed squares and eight circles centered on each of the eight intersection points
and tangent to the bounding octagon. In this case, the tangency was achieved
by calculating the correct circle radius using trigonometry. The resulting 2D sur-
face is replicated in height with decreasing size and then extruded to make slabs
and glass panels. The parameters defining the base shape are explained in the
geometric illustrations on the right, with the recursive distribution of the circles
represented with increasing transparency (further explained in section 4.5).

c

r

c

r

c

r

p

pp

p −π
4

d

d

φ ρ

φ

ρ
φρ

φ

ρc

r

Fig. 1: Petronas Towers inspired 3D model and 2D geometric illustration gener-
ated in TikZ.

For the illustration process to piggyback the AD program itself with as little
additional programming as possible, we capitalize on the parameters that users
must already provide to create each element. For instance, in order to create
a circle, users must specify a center and a radius (c and r, in the previous



Illustrating Algorithmic Design 7

example), whereas to create a regular polygon, besides center (p) and radius
(d), an initial angle (−π/4) and the number of sides are also required. The
automatic illustration of each element is, in most cases, simply comprised of the
parameters required to create it. Naturally, beyond the automation, users are
also given mechanisms to include additional information they may find relevant
to the explanation (e.g., the ’invisible’ octagon in the previous example).

4.2 The evaluator

The illustration system is implemented as a specialized Julia evaluator, which
recognizes specific program patterns in the evaluated program and acts upon
those, generating the appropriate illustration, before sending the instructions to
the standard Julia evaluator, who resumes the normal evaluation cycle producing
the program’s originally intended results. The resulting behavior is similar to
that of code injection in selected parts of the program.

The patterns recognized by the evaluator include operations between points
and vectors in the same or different coordinate systems, and the basic geometry
creation operations mentioned above. For each case, the evaluator explores the
expressions used as arguments in the corresponding function calls to produce
the annotation labels for the illustration. For example, in the definition of the
arrow shape shown in Fig. 2, the evaluator intercepts the point-vector sums and
draws the elements involved in each one, using the name of the points for their
labels. Polar vectors, however, are represented with two elements - a distance
and an angle - whose labels the evaluator fetches from the vectors’ expressions
(e.g., ρ and α, or θ and α+ π − β).

The illustrations intend to show the underlying process that leads to the
final result. Since the same geometric outcome may be achieved using different
program patterns, each of these will yield specific illustrations. Fig. 3 shows two
versions of a function that places four tangent circles around a point. The first
uses cartesian coordinates and the second uses polar coordinates. Accordingly,
the automatic illustration of these instructions will produce different drawings,
although the intended output of the functions is the same.

4.3 Programming style

Illustration allows us to visualize the entire generation process, whereas without
it we would only see the final result. If not for illustration, users would likely
choose between possible implementation styles on a whim. However, knowing
that the way they write their program impacts its illustration will likely lead
them to a more conscious choice, perhaps even to a new programming style.

Take the two definitions in Fig. 4 for an egg shape. The first one calculates
the center points for the arcs directly within the arc calls, whereas the second
one defines the center points as local variables, giving them specific names. The
illustration below corresponds to the definition on the left, where the egg’s larger
radius is annotated with the local name r2 instead of its corresponding but
less readable definition (r0 − r1 ∗ cos(α))/(1 − cos(α)). The illustration of the



8 Renata Castelo-Branco and António Leitão

arrow(p, ρ, α, θ, β) =
let p1 = p + vpol(ρ, α)

p2 = p1 + vpol(θ, α + π + β)
p3 = p1 + vpol(θ, α + π - β)
line(p, p1, p2, p3, p1)

end

α

ρ

α+ π + β

θ

α+ π − β

θ

p

p2

p3

p1

α

ρ

α + π + β

θ

(α + π) - β

θ

p

p2

p3

p1

Fig. 2: Arrow shape illustration generated in TikZ (left) and AutoCAD (right).

second case would be even more intelligible since the same happens with all the
lengthy expressions representing the points (an illustration corresponding to this
definition can be found in Fig. 5). Despite the added trouble, having the points
as separate entities from the arcs makes both the program and the illustration
easier to read. As a general rule, properly naming variables over which we may
want to operate is a good programming practice.

4.4 Too Much Information (TMI)

Some of the examples shown portrayed rather simple computations, with just the
right amount of information to produce an intelligible illustration. However, il-
lustrating all identified patterns, in most cases, will likely result in an excessively
cluttered drawing with superimposed information.

To avoid overlapping annotations, the evaluator keeps track of all the ele-
ments generated in a single illustration, through their insertion points, lengths,
angles, labels, etc. If it identifies collisions, the system distributes the collid-
ing elements through the available space. For instance, coincident radii will be
placed at different angles on the circle, coincident angles will be given different
radii for their arcs (see Fig. 3 right), coincident lengths will be given different
offsets from the line, and coincident labels will be placed at different angles and
distances from the insertion point. Cases where both point and label coincide



Illustrating Algorithmic Design 9

p+ vxy (r, r)

r

r

−r

p+ vxy (r,−r)

r

p+ vxy (−r,−r)

r

p rr−r−r

−r

r

p+ vxy (−r, r)

r

p+ vpol
(
ρ, π

4

)

r

p+ vpol
(
ρ, 3·π

4

)

r

p+ vpol
(
ρ, −π

4

)

r

p

π
4

ρ
3·π
4

ρ

−π
4

ρ

−3·π
4

ρ

p+ vpol
(
ρ, −3·π

4

)

r

Fig. 3: Two possible definitions to place four tangent circles around a point: using
cartesian (left) and polar coordinates (right). Both algorithmic description and
illustration are shown in the Pluto notebook.

will simply not be generated. Naturally, not all elements possess such flexibility.
Vectors, for instance, cannot change place, but their labels can.

Collision avoidance strategies work wonders at small scales, but they cannot
perform miracles when there are simply too many elements to illustrate. As such,
user-configurable flags are also available for users to control which elements get
generated in each illustration, and if they wish to visualize the illustration step
by step. In the latter case, the evaluator generates multiple illustrations, one
step at a time, until the AD program fragment is completely evaluated. This
results in a group of images that can then be combined in an animation. As an
example, by applying this mechanism to the egg shape, we obtain a step-by-step
illustration where the comprehension of each individual arc is improved (Fig. 5).

4.5 Repeated Illustrations

Loop instructions, such as for and while cycles, and, more importantly, recur-
sive definitions are strong candidates for the generation of cluttered illustrations.
If we repeat the illustration of the geometric elements for each iteration of the
loop or each recursive call, we are likely to get not only repeated information
but also superimposed geometry, which will be difficult to differentiate. To avoid
this, the system increases the transparency of the annotations with each loop.



10 Renata Castelo-Branco and António Leitão

egg(p, r0, r1, h) =
let α = 2*atan(r0-r1, h-r0-r1),

r2 = (r0-r1*cos(α))/(1-cos(α))
arc(p, r0, 0, -π)
arc(p + vx(r0-r2), r2, 0, α)
arc(p + vx(r2-r0), r2, π-α, α)
arc(p + vy((r2-r1)*sin(α)),

r1, α, π-α-α)
end

egg(p, r0, r1, h) =
let α = 2*atan(r0-r1, h-r0-r1),

r2 = (r0-r1*cos(α))/(1-cos(α))
p1 = p + vx(r0-r2)
p2 = p + vx(r2-r0)
p3 = p + vy((r2-r1)*sin(α))
arc(p, r0, 0, -π)
arc(p1, r2, 0, α)
arc(p2, r2, π-α, α)
arc(p3, r1, α, π-α-α)

end

−π

r0
p+ vx (r0 − r2)

α

r2

r0 − r2 r2 − r0 p+ vx (r2 − r0)

π − α

α

r2
p

(r2 − r1) · sin (α)

p+ vy ((r2 − r1) · sin (α))
α

π − α− α
r1

Fig. 4: Two definitions of an egg shape, either calculating the center points for
the arcs directly within the arc calls (left) or defining the center points as local
variables (right). The illustration below corresponds to the first definition.

If the illustration remains cluttered, users can also choose to illustrate a
limited number of steps. As an example, consider the recursive definition of a
spiral in Fig. 6. On the left, we see an unconstrained illustration with increasing
transparency. On the right, we only illustrate the first recursive step. Other
mechanisms, such as the step-by-step illustration option presented above, may
be equally useful to illustrate the execution of a recursive program.

In most cases, our approach is enough to get an idea of the process and
understand where the errors lie when the program is not producing the expected
result. Take, for instance, the recursive diamond-shaped pattern in Fig. 7. The
leftmost definition contains a bug that is easily perceived in the illustration. The
one on the right is correct. Either way, illustrations might require style decisions
on the user’s part, as the system’s default behavior is unlikely to suit all cases.



Illustrating Algorithmic Design 11

r0 − r2 r2 − r0

(r2 − r1) · sin (α)

p

−π

r0
r0 − r2 r2 − r0

(r2 − r1) · sin (α)

p

−π

r0
p1

α

r2

r0 − r2 r2 − r0

(r2 − r1) · sin (α)

p

−π

r0
p1

α

r2

p2

π − α

α

r2
r0 − r2 r2 − r0

(r2 − r1) · sin (α)

p

−π

r0
p1

α

r2

p2

π − α

α

r2

p3

α
π − α− α

r1

Fig. 5: Step-by-step illustration of the egg, using the second definition in Fig. 4.
The arc centers are annotated with the names of the corresponding local vari-
ables.

5 Discussion and follow-ups

Explanations are all about simplifying or breaking complex problems down into
smaller bits. In architecture, we frequently resort to simplified 2D plan or section
depictions, 2D line-based schematics, etc. to explain a complex design idea in
simpler terms. Capitalizing on this concept, the proposed system focused on the
creation of 2D geometric illustrations explaining the behavior of AD program
fragments, based on the operations and parameters used in it.

We foresee two main scenarios that strongly benefit from this proposal: (1)
collaborative work endeavors involving shared AD programs, and (2) learning
environments, including not only novice programmers trying to get a grip on
their creations, but also teachers and learning-content creators.

Withal, the research presented here is a work in progress, with the potential
to integrate more ideas. There are many fields left to explore. For instance, AD
programs do not describe geometry modeling operations only. They frequently
integrate descriptions of simulation and optimization routines. Graphically ex-
plaining these routines and subsequent processing of the output data is an en-



12 Renata Castelo-Branco and António Leitão

spiral_arc(p, r, α, ∆α) = arc(p, r, α, ∆α)

spiral(p, r, α, ∆α, ω, f) =
if ω-α < ∆α

spiral_arc(p, r, α, ω-α)
else

spiral_arc(p, r, α, ∆α)
spiral(p + vpol(r*(1 - f), α+∆α), r*f, α+∆α, ∆α, ω, f)

end

α

∆α

r

p

α+∆α

r · (1− f)

α

∆α

r p

α+∆αr · (1− f)

α

∆α

r

p

α+∆α

r · (1− f)α

∆α

r

p
α+∆α

r · (1− f)
α

∆α

r
p

α+∆α
r · (1− f)
α

∆α

r

pα+∆α
r · (1− f)

α

∆α

r

pα+∆α

r · (1− f)
α

∆αr
pα+∆α

r · (1− f)

α∆αr pα+∆α

r · (1− f)

α

∆α

r

p

α+∆α

r · (1− f)

Fig. 6: Recursive definition of a spiral (top), with an unconstrained illustration
of the entire process (left), and an illustration limited to the first recursive step
(right).

tirely new illustration challenge. We leave below some unexplored research paths
that we believe to be logical next steps in this investigation.

Geometric constraints In in the Petronas example (Fig. 1), the radius that
guarantees the tangency between the circles and the octagon was mathematically
calculated in the program without a single reference to either the octagon or the
term ’tangent’. As a result, since it is not explicitly expressed in the program,
this geometric relation cannot easily be inferred by the evaluator either. We
made the octagon visible using the mechanisms available in the illustrator to
add additional information to the images. However, it remains a far cry from an
expressive illustration of geometric constraints. Research work has been done on
ways to explicitly state these relations in the program in order to facilitate the
associated calculations, prevent errors, and make the program more intelligible
[34]. Building upon these principles, we plan to extend our illustration library
to include geometric constraint concepts.



Illustrating Algorithmic Design 13

diamonds(p, c) =
if c < 1

nothing
else

let p0 = p + vpol(c, 0),
p1 = p + vpol(c, π/2),
p2 = p + vpol(c, π),
p3 = p + vpol(c, 3π/4),
c2 = c/2 .0
line(p0, p1, p2, p3, p0)
diamonds(p0, c2)
diamonds(p1, c2)
diamonds(p2, c2)
diamonds(p3, c2)

end
end

diamonds(p, c) =
if c < 1

nothing
else

let p0 = p + vpol(c, 0),
p1 = p + vpol(c, π/2),
p2 = p + vpol(c, π),
p3 = p + vpol(c, 3π/2),
c2 = c/2 .0
line(p0, p1, p2, p3, p0)
diamonds(p0, c2)
diamonds(p1, c2)
diamonds(p2, c2)
diamonds(p3, c2)

end
end

p

3·π
4

c π

c
c

π
2

c

p1

p2

p3

p0 p

3·π
2

c

π

c

π
2

c

c

p1

p2

p3

p0

Fig. 7: Recursive placing of diamond shapes. The illustration of the program on
the left shows that the angle used to calculate the position of point p3 is wrong.
The definition on the right is correct.

Organizing labels The proposed mechanism to infer if there is any information
juxtaposition currently considers label insertion points only. For most geometric
elements this approach will suffice. However, if the illustration contains long
labels, the chances of juxtaposition increase and the system is none the wiser.
We could further develop the existing label placement algorithm to consider the
bounding boxes of previously generated labels as well.

Illustration visualizer In this implementation, we used a CAD tool (Auto-
CAD) and a dedicated drawing program (TikZ) to generate the illustrations to
be inserted into the Pluto computational notebook. Since this insertion is not
literal, but rather a reference to a file in a folder, updating the illustration does
not require a new insertion; if we re-generate the image with the same name,
Pluto will fetch the updated version automatically. We could, nevertheless, ex-
plore other options for image generation, such as browser-based visualizers that



14 Renata Castelo-Branco and António Leitão

produce the graphs directly in the notebook (e.g., Plotly). A downside to this
approach is that users have to effectively run the program to visualize the il-
lustrations, whereas the approach we chose to pursue keeps a version of the
illustrations available for anyone to see, even without executing the program.

3D The best explanations are often simplifications or depictions of isolated parts
of the problem; hence, our initial focus on 2D geometry. However, we have already
begun extending the system to 3D illustrations. We are currently studying label
positioning techniques that consider the rendering viewpoint, automatic section-
ing methods, and step-by-step decompositions particularized to some geometry
modeling operations (for instance, in a sweep operation it may be interesting to
show not only the extrusion of the section along the path step-by-step but also
any scaling or rotation factor applied to the section in a separate animation).

6 Conclusion

This article proposed an automatic illustration system to produce annotated 2D
geometric schemes explaining Algorithmic Design (AD) programs. The aim was
to improve the comprehension, and thus, learning, development, maintenance,
and sharing of AD programs among architects.

The illustrations comprise a set of basic geometric elements, such as points,
distances, angles, vectors, etc., which can help users understand the geometric
calculations done in the AD program, the meaning of the symbols used, and
the impact they have on the overall geometry if changed. The proposed system
allows architects to piggyback the illustration process on top of AD programs,
making them generate not only the intended architectural models but also the
illustrations explaining them. The resulting illustrations are then integrated into
the AD program, intertwined with the instruction they intend to explain.

The proposal builds upon previous work regarding the inclusion of visual
documentation in AD programs, now contemplating two types of documentation:
hand-made drawings and computer-generated illustrations. Comparing one with
the other at any stage of the process can also help users understand if the
program is producing the expected results.

This research addresses and considerably simplifies the hardworking task of
illustrating AD programs, frequently automating it completely. Nevertheless, this
is ongoing research and several logical follow-ups to this proposal were discussed,
such as extending the illustration library to include more complex concepts like
geometric constraints, a more holistic approach to annotation placement that is
sensitive to the space occupied by pre-existing labels, considering other visualiz-
ers for the generation of the images, and extending the system to 3D illustrations.

Acknowledgments This work was supported by national funds of Fundação
para a Ciência e a Tecnologia (FCT) with references UIDB/50021/2020,
PTDC/ART-DAQ/31061/2017, and DFA/BD/4682/2020.



Illustrating Algorithmic Design 15

References

1. Alfaiate, P., Caetano, I., Leitão, A.: Luna Moth: Supporting creativity in the cloud.
In: Proceedings of the 37th Annual Conference of the Association for Computer
Aided Design in Architecture (ACADIA). pp. 72–81. Cambridge, Massachusetts,
USA (2017)

2. Brown, M.H., Najork, M.A.: Algorithm animation using 3D interactive graphics.
In: Proceedings of the 6th annual symposium on User Interface Software and Tech-
nology (UIST’93). pp. 93–100. ACM (1993)

3. Burry, M.: Scripting Cultures: Architectural Design and Programming.
Architectural Design Primer, John Wiley & Sons, Inc. (jan 2013).
https://doi.org/10.1002/9781118670538

4. Caetano, I., Garcia, S., Pereira, I., Leitão, A.: Creativity inspired by analysis: An
algorithmic design system for designing structurally feasible façades. In: Proceed-
ings of the 25th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA). vol. 1, pp. 599–608. Bangkok,
Thailand (2020)

5. Caetano, I., Santos, L., Leitão, A.: Computational design in architecture: Defining
parametric, generative, and algorithmic design. Frontiers of Architectural Research
9(2), 287–300 (2020). https://doi.org/10.1016/j.foar.2019.12.008

6. Carpo, M.: The Alphabet and the Algorithm. The MIT Press, 1st edn. (2011)
7. Castelo-Branco, R., Caetano, I., Leitão, A.: Digital representation methods: The

case of algorithmic design. Frontiers of Architectural Research 11(3), 527–541
(2022). https://doi.org/10.1016/j.foar.2021.12.008

8. Castelo-Branco, R., Caetano, I., Pereira, I., Leitão, A.: Sketching algorith-
mic design. Journal of Architectural Engineering 28(2), 04022010 (2022).
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000539

9. Castelo-Branco, R., Leitão, A.: Comprehending algorithmic design. In: Computer-
Aided Architectural Design. Design Imperatives: The Future is Now, pp. 15–35.
CAAD Futures 2021, Singapore (2022). https://doi.org/10.1007/978-981-19-1280-
1 2

10. Davidson, S.: Grasshopper: Algorithmic modeling for rhino (2023), https://www.
grasshopper3d.com, last accessed 2023/02/14

11. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and Evo-
lution of Software. Springer Berlin Heidelberg (2007)

12. Goldschmidt, G.: Design representation: Private process, public image. In: Gold-
schmidt, G., Porter, W.L. (eds.) Design Representation, pp. 203–217. Springer
London, London (2004). https://doi.org/10.1007/978-1-85233-863-3 9

13. Goldstine, H.H., Von Neumann, J.: Planning and coding of problems for an elec-
tronic computing instrument: Report on the mathematical and logical aspects of
an electronic computing instrument (1947)

14. Jackson, M.A.: Principles of Program Design. Academic Press, Inc., USA (1975)
15. Kelly, N., Gero, J.S.: Design thinking and computational thinking: A dual pro-

cess model for addressing design problems. Design Science 7(May), 1–15 (2021).
https://doi.org/10.1017/dsj.2021.7

16. Kery, M.B., Myers, B.: Exploring exploratory programming. In: Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). pp. 25–29. IEEE
(2017). https://doi.org/10.1109/VLHCC.2017.8103446

17. Knuth, D.E.: Literate programming. The Computer Journal 27(2), 97–111 (May
1984). https://doi.org/10.1093/comjnl/27.2.97

https://doi.org/10.1002/9781118670538
https://doi.org/10.1016/j.foar.2019.12.008
https://doi.org/10.1016/j.foar.2021.12.008
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000539
https://doi.org/10.1007/978-981-19-1280-1{_}2
https://doi.org/10.1007/978-981-19-1280-1{_}2
https://www.grasshopper3d.com
https://www.grasshopper3d.com
https://doi.org/10.1007/978-1-85233-863-3{_}9
https://doi.org/10.1017/dsj.2021.7
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1093/comjnl/27.2.97


16 Renata Castelo-Branco and António Leitão

18. Leitão, A., Lopes, J., Santos, L.: Illustrated programming. In: Proceedings of the
34th Annual Conference of the Association for Computer Aided Design in Archi-
tecture (ACADIA). pp. 291–300. Los Angeles, California, USA (2014)

19. Nassi, I., Shneiderman, B.: Flowchart techniques for structured programming. SIG-
PLAN Notices 8(8), 12–26 (Aug 1973). https://doi.org/10.1145/953349.953350

20. Nguyen, A.T., Reiter, S., Rigo, P.: A review on simulation-based optimization
methods applied to building performance analysis. Applied Energy 113, 1043–
1058 (2014). https://doi.org/https://doi.org/10.1016/j.apenergy.2013.08.061

21. Oppenheimer, N.: An enthusiastic sceptic. Architectural Design 79(2), 100–105
(2009). https://doi.org/https://doi.org/10.1002/ad.862

22. Picon, A.: Architecture and the virtual: towards a new materiality? Praxis Journal
of Philosophy pp. 114–121 (2004)

23. Picon, A.: Beyond digital avant-gardes: The materiality of architec-
ture and its impact. Architectural Design 90(5), 118–125 (2020).
https://doi.org/https://doi.org/10.1002/ad.2618

24. van der Plas, F., Bochenski, M.: Pluto.jl (2021), https://github.com/fonsp/Pluto.
jl, last accessed 2023/02/14

25. Price, B.A., Baecker, R.M., Small, I.S.: A principled taxonomy of software vi-
sualization. Journal of Visual Languages & Computing 4(3), 211–266 (1993).
https://doi.org/10.1006/jvlc.1993.1015

26. Rein, P., Ramson, S., Lincke, J., Hirschfeld, R., Pape, T.: Exploratory and live, pro-
gramming and coding: A literature study comparing perspectives on liveness. Pro-
gramming Journal 3(1), 1:1–1:33 (2018). https://doi.org/10.22152/programming-
journal.org/2019/3/1

27. Roman, G.C., Cox, K.C.: Program visualization: the art of mapping programs to
pictures. In: International Conference on Software Engineering. pp. 412–420. IEEE
(1992). https://doi.org/10.1145/143062.143157

28. Ruck, A.: Abacus and sketch. In: Kara, H., Bosia, D. (eds.) Design Engineering
Refocused, chap. 5, pp. 76–87. AD Smart 03, John Wiley & Sons Ltd (2017)

29. Rule, A., Tabard, A., Hollan, J.D.: Exploration and explanation in computational
notebooks. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. pp. 1–12. CHI ’18, Association for Computing Machinery,
New York, NY, USA (2018). https://doi.org/10.1145/3173574.3173606

30. Sammer, M.J., Leitão, A., Caetano, I.: From visual input to visual output in textual
programming. In: Proceedings of the 24th International Conference of the Asso-
ciation for Computer-Aided Architectural Design Research in Asia (CAADRIA).
vol. 1, pp. 645–654. Wellington, New Zealand (2019)

31. Terzidis, K.: Expressive Form: A conceptual approach to computational design.
Spon Press, London and New York (2003)

32. Terzidis, K.: Algorithmic Architecture. Architectural Press, New York (2006)
33. Turrin, M., von Buelow, P., Stouffs, R.: Design explorations of performance

driven geometry in architectural design using parametric modeling and ge-
netic algorithms. Advanced Engineering Informatics 25(4), 656–675 (2011).
https://doi.org/10.1016/j.aei.2011.07.009

34. Ventura, R.: Geometric Constraints in Algorithmic Design. Master’s thesis, Insti-
tuto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal (2021)

35. Wang, A.Y., Mittal, A., Brooks, C., Oney, S.: How data scientists use computa-
tional notebooks for real-time collaboration. Proceedings of the ACM on Human-
Computer Interaction 3 (2019). https://doi.org/10.1145/3359141

https://doi.org/10.1145/953349.953350
https://doi.org/https://doi.org/10.1016/j.apenergy.2013.08.061
https://doi.org/https://doi.org/10.1002/ad.862
https://doi.org/https://doi.org/10.1002/ad.2618
https://github.com/fonsp/Pluto.jl
https://github.com/fonsp/Pluto.jl
https://doi.org/10.1006/jvlc.1993.1015
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/143062.143157
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1016/j.aei.2011.07.009
https://doi.org/10.1145/3359141

	Illustrating Algorithmic Design

