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Balancing Design Intent and Performance: An Algorithmic Design 

Approach 

Coordinating aesthetics and performance is a critical aspect of building design, but 

it requires information that is rarely available in early design stages. This scenario 

is further aggravated in design optimization, where the performance analysis of 

several design variations is needed. It is not surprising, then, to see performance 

analysis being postponed to later design stages, where changes are expensive and 

time-consuming. This paper addresses this problem through Algorithmic Design 

(AD), a design approach based on algorithms that facilitates the integration of 

performance criteria from early design stages and its combination with creative 

intents. It proposes an AD-based methodology encompassing the iterative 

generation and evaluation of facade design solutions that enhances design 

exploration processes responding to aesthetic, performance, and economic 

requirements. The proposal is evaluated in the development and structural analysis 

of a facade, demonstrating its ability to (1) continuously provide relevant insights 

on the design’s structural performance and aesthetic expression and (2) guide the 

decision-making process towards design solutions successfully balancing creative 

intents with structural and cost requirements. 

Keywords: algorithmic design; algorithmic analysis; creative process; design 

decision; design exploration process 

1. Introduction 

Building facade design is context-specific and requires the coordination of multiple 

criteria (Boswell 2013), such as aesthetic, functional, structural, lighting, thermal, 

acoustic, and energetic. Unfortunately, balancing the different criteria is often difficult in 

early design stages due to the inflexibility of most design tools and the complexity of 

performance evaluation. As a result, only functional and aesthetic requirements are often 

considered at initial stages, the others being postponed to later stages when the design 

idea is already well-established (Ciardiello et al. 2020; Turrin, Von Buelow, and Stouffs 

2011). However, implementing design changes at these stages (Shi 2010) tends to be a 



hardworking process based on iterative manual remodelling tasks (Anton and Tănase 

2016), making it difficult to balance different design requirements (Xie and Gou 2017). 

Some of these limitations can be alleviated with Algorithmic Design (AD), a 

design approach based on algorithms that (1) facilitates design changes, (2) automates 

labour-intensive and error-prone tasks, (3) supports higher levels of design complexity, 

(4) promotes early-stage design analysis and, (5) facilitates the search for the best-

performing solutions (Mueller 2014).  

In this paper, we address the complexity of building facades by presenting a 

mathematics-based methodology to support the algorithmic development of facade 

design solutions that respond to both creative and performance criteria. To narrow the 

scope of this research, we focus on the coordination of aesthetic and structural 

performance from early design stages, evaluating the proposal in the development of a 

facade. After critically reflecting on the results, we discuss the proposal’s ability to 

support performance-aware creative processes, namely, the ability to evaluate several 

solutions quickly and effortlessly regarding different criteria, facilitating the search for 

the best ones. 

2. Background 

2.1. Performance Matters 

Currently, a wide range of legislation targeting the building sector requires the 

performance evaluation of building designs to ensure safety and comfort (Touloupaki and 

Theodosiou 2017; Machairas, Tsangrassoulis, and Axarli 2014). To that end, several 

analysis tools were developed (Huang and Niu 2015) to automate the evaluation of 

different performance criteria, making it easier to understand the effect of design changes 

(Huang and Niu 2015). Regarding structural analysis tools, relevant examples include 



Autodesk’s Robot, Frame3DD, Tekla Structures, SAP2000, and SAFE.  

Unfortunately, these tools require specialized knowledge and have narrow domain 

of application, long computation times, limited modelling capability, and the designers 

fear that they restrict creative processes (Machairas, Tsangrassoulis, and Axarli 2014; 

Touloupaki and Theodosiou 2017; Huang and Niu 2015). These limitations are further 

amplified by the need to produce different analytical models containing only the 

information needed for each analysis tool (Aguiar, Cardoso, and Leitão 2017) and by the 

poor interoperability between analysis tools and the design tools architects typically use. 

This causes the analysis tools to be mostly used at late design states to validate the 

solutions’ performance, or not used at all (Touloupaki and Theodosiou 2017; Belém 

2019; Ciardiello et al. 2020).  

Given the need to iteratively redesign and reanalyse until a good performance is 

achieved, multiple analytical models must be produced, and several performance 

evaluations must be done. This results in a repeated remodelling process (Kolarevic 2003) 

that is often impracticable in terms of time and effort (Machairas, Tsangrassoulis, and 

Axarli 2014) and that tends to lose information and accumulate errors (Touloupaki and 

Theodosiou 2017). 

Part of these limitations can be overcome through AD (Terzidis 2006), 

particularly, the generation of analytical models (Aguiar, Cardoso, and Leitão 2017) and 

the setup of analyses whenever the design changes. Additionally, AD enables the iterative 

analysis of a wide range of solutions through optimization processes (Mueller 2014), 

facilitating the search for the best ones in terms of performance and aesthetics. 

2.2. Algorithmic-based Evaluation and Optimization Tools 

Some AD tools directly interact with analysis tools to evaluate, for instance, structural 

performance. Grasshopper’s plug-ins Karamba3D, KarambaIDEA, GH2Robot, and 



Geometry Gym; and Dynamo’s Structural Analysis package are relevant examples of 

structural analysis engines while Grasshopper’s plug-ins Kangaroo, K2Engineering, 

Peregrine, Millipede, and tOpos (Bialkowski 2017; 2016) are relevant examples of 

structural optimization tools. Nevertheless, these plug-ins depend on visual 

programming, which, as reported by the design teams of the Morpheus Hotel (Wortmann 

and Tunçer 2017) and the SoFi Stadium (Warton, May, and Kovacevic 2017), does not 

scale well with the complexity of design problems (Janssen 2014; Harding and Shepherd 

2017), hindering the development and analysis of complex designs (Leitão et al. 2012). 

In the context of building performance, the term optimization means the process 

of making a building as functional or as effective as possible (Nguyen et al. 2014). 

Architectural problems are usually concerned with multiple performance objectives that 

need to be contemplated simultaneously. Additionally, often, these objectives conflict 

with each other, meaning the best solution regarding one of them is generally not the best 

solution for the others (Khazaii 2016). 

Concerning optimization engines for AD tools, popular examples include 

Grasshopper’s plug-ins Galapagos, Wallacei, Opossum, Octopus, Goat, and Sylvereye; 

and Dynamo’s plug-in Optimo. Galapagos, Goat, and Silvereye only address single-

objective optimization problems, making it difficult to address the multiple requirements 

of architectural design problems. Moreover, different design optimization problems 

require different optimization algorithms (Pereira and Leitão 2020a; Wortmann 2019) but 

most of these tools provide only a few of them, reducing the chances of finding one that 

suits the problem at hand.  

2.3. Improving Building Facades 

Due to their impact in the buildings’ visual expression and performance, building facades 

are one of the most optimized elements in architecture (Evins 2013; Huang and Niu 2015; 



Machairas et al. 2014; Stevanović 2013; Touloupaki and Theodosiou 2017). Therefore, 

several facade design optimization methods have been proposed, including 

Bouchlaghem’s (2000) method based on thermal performance; Wang et al. (2005) multi-

objective optimization approach; Ochoa and Capeluto’s (2009) NewFacades model based 

on thermal and visual comfort; Gagne and Andersen’s (2012; 2010) tool based on both 

illuminance and glare levels; Kasinalis et al. (2014) method for quantifying the impact of 

seasonal facade adaptation; Jin and Overend’s (2014) multi-objective optimization tool 

considering functional, financial, and environmental requirements; Elghandour et al. 

(2016) performance-oriented approach to improve daylight performance; Pantazis and 

Gerber’s (2018) agent-based framework; and Hofmeyer et al. (2021) simulation toolbox. 

These proposals, however, (1) are context-specific (Gagne and Andersen 2010; 

Ochoa and Capeluto 2009; Wang et al. 2005), (2) have limited modelling flexibility 

(Bouchlaghem 2000; Gagne and Andersen 2010; Hofmeyer et al. 2021; Jin and Overend 

2014; Wang et al. 2005), (3) address a single requirement  (Bouchlaghem 2000; Gagne 

and Andersen 2010), and (4) require knowing in advance which optimization technique 

best suits the given problem (Jin and Overend 2014; Kasinalis et al. 2014; Wang et al. 

2005). Moreover, some do not provide a graphical user interface (Bouchlaghem 2000; Jin 

and Overend 2014; Kasinalis et al. 2014; Wang et al. 2005), and few directly 

communicate with the design tools architects use (Bouchlaghem 2000; Jin and Overend 

2014; Kasinalis et al. 2014; Ochoa and Capeluto 2009; Wang et al. 2005), causing 

interoperability issues and hampering the transitions between tools. The few exceptions 

(Elghandour et al. 2016; Gagne and Andersen 2012; Pantazis and Gerber 2018) are based 

on visual programming and, thus, suffer from its limitations (Leitão et al. 2012), 

particularly, scalability (Janssen 2014; Harding and Shepherd 2017). 



Regarding design workflows combining AD and structural optimization, Baker et 

al. (2009) illustrates how structural engineers at Skidmore, Owings & Merrill, LLP 

(SOM) used AD to search for structurally efficient and aesthetically pleasant solutions. 

Similarly, Schultz and Katz (2018) used Grasshopper and ANSYS to structurally analyse 

and optimize the origami facade of the Beijing Greenland Center, reducing material 

quantity by 10%. Lastly, Herr et al. (2018) combines Grasshopper and Oasys GSA Suite 

to parametrically explore self-supporting sculptural facade elements based on their 

structural performance. Nevertheless, none of the presented workflows fully automate 

design and analysis processes, the first case (Baker et al. 2009) resorting to import and 

export operations between tools that are prone to errors and loss of information; the 

second (Schultz and Katz 2018) using different AD tools independently; and the third 

case (Herr et al. 2018) not using the analysis results to directly affect the solutions. 

Concerning structural AD-based methodologies, examples include Fagerström et 

al. (2014), automating the creation of facade panels and structural members of non-

standard design solutions; Lee et al. (2015), integrating design exploration and structural 

analysis to improve the coordination between architects and engineers and increase the 

variety of solutions explored; Johan et al. (2019), driving early-stage generative 

explorations based on material-based constraints, combining C# programs for geometric 

exploration, Karamba3D for structural analysis, and Galapagos for design optimization; 

Muehlbauer (2018; 2020), reducing optimization post-processing time and supporting 

aesthetic-related decisions based on intelligent control systems and user-interaction 

features; Bertagna et al. (2021), facilitating the generation and both structural and solar 

radiation evaluation of facade designs at early design stages, using filtering and clustering 

strategies to improve the organization and presentation of the optimization results; Bao 

et al. (2021), using multi-agent generative and evolutionary structural topology 



optimization algorithms; and, lastly, Mueller (2014), providing structural design guidance 

at early design stages. 

Most proposals, however, rely on visual programming environments (Bertagna et 

al. 2021; Johan et al. 2019; Lee et al. 2015; Muehlbauer 2018; Muehlbauer et al. 2020) 

that, despite being more user-friendly, often lack the scalability needed to solve complex 

problems (Leitão et al. 2012, Janssen 2014; Harding and Shepherd 2017). Moreover, they 

either: (1) do not specifically address facade design problems (Lee et al. 2015; 

Muehlbauer 2018; Muehlbauer et al. 2020; Mueller 2014); (2) have poor interoperability 

(Bao et al. 2021); (3) have limited modelling flexibility (Fagerstrom et al. 2014; Lee et 

al. 2015); or (4) do not use the analysis results to guide the design process (Fagerstrom et 

al. 2014). 

Lastly, within architectural praxis, various building facade designs benefited from 

structural analysis and optimization strategies. These include the diagrid system of Hearst 

Tower, by Foster+Partners; the freeform facade structure of Morpheus Hotel, by Zaha 

Hadid Architects (Piermarini et al. 2018); the curvilinear envelope of Museo Soumaya, 

by FR-EE (Romero and Ramos 2013); the customized mega frame structure of 

Leadenhall Building, by Rogers Stirk Harbour + Partners (Krolikowski and Eley 2014); 

and the bubble-like structure of Water Cube, by PTW Architects (Senses 2007). In most 

cases, however, such strategies were used only to assess and improve the solutions’ 

feasibility and not to guide the design process. 

Considering current literature, there is a lack of methodologies systematizing and 

structuring the algorithmic generation of building facades that considers the variability of 

creative processes and the different performance requirements. We address this challenge 

by adopting an AD strategy that not only encompasses different performance criteria, but 

also adapts to the context-specificity of architectural practice. 



3. Methodology 

This investigation focuses on the development of facade design solutions meeting both 

creative and performance criteria. It proposes a methodology based on the mathematical 

principles proposed by Caetano and Leitão (2021) and the algorithmic framework for 

facade design proposed by Caetano et al. (2020) providing several ready-to-use strategies 

that can be easily combined in the development of novel solutions. The aim is to resolve 

most of the limitations found in facade design processes, especially when solving larger-

scale design problems. 

The choice for AD is justified by its mathematical and parametric nature, which 

provides the flexibility, efficiency, and level of control (Burry 2003; Davis et al. 2011; 

Janssen 2005) needed to drive design processes guided by multiple criteria and enhance 

both creative and critical thinking processes (Burry 2003; Terzidis 2006). 

The proposed methodology starts with the architect matching the design intent 

with the framework’s algorithmic strategies, identifying the most appropriate ones for 

generating, evaluating, and manufacturing the idealized solution. The prevailing role of 

the architects' creativity and design intentions at this stage makes the design problem 

highly subjective and variable (Fernando et al. 2010), potentially leading to an infinite 

variety of design scenarios. Therefore, it is not reasonable to expect that this matching 

process yields a complete algorithmic solution and, thus, the methodology assumes that 

the architect (1) establishes the designs’ parametric dependencies, (2) combines and 

extends the selected strategies according to the design brief, and (3) evaluates the results 

regarding subjective criteria, such as aesthetic preferences. 



 

Figure 1. AD methodology: algorithmic implementation (1), exploration (1A), and visualization (1B) of a design idea; 

design evaluation (2) in a structural analysis tool (2A) with the results driving future design changes (2B) and being 

graphically displayed in a modelling tool (2C); design optimization (3) based on iterative structural analyses (3A) 

searching for the best solutions (3B–C); review (A) and organization (4A) of the optimization results and their 

subsequent interpretation (4B) and visualization (4C) in a modelling/visualization tool; and final decision (5). 

To narrow the scope of this research, the paper focuses on early-stage facade design 

processes balancing aesthetics and structural evaluations, resulting in the five-steps 

methodology of Figure 1: 

(1) Algorithmic implementation and exploration of the design intent. 

(2) Structural performance evaluation and visualization. 

(3) Optimization of structural performance and cost. 

(4) Numerical and graphical analysis of the optimization results. 

(5) Selection of the final solution. 

To assess the methodology’s support for decision-making processes guided by 

aesthetic and structural criteria, the paper applies the proposal in the development of a 

facade structure, reflecting on the results in terms of (1) design workflow flexibility, (2) 

diversity of design scenarios considered, (3) ability to balance measurable and non-

measurable criteria, such as design concept and aesthetics, and (4) quality of the final 

solutions in terms of creative intent and assessed performance. 



4. Evaluation 

This stage involves the application of the methodology in the design and structural 

optimization of a facade structure inspired by the Blue Crystal building in Anand, India, 

designed by KPA Deesign Studio and constructed in 2019: a glazed truss-like facade 

structure resembling a crystal.  

Although this example presents a moderate design complexity that could be 

addressed with visual programming, we will approach it using textual AD to demonstrate 

how the proposed methodology supports design processes guided by both creative intents 

and performance criteria. We use the framework’s predefined algorithms (Caetano et al. 

2020; Caetano and Leitão 2021) to implement the facade structure, combining them in 

the Khepri AD tool (Sammer et al. 2019), which interoperates with different design tools 

(including modelling, analysis, rendering, and visualization ones) and optimization 

packages (Belém 2019; Pereira and Leitão 2020b).  

To achieve this interoperability, each of Khepri’s supported tools is abstracted so 

that a single algorithmic description can generate equivalent models in each of them. This 

allows us to easily alternate between tools according to each performed task. 

4.1. Algorithmic Implementation 

The first stage entails the implementation of the design intent in a parametric algorithm 

describing both the design’s guiding principles and degrees of freedom and considering 

the following design variables: the irregularity of the truss configuration, the amplitude 

of its three-dimensional effect, the number of triangular panels, and the panels’ geometric 

tiling (Figure 2). 



 

Figure 2. Conceptual representation of some design variables: the irregular truss configuration (black grid); the 

randomly sized triangular panels (light blue); and their different types of tiling (yellow grid patterns). 

The second stage encompasses the computation of the truss-like structure’s spatial 

configuration and the creation of both its metal profiles and glass panels (Figure 3A) 

based on a set of geometric subdivision rules (Figure 3B). Then, the facade supporting 

system is implemented, which requires creating horizontal supports connecting the inner 

slabs to the outer structure while adjusting both their position- and size-related parameters 

accordingly (Figure 3C). Finally, the previous algorithms are combined into a larger 

algorithm that generates the entire solution (Figure 3D) and whose parametricity allows 

the generation and testing of variations. 



 

Figure 3. The step-by-step implementation process: creating the truss grid (A), geometric tiling (B), supporting system 

(C), and glass panels (D). 

4.2. Performance-based Design Exploration 

The next step encompasses the improvement of the truss design regarding its structural 

behaviour, which requires specifying its material properties and expected loads. In a first 

stage, we select Khepri’s default steel and glass materials and bar cross-sections, and 

gravitational loads automatically calculated from the truss self-weight, exploring the 

design space by iteratively changing the design’s parameters and performing structural 

analyses to assess its structural integrity. During this process, we visualize both the 

solutions’ 3D models and analysis results in the same tool (namely, Rhinoceros 3D), 

allowing us to, early on, identify potential structural inconsistencies and to understand 

the impact of design parameters on the solution’s structural integrity and visual 

expression.  

Figure 4 illustrates this process with an initial version of the crystal-like structure 

whose structural analysis in Robot reveals, first, errors in the developed design, such as 



the existence of overlapping truss bars and the lack of physical connections in some 

corner nodes (Figure 4A); then, after fixing the errors, the occurrence of structural 

instabilities deriving from sets of coplanar nodes (Figure 4B); and, lastly, the structure’s 

tendency to deform asymmetrically because of the differently sized supporting bars 

(Figure 4C). In each iteration, the algorithm is changed according to the analysis results 

and revaluated to check if all the problems were solved. 

 

Figure 4. Structural inconsistencies: A. overlapping truss bars; B. coplanar truss nodes; C. asymmetrical truss 

deformation. 

It is important to note that the goal of this stage is not to obtain accurate performance 

results but rather provide a general idea of how the design behaves to guide future design 

changes. In this case, it facilitates the identification of the design paths that best 

coordinate the design intent with the structural requirements. In the next stage, when we 

aim at increasing the solution’s level of detail, we extend the algorithm with additional 

geometric constraints, such as restricting the irregularity and amplitude of the crystal-like 

effect, and additional design information, such as physical properties, namely the type of 

supporting systems, materials and sections, and environmental variables, namely wind 

loads. We then iteratively repeat the previous generation-analysis-regeneration cycle with 

different combinations of values, applying optimizers to automate the search for the best 

solution and make this process viable in terms of time and labour. 

4.3. Structural Optimization 

This stage entails the search for solutions that best balance the design intent with the need 



to minimize both the structure’s displacement and cost, which is a typical case of 

conflicting goals (Evins et al. 2012): the stronger the structure is, the more material it 

tends to require and, thus, the more expensive it becomes. However, structural design 

does not need to maximize the structure’s strength but simply comply with safety 

standards at the lowest possible cost (Wortmann and Fischer 2020). 

 

Figure 5. Decision variables: A. number of triangular panels; B. truss irregularity; C. top amplitude; D. inner and 

outer amplitudes. 

To perform the optimization, we combine our algorithmic design with an optimizer, 

setting, as (1) decision variables, the number of panels (Figure 5A); the truss grid 

irregularity (Figure 5B); the inner, outer, and top amplitudes (Figure 5C-D) of its three-

dimensional movement; and the truss bars’ material and section size; and, as (2) 

optimization goals, the truss maximum displacement and cost (roughly computed from 

its weight). Moreover, we also set the range of acceptable values for the latter two 

requirements to ensure that both the safety standards and budget are met. This allows us 

to (1) avoid solutions above those limits (Figure 6A, green area), including Pareto-optimal 

ones, and (2) consider as acceptable those solutions that, despite not belonging to the 



Pareto front and, thus, not being optimal in terms of cost and strength, may be preferable 

in terms of design intent. 

 

Figure 6. (A) Truss optimization with fixed horizontal supports and different truss bar materials and section sizes: 

bottom left, the area of acceptable solutions identified in green, being the horizontal and vertical dashed lines the 

maximum acceptable cost and displacement, respectively; top right, a close-up view of the acceptable area. (B) Truss 

optimization with the previous variables plus additional variables for different inner, outer, and top amplitudes of the 

crystal-like effect. 



Regarding the optimizer, it is known that different optimization problems are better 

served by different algorithms (Belém and Leitão 2018; Wortmann 2019; Wortmann et 

al. 2017). In this case, we use NSGA-II (Deb et al. 2002) because of its good results in 

architectural optimization problems (Carlucci et al. 2015; Nguyen et al. 2014), 

particularly those addressing structural analysis (Barraza et al. 2017). Regarding the 

analysis tool, this time, we use Frame3DD, a non-interactive but faster analysis engine 

than Robot, due to the need to perform many structural evaluations. 

By performing iterative analyses cycles considering the previous results and the 

impact of each design variable on the solution’s aesthetic and performance quality, we 

increase the likelihood of finding better performing solutions that successfully meet the 

design intent. Figure 6A illustrates this process, first, only using different materials, each 

corresponding to an orange dot in the graph, and then, using different materials and 

section sizes, each combination (material and section) corresponding to the yellow dots. 

In both cases, the remaining variables are fixed at the values found in the previous stage. 

The results, however, demonstrate that changing only these two variables is not enough 

to meet the established goals, since none of the obtained solutions match the acceptable 

area (Figure 6A green area).  

We repeat the optimization, this time allowing other parameters to vary, namely, 

the inner amplitude, obtaining the results illustrated by the red curve in Figure 6B. As 

they only result in slight improvements, we also let the outer amplitude vary in the next 

optimization cycle (Figure 6B, yellow curve), and then the top amplitude (orange curve). 

Despite already finding solutions within the acceptable values, we improve them 

even further in terms of cost and strength by repeating the optimization process, this time 

by varying, first, the number of panels (Figure 7, orange curve) and then, the truss grid 

irregularity (Figure 7, yellow curve). However, the design intent is neglected, resulting in 



solutions with markedly vertical panels that clearly deviate from the desired crystal-like 

effect (Figure 7). 

 

Figure 7. Truss optimization with the previous variables plus a different number of panels (orange) and grid 

irregularities (yellow). 

Given the almost overlapping Pareto fronts of Figure 7, we repeat the previous 

optimization with a fixed number of panels to see how it impacts the results. Figure 8A 

shows that the obtained solutions (red curve) are not as good as the previous ones (orange 

and yellow curves) in terms of cost and strength but are better in terms of design intent 

(Figure 8A bottom-right image). Considering the ease with which we can test different 

combinations of values, we can continue refining the coordination between creative and 

analysis processes by repeating the optimization, for instance, with a smaller number of 

panels or even additional pinned supports at the truss’ bottom nodes (Figure 8B). 



 

Figure 8. (A) Comparison of the previous truss optimizations (orange and yellow) with the number of panels fixed at 

its original value (red). (B) Truss optimizations with the number of panels fixed at its original value (orange), at a 

slightly smaller value (yellow), and at its original value plus the bottom supports pinned (red). 

4.4. Revision and Decision 

The last step entails the analysis of previous results and the selection of the final solution. 

It should be noted that the final sample of solutions is the result of all design decisions 

made throughout the process in terms of the trade-off between design aesthetics and 

performance. This means that although creative intentions were not quantitatively 



evaluated during the optimizations, i.e., they were not measured through fitness functions, 

they influenced the evolution of the project by guiding the adjustments made to the 

decision variables (e.g., number of panels, truss irregularity, etc.) after each optimization 

cycle. 

To restrict the sample of solutions, we focus on those with the best trade-offs, i.e., 

Pareto-optimal ones. As none performs better than the others in all criteria, the decision 

will depend on what we regard as the best balance between design intent, aesthetics, 

strength, and cost. The interactivity of the graphs in Figures 6-8 facilitates this selection, 

allowing us to quickly visualize and assess the solutions’ geometric configuration just by 

clicking on the corresponding dot in the graph (Figure 9) and thus, more easily navigate 

the design space of optimal solutions and find one that successfully balances all 

requirements. Moreover, the proposed methodology also facilitates the transition to other 

design stages, directly generating the solutions in the most appropriate tools. 

 

Figure 9. Immediate visualization of a selected solution in multiple tools: a point-and-click in one of its dots triggers 

the generation of the corresponding 3D model in, for instance, Rhinoceros 3D (top-right), POVRay (bottom-left), or 

Blender (bottom-right). 



After choosing the preferred truss configuration, we can continue detailing the resulting 

facade design and apply, for instance, different tiling rules to its panels or simply select 

different glass finishes producing different reflection effects. 

5. Results and Discussion 

This section discusses the results and makes considerations on the ability of the proposal 

to support creative processes responding to aesthetic preferences and performance 

requirements. 

Regarding the first stage, the methodology proved to facilitate the algorithmic 

implementation of the crystal-like structure since it benefits from ready-to-use algorithms 

that can be easily combined. It also showed to support the iterative development of an 

algorithm representing both creative intents and aesthetic preferences, facilitating design 

changes and immediately displaying the results of each change in the selected modelling 

tool. 

In a second stage, the methodology promoted the execution of iterative structural 

analyses by facilitating the production of multiple truss configurations and their 

corresponding analytical models containing only the information needed for the analysis. 

This allowed us to effortlessly assess the solutions’ structural integrity and aesthetics after 

each design change, which was critical to understand the factors influencing both criteria, 

and the design changes contributing to improve the solutions. Figure 4 illustrates this 

process: at each iteration, we changed the algorithm according to the structural 

inconsistencies found, conscientiously guiding the design process towards a structurally 

realistic solution that simultaneously met our creative intent. 

In the optimization stage, the methodology allowed us to effortlessly execute 

numerous structural and cost analyses and incrementally improve the solutions. Despite 

the conflicting nature of the selected criteria, the aim was to find a set of economically 



viable solutions that complied with both the design intent and safety standards rather than 

yielding the smallest maximum displacement. At this point, the use of the methodology 

spared us from several tiresome and time-consuming tasks, such as setting up each 

analysis cycle, producing the corresponding analytical models, and storing the results of 

each evaluation. This was critical to accelerate the optimization cycles and increase the 

number of solutions analysed and the accuracy of the results. 

The time saved in optimization-related tasks allowed us to focus on creative tasks 

and adjust the existing aesthetic-related optimization variables, such as the truss 

irregularity and number of panels. By iteratively changing the values of the decision 

variables, we could guide the design towards the design intent of creating a crystal-like 

facade structure, while evaluating its cost and strength. During this process, we visualized 

the 3D models of the best solutions (i.e., in the Pareto-front) to assess their aesthetic 

quality, balancing creative intents with the need for a stable and economic structure. 

Figures 6-8 illustrate the incremental exploration of the trade-offs between subjective and 

non-measurable criteria, such as design intent and aesthetics, and quantitative criteria, 

such as structural strength and cost. The ability to quickly alternate between the 

interactive graphs containing the analyses results and the solutions’ 3D model played a 

critical role at this stage, facilitating the interpretation of the optimization results and their 

coordination with creative intents in the search for solutions successfully balancing all 

criteria. Figure 9 illustrates this ability by presenting one of the Pareto front solutions in 

three different visualization tools. 

Finally, the proposal also facilitated alternating between tools according to each 

performed task, allowing us to use (1) Rhinoceros 3D to visualize the solutions’ 3D model 

and analysis results, (2) Robot and Frame3DD to perform the structural analyses, (3) 

POVRay to quickly display rendered images of acceptable quality, and (4) Blender to 



produce higher quality rendered scenes. This interoperability was critical to transition 

between design stages. 

The analysis of the results demonstrates the potential of the proposed 

methodology to support and enhance creative processes responding to aesthetic intentions 

and real-world constraints from initial design stages. By allowing different design 

requirements and stages to mutually influence each other, the methodology extends the 

range of potential solutions beyond those initially considered. The use of a single 

algorithmic description containing all design information proved to support a 

performance-aware creative exploration, allowing (1) coordinating aesthetic intentions 

and design constraints from early stages, (2) making both informed design decisions and 

changes, and (3) navigating the design space towards structurally viable, economic 

solutions simultaneously matching the design intent of creating a crystal-like facade. 

The option for a text-based AD approach makes the proposed methodology 

capable of addressing more complex design problems. However, it also makes its use 

more difficult, requiring more sophisticated programming skills, which still takes time 

and effort to learn. In the end, there is a trade-off between the complexity of the design 

problems that one might address, and the technicality of the tools needed to handle them. 

6. Conclusions 

This paper proposed an Algorithmic Design (AD) methodology to support creative design 

processes considering different facade design requirements, placing particular emphasis 

on aesthetic and performance-related ones. The aim is to provide architects with better 

insights into their solutions’ performance at early design stages and thus promote more 

informed decision-making processes. By anticipating performance integration to early 

design stages, where design changes are easier, faster, and cheaper, the proposed 

methodology also fosters the consideration of well-performing solutions beyond those 



initially conceived. Moreover, since aesthetics is difficult to quantify and depends upon 

the qualitative appreciation of the designer, the proposed methodology encourages 

designers to adapt the optimization incrementally to ensure it fits their preferences instead 

of trying to define a set of rules to measure aesthetics. 

For evaluation purposes, we applied the methodology in the design of a crystal-

like facade structure, demonstrating its potential for facilitating the incremental 

development of the solution, while considering different aesthetic, structural, and 

economic criteria. As, during this process, the methodology allowed us to iteratively 

assess the solutions’ cost, structural behaviour, and visual expression, and apply design 

changes accordingly, we could guide the design process in a more conscientious and 

efficient way. Additionally, by displaying the results of iterative structural and cost 

analyses graphically, the methodology facilitated the understanding of the impact of 

design changes in both the solutions’ performance and visual expression. The result was 

a more informed creative process that increased the likelihood of successfully achieving 

a solution meeting all existing requirements. 

For future work, we plan to research strategies to improve design exploration 

processes, such as (1) reducing the size of the design space considered, by excluding 

solutions that are visually too similar or allowing the use of conceptual sketches of the 

design intent to suggest designs aligning with the architect’s preferences, (2) improving 

the way results are presented to the architect, e.g., using colour scales to illustrate the 

analysis results, and (3) providing a recommender system to guide the designer in 

improving the solutions performance. 
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