
Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

1/15

Algorithmic Representation Space

Renata Castelo-Branco, Inês Caetano, and António Leitão

INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal;

renata.castelo.branco@tecnico.ulisboa.pt

ines.caetano@tecnico.ulisboa.pt

antonio.menezes.leitao@tecnico.ulisboa.pt

Abstract

Architecture is an ancient profession, and the means used to produce architectural entities have

constantly changed to respond to new design trends and representation needs. Although for centuries

this meant gradual changes in the design practice, the increasing technological development witnessed

since the 60s has propelled the appearance of increasingly powerful representation methods. One of

them – Algorithmic Design (AD) – is based on algorithms, allowing for great design freedom. However,

it relies on an abstract representation of design intentions, which hinders their immediate

comprehension. To appeal to a broader architectural community, we propose the Algorithmic

Representation Space (ARS), a new approach to the way architects represent algorithmic descriptions.

The ARS intends to lower AD’s comprehension barriers and simultaneously merge it with more

traditional representation means, by encompassing not only the algorithm but also its outputs, along

with mechanisms that aid the comprehension of the design space it represents.

1. Introduction

Architecture has always explored the latest technological advances, causing changes in the way

architects represent and conceive design solutions. Over the past decades, these changes were mostly

due to, first, the integration of new digital design tools, such as Computer-Aided Design (CAD) and

Building Information Modelling (BIM), which allowed the automation of paper-based design processes

[1], and then, the adoption of computational design approaches, such as Algorithmic Design (AD),

causing a more accentuated paradigm shift within the architectural practice.

AD is a design approach based on algorithms that has been gaining prominence in both architectural

practice and theory [2,3] due to its greater design freedom and ability to automate repetitive design

tasks, while facilitating design changes and the search for improved solutions. Its multiple advantages

have therefore motivated a new generation of architects to increasingly adopt the programming

environments behind their typical modelling tools, going “beyond the mouse, transcending the factory-

set limitations of current 3D software” [3; p. 203]. Unfortunately, its algorithmic nature makes this

approach highly abstract, deviating from the visual nature of human thinking, which is more attracted

to graphical and concrete representations than to alphanumerical ones.

To approximate AD to the means of representation architects typically use and thereby make the most

of its added value for the practice, we need to lower the existing comprehension barriers, which hinder

its widespread adoption in the field. To that end, this research proposes a new approach to the

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

2/15

representation of AD descriptions – the Algorithmic Representation Space (ARS) – that encompasses, in

addition to the algorithm, its concrete outputs and the mechanisms that contribute to its understanding.

2. Algorithmic Representation Method

Despite the cutting-edge aura surrounding it, AD is a natural consequence of architects’ desire to

automate modelling tasks. In this approach, the architect develops algorithms whose execution creates

the digital design model [4] instead of manually modelling it using a digital design tool. Compared to

traditional digital modelling processes, AD is advantageous in terms of precision, flexibility, automation,

and ease of change, allowing architects to explore wider design spaces easily and quickly. Two AD

paradigms currently predominate, the main difference between them lying in the way algorithms are

represented: architects develop their algorithms either textually, according to the rules of a

programming language, or visually, by selecting and connecting graphical entities in the form of graphs

[5]. In either case, the abstract nature of the medium hinders its comprehension.

2.1. Algorithmic Design Paradigms

Algorithms are everywhere and are a fundamental part of current technology. In fact, digital design tools

have long supported AD, integrating programming environments of their own to allow users to

automate design tasks and deal with more complex, unconventional design problems. Unfortunately,

despite its advantages and potential to overcome traditional design possibilities, AD was slow to gain

ground in the field, remaining, after almost sixty years, a niche approach. One of the main reasons is the

fact that it requires architects to learn programming, which is an abstract task that is far from trivial. This

is aggravated by the fact that, for decades, most tools have had their own programming language, which

in most cases was limited and hard to use, as well as a programming environment providing little support

for the development and comprehension of algorithmic descriptions. Examples include ArchiCAD’s GDL

(1983); AutoCAD’s AutoLisp (1986) and Visual Lisp (2000); 3D Studio Max’s MAXscript (1997); and

Rhinoceros 3D’s Rhino.Python (2011) and RhinoScript (2007).

To make AD more appealing to architects and approximate it to the visual nature of architectural design

processes, visual-based AD environments have been released in the meantime. In these environments,

text-based algorithmic descriptions are replaced by iconic elements that can be connected to each other

in dataflow graphs [6]. Generative Components (2003) is a pioneering example that inspired more recent

ones such as Grasshopper (2007) and Dynamo (2011). These tools offer a database of pre-defined

operations (components) that users can access by simply dragging an icon onto the canvas and

providing it with input parameters. For standard tasks covered by existing components, this speeds up

the modelling task considerably. Furthermore, since programs are represented by graph structures –

with nodes describing the functions, and the wires connecting them describing the data that gets

transferred between them – it is easy to see which parts of the algorithm are dependent upon others,

and thus, where the changes are propagated to. However, this is only true for small algorithms, which

are a rare find in visual-AD descriptions [7]. Therefore, despite solving part of the existing problems –

which explains the growing popularity of this paradigm in the community – others have emerged, such

as its inability to deal with more complex and larger-scale AD solutions [5,8,9].

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

3/15

In sum, AD remains challenging for most architects and a far cry from the representation methods they

typically use. Human comprehension relies on concrete instances to create mental models of complex

concepts [10]. Contrastingly, AD, either visual or textual, operates at a highly abstract level. This grants

it its flexibility but also hinders its comprehension.

2.2. Algorithmic Abstractness Vs Model Concreteness

Abstraction can be regarded as the process of removing detail from a representation and keeping only

the relevant features [11]. Some authors believe abstraction improves productivity: it not only focuses

on the “big idea” or problem to solve [12] but also triggers creative thinking due to its vagueness,

ambiguity, and lack of clarity [13].

Abstraction in architecture can be traced back at least as far as classical antiquity. Architectural treatises,

such as Vitruvius’ “Ten Books on Architecture” [14], are prime examples of abstract representations

because they intend to convey not specific design instances, but rather design norms that are applicable

to many design scenarios. However, the human brain is naturally more attracted to graphical

explanations than textual ones [15–17], a tendency that is further accentuated in a field with a highly

visual culture such as architecture. For that reason, even the referred treatises were eventually illustrated

after the birth of the printing press [18].

The algorithmic nature of AD motivates designers to represent their ideas in an abstract manner,

focusing on the concept and its formal definition. This sort of representation provides great flexibility to

the design process, as a single expression of an idea can encompass a wide range of instances that

match that idea, i.e., a design space. Contrariwise, most representation methods, including CAD and BIM,

compel designers to rapidly narrow down their intentions towards one concrete instance, on account of

the labour required to maintain separate representations for each viable alternative.

In sum, abstraction gives AD flexibility and the ability to solve complex problems, but it also makes it

harder to understand. Abstraction is especially relevant when dealing with mathematical concepts, such

as recursion or parametric shapes; nature-inspired processes, such as randomness; and performance-

based design principles, such as design optimisation. It is also critical when developing and fabricating

unconventional design solutions, whose geometric complexity requires a design method with a higher

level of flexibility and accuracy. Sadly, these are also the hardest concepts to grasp without concrete

instances and visual aid.

Nevertheless, the described comprehension barrier, apparently imposed by the abstract-concrete

dichotomy, is more obvious when the AD descriptions are independent entities with little to no

connection to the outcomes they produce. Figure 1 represents the current conception of AD: there is a

parametric algorithm, representing a design space, which can generate a series of design models when

specific parameters are provided. We propose to overthrow this notion by including the outcomes of

the algorithm in the design process itself, changing the traditional flow of design creation to

accommodate more design workflows and comprehension approaches.

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

4/15

Figure 1: AD workflow - an algorithm, representing a design space, generates a digital model for each

design instance.

3. Algorithmic Representation Space

AD descriptions have an abstract nature, which is part of the reason they prove so beneficial to the

architectural design process. However, when it comes to comprehending an AD – i.e., creating a mental

model of the design space it represents – this feature becomes a burden. Human cognition seems to

rely heavily on the accumulation of concrete examples to form a more abstract picture [10]. For this

reason, we advocate that, for a better comprehension of an AD, the algorithms themselves do not suffice.

This research proposes a new way to represent algorithmic descriptions that aids the development and

understanding of AD projects. Under the name of Algorithmic Representation Space (ARS), this concept

encompasses not only the algorithm but also its outcomes and the mechanisms that allow for the

understanding of the design space it represents. AD descriptions stand to benefit significantly from the

concreteness of the outputs they generate, i.e., the digital models. If we consider the models as part of

the AD representation, we reduce its level of abstraction and increase its understandability,

approximating it to the visual nature of human understanding. Nevertheless, we must also smooth its

integration in more traditional design workflows, helping architects who still develop their models

manually in digital design tools or are forced to use pre-existing models. Accordingly, the proposed ARS

also enables the use of already existing digital models as starting points to arrive at an algorithmic

description.

There are two core elements in the ARS (Figure 2), the algorithm and the model. The algorithm

represents a design space in a parametric abstract way, which makes the multiple design alternatives it

represents difficult to perceive. Contrastingly, each model represents an instance of a design space in a

static but concrete way. Combining the former’s flexibility with the latter’s perceptibility is therefore

critical for the success of algorithmic representation. For conceptual reasons, the presented illustration

of the ARS treats the two elements as equal. Nevertheless, one must keep in mind that the algorithm

can generate potentially infinite digital models, and the concept holds for all of them.

We consider two entry points into the ARS: programming and modelling. Each will allow architects to

traverse the ARS; in the former case, from algorithm to model, by running the instructions in the

algorithm to generate a model; and in the latter, from model to algorithm, by extracting an algorithmic

description capable of generating the design instance and then refactoring that description to make it

parametric as well. In either case, it is important the ARS contemplates the visualisation of these

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

5/15

algorithm-model relationships. Therefore, we propose including techniques such as traceability in any

ARS. In the following section, we will use a case study, the Reggio Emilia Train Station by Santiago

Calatrava, to illustrate the ARS and each of the proposed principles.

Figure 2: Building blocks of the ARS.

3.1. Programming

The typical AD process entails the creation of a parametric description that abstractly defines a design

space according to the boundaries set by the architect (Figure 3). The parametricity of this description,

or the size of the design space it represents, varies greatly with the design intent and the way it is

implemented (e.g., degrees of freedom, rules, and constraints). By instantiating the parameters in the

algorithm, the architect specifies instances of the design space, whose visualisation can be achieved by

generating them in a digital design tool, such as a CAD, BIM, or game engine (Figure 3 - running the

algorithm). Figure 4 presents several variations of the Reggio Emilia station achieved by running the

corresponding AD description with varying input parameters, namely with a different number of beams,

different beam sizes, and different amplitudes and phases of the sinusoidal movement.

Given the flexibility of this approach, the process of developing AD descriptions tends to be a very

dynamic one, with the architect repeatedly generating instances of the design to assess the impact of

the changes made at each stage. Consciously or not, architects already work in a bidirectional iterative

way when using AD. However, this workflow can also greatly benefit from a more obvious showcasing

of the existing relations between algorithm and model. Traceability mechanisms allow precisely for the

visual disclosure of these relations (i.e., which instruction/component generated which geometry), and

several AD tools support them already.

3.2. Creating Models

AD is not meant to replace other design approaches but, instead, to interoperate with them. This

interoperability is important, to take advantage of the investment made into those well-established

representation methods such as CAD and BIM, especially for projects where digital models already exist

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

6/15

or are still being produced. Therefore, the second entry point to the ARS is the conversion of an existing

digital model of a design into an AD program. This might be necessary, for instance, when we wish to

optimise it for new uses and/or to comply with new standards [19]. This process entails crossing the ARS

in the opposite direction to that described in the previous section (Figure 5).

Figure 3: Entering the ARS by programming.

Figure 4: Parametric variations of the Reggio Emilia station, with different numbers and sizes of beams,

and different amplitudes and signs of the sinusoidal movement.

To convert a digital model into an AD description, there are two main steps: extraction and refactoring.

Extraction entails the automatic generation of instructions that can reproduce an exact copy of the model

being extracted. The resulting AD description, however, is non-parametric and of difficult

comprehension. This is where refactoring comes in [20,21], a technique that helps to improve the AD

description, increasing its readability and parametricity. While the first task can be almost entirely

automated, and is currently partially supported by some AD tools, the second part depends heavily on

the architect’s design intent and, thus, will always be a joint effort between man and machine. In either

case, it is important that the ARS adapts to the multiplicity of digital design tools and representation

systems that architects often use during their design process. They can use, for instance, 3D modelling

tools, such as CADs or game engines, to geometrically explore their designs more freely, or BIM tools to

enrich the designs with construction information and to produce technical documentation.

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

7/15

Figure 5: Entering the ARS through modelling.

4. Navigating the ARS

As mentioned in the previous section, there are two main elements in the ARS: algorithms abstractly

describing design spaces and digital models representing concrete instances of those design spaces.

Either one can be accessed from either end of the spectrum, i.e., by programming and running the

algorithm to generate digital models, or by manually modelling designs and then converting them into

an algorithm. To allow for this bidirectionality between the two sides, the ARS relies on three main

mechanisms: (a) traceability, (b) extraction, and (c) refactoring. The first allows the system to expose the

existing relationships between algorithm and model in a visual and interactive way for a better

comprehension of the design intent. The latter two allow us to traverse the ARS from model to algorithm,

a less common crossing but an essential one, nevertheless. The following sections describe these three

mechanisms in detail.

4.1. Traceability

For a proper comprehension of ADs, architects must construct a mental model of the design space,

comprehending the impact each part of the algorithm has in each instance of the design space. To that

end, a correlation must be ever present between the two core elements of the ARS – algorithm and

model – matching the abstract representation with its concrete realisation. Traceability establishes

relationships amongst the instructions that compose the algorithm and the corresponding geometries

in the digital model. This is particularly relevant when dealing with complex designs, as it allows

architects to understand which parts of the algorithm are responsible for generating which parts of the

model.

With traceability, users can select parts of the algorithm or parts of the model and see the corresponding

parts highlighted in the other end. Grasshopper for Rhinoceros 3D and Dynamo for Revit, two visual AD

tools, present unidirectional traceability mechanisms from the algorithm to the model. Figure 6 shows

this feature at play in Grasshopper: users select any component on the canvas and the corresponding

geometry is highlighted in the visualised model.

Regarding bidirectional traceability, there are already visual AD tools that support it, such as Dassault

Systèmes’ xGenerative Design tool (xGen) for Catia and Bentley’s Generative Components, as well as

textual AD tools, such as Rosetta [22], Luna Moth [23], and Khepri [24]. Figure 7 shows the example of

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

8/15

Khepri, where the user selects either instructions in the algorithm or objects in the model and the

corresponding part is highlighted in the model or algorithm, respectively. Programming In the Model

(PIM) [25], a hybrid programming tool, offers traceability between the three existing interactive windows:

one showing the model, another the visual AD description, and a third showing the equivalent textual

AD description.

Figure 6: Traceability in visual AD tools – the case of Grasshopper.

Unfortunately, traceability is a computationally intensive feature that hinders the tools’ performance with

complex AD programs – especially model-to-algorithm traceability, which explains why some

commercial visual-based AD tools avoid it. Those that provide it inevitably experience a decrease in

performance as the model grows. All referred text-based and hybrid options are academic works, built

and maintained as proof of concept and not as commercial tools, which explains their acceptance of the

imposed trade-offs. A possible solution for this problem is to allow architects to decide when to use this

feature and only switch it on when the support provided compensates for the computational overhead

[26]. In fact, traceability-on-demand is Khepri’s current approach to the problem.

4.2. Extraction

Extraction is the automatic conversion of a digital model into an algorithm that can faithfully replicate

it. Previous studies [27,28] focused on the generation of 3D models from architectural plans or on the

conversion of CAD to BIM models, using heuristics and manipulation of geometric relations. Sadly, the

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

9/15

result is not an AD description, but rather another model, albeit more complex and/or informed. One

promising line of research is the use of the probabilistic and neural-based machine learning techniques

(e.g., convolutional or recurrent neural networks) that address translation from images to textual

descriptions, [29] but further research is needed to generate algorithmic descriptions.

Figure 7: Traceability in textual AD tools – the case of Khepri.

The main problems with extracting a parametric algorithm lie, first, in the assumptions the system would

need to make while reading a finished model: for instance, distinguishing whether two adjacent volumes

are connected by chance or intentionally and, if the latter, deciding if such connection should constitute

a parametric restriction of that model or not. Secondly, it is nearly impossible to devise a system that

can consider the myriad of possible geometrical entities and semantics available in architectural

modelling tools.

Some modelling tools that favour the VP paradigm avoid this problem by placing the responsibility on

the designer from the very start, restricting the modelling workflow and forcing the designer to provide

the missing information. In xGen and Generative Components, the 3D model and the visual algorithm

are in sync, meaning changes made in either one are reflected in the other. PIM presents a similar

approach, extending the conversion to the textual paradigm as well, although it was only tested with

simple 2D examples.

In practice, these tools offer real-time conversion from the model to the algorithm. However, either

solution requires the model to be parametric from the start. Every modelling operation available in these

tools has a pre-set correspondence to a visual component, and designers must build their models

following the structured parametric approach imposed by each tool, almost as if they were in fact

constructing an algorithm but using a modelling interface. As such, the system is gathering the

information it needs to build parametric relations from the very beginning. This explains why neither

xGen, nor Generative Components, nor PIM, can take an existing model created in another modelling

software or following other modelling rules and extract an algorithmic description from it.

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

10/15

This problem has also been addressed in the TP field and promising results have been achieved in the

conversion of bi-dimensional shapes into algorithms [24,30]. However, further work is required to

recognise 3D shapes, namely 3D shapes of varying semantics, since architects can use a myriad of digital

design tools to produce their models, such as CADs, BIMs, or game engines. Figure 8 presents an ideal

scenario, where the ARS is able to extract an algorithm that can generate an identical model to that

being extracted.

In either case, even if we arrive at the extraction of the most common 3D elements any time soon, the

resulting algorithm will only accurately represent the extracted model, and it will comprise a low-level

program, which is very hard for humans to understand. To make the algorithm both understandable and

parametric, it needs to be further transformed according to the design intent envisioned by the architect.

Increasing the algorithm’s comprehension level and the design space it represents is the goal of

refactoring.

Figure 8: Extraction process – on the left the digital model, and on the right the sequence of instructions

resulting from the extraction process.

4.3. Refactoring

Refactoring (or restructuring) is commonly defined as the process of improving the structure of an

existing program without changing its semantics or external behaviour [20]. There are already several

semi-automatic refactoring tools [21] that help to improve the readability and maintenance of

algorithmic descriptions and increase their efficiency and abstraction level. Refactoring is an essential

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

11/15

follow-up to an extraction process, since the latter returns a non-parametric algorithm that is difficult to

decipher.

Figure 9 shows an example of a refactoring process that could take place with the algorithm extracted

in Figure 8. The extracted algorithm contains numerous instructions, each responsible for generating a

beam between two spatial locations defined by XYZ coordinates. It is not difficult to infer the linear

variations presented in the first and fourth highlighted columns, which correspond to the points’ X

values. To infer the sinusoidal variation in the remaining values, however, more complex curve-fitting

methods would have to be implemented [31].

In either case, refactoring tools seldom work alone, meaning that a lot of user input is required. This is

because there is rarely a single correct way of structuring algorithms, and the user must choose which

methods to implement in each case. Refactoring tools, beyond providing suggestions, guarantee that

the replacements are made seamlessly and do not change the algorithm’s behaviour. When trying to

increase parametric potential, even more input is required, since it is the architect who must decide the

degrees of freedom shaping the design space.

In our example (Figure 9), the refactored algorithm shown below has a better structure and readability

but is still in an infant state of parametricity. As a next stage, we could start by replacing the numerical

values proposed by the refactoring tool with variable parameters to allow for more variations of the

sinusoidal movement.

5. Discussion and Conclusion

Architecture is an ancient profession, and the means used to produce architectural entities have

constantly changed, not only integrating the latest technological developments, but also responding to

new design trends and representation needs. Architects have long adopted new techniques to improve

the way they represent designs. However, while, for centuries, this caused gradual changes in the

architectural design practice, with the more accentuated technological development witnessed since the

60s, these modifications have become more evident. The emergence of personal computers, followed

by the massification of Computer-Aided Design (CAD) and Building Information Modelling (BIM) tools,

allowed architects to automate their previously paper-based design processes [1], shaping the way they

approached design issues [32]. However, these tools did little to change the way designs were

represented, only making their production more efficient. It did not take long for this scenario to rapidly

evolve with the emergence of more powerful computational design paradigms, such as Algorithmic

Design (AD). Despite being more abstract and thus less intuitive, this design representation method is

more flexible and empowers architects’ creative processes.

Given its advantages for architectural design practice, AD should be a complement to the current means

of representation. However, to make AD more appealing for a wider audience and allow architects to

make the most of it, we must lower the existing barriers by approximating AD to the visual and concrete

nature of architectural thinking. To that end, we proposed the Algorithmic Representation Space (ARS),

a representation approach that aims to replace the current one-directional conception of AD (going

from algorithms to digital models) with a bidirectional one that additionally allows architects to arrive at

algorithms starting from digital models. Furthermore, the ARS encompasses as means of representation

not only the algorithmic description but also the digital model that results from it, as well as the

mechanisms that aid the comprehension of the design space it represents.

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

12/15

Figure 9: Refactoring process – the sequence of extracted instructions (on top) is converted onto a more

comprehensible and parametric algorithm (on the bottom).

The proposed system is based on two fundamental elements – the algorithm and the digital model –

and architects have two ways of arriving at them – programming and modelling. Considering the first

case, programming, the ARS supports the development of algorithms and the subsequent visualisation

of the design instances they represent by running the algorithm with different parameters. In the second

case, modelling, the ARS supports the conversion of digital models into algorithms that reproduce them.

The first scenario allows AD representations to benefit from the visual nature of digital design tools,

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

13/15

reducing the innate abstraction of algorithms and obtaining concrete instances of the design space that

are more perceptible to the human mind. The second case enables the conversion of a concrete

representation of a design instance into an abstract representation of a design space, i.e., a parametric

description that can generate possible variations of the original design, benefiting from algorithmic

flexibility and expressiveness in future design tasks.

To allow for this bidirectionality, the ARS relies on three main mechanisms: (a) traceability, (b) extraction,

and (c) refactoring. Traceability addresses the non-visual nature of the first process – programming – by

displaying the relationships between the algorithm and the digital model. Extraction and refactoring

address the complexity of the second process – going from model to algorithm – the former entailing

the extraction of the algorithmic instructions that, when executed, generate the original design solution,

and the latter solving the lack of parametricity and perceptibility of the extracted algorithms by helping

architects restructure them. The result is a new representation paradigm with enough (1) expressiveness

to successfully represent architectural design problems of varying complexities; (2) flexibility to

parametrically manipulate the resulting representations; and (3) concreteness to easily and quickly

comprehend the design space embraced.

The proposed ARS intends to motivate a more widespread adoption of AD representation methods.

However, it is currently only a theoretical outline. To reach its goal, the proposed system must gain a

practical character. As future work, we will focus on applying and evaluating the ARS in large-scale design

scenarios, while retrieving user feedback from the experience.

6. Acknowledgments

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT)

(references UIDB/50021/2020, PTDC/ART-DAQ/31061/2017) and PhD grants under contract of FCT

(grant numbers SFRH/BD/128628/2017, DFA/BD/4682/2020).

7. References

[1] S. Abubakar and M. Mohammed; Halilu, “Digital Revolution and Architecture: Going Beyond

Computer-Aided Architecture (CAD)”. In Proceedings of the Association of Architectural Educators in

Nigeria (AARCHES) Conference (2012)., 1–19.

[2] R. Oxman, “Thinking difference: Theories and models of parametric design thinking”. Design Studies

(2017), 1–36. DOI:http://doi.org/10.1016/j.destud.2017.06.001

[3] K. Terzidis, “Algorithmic Design: A Paradigm Shift in Architecture ?” In Proceedings of the 22nd

Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference,

Copenhagen, Denmark (2004), 201–207.

[4] I. Caetano, L. Santos, and A. Leitão, “Computational design in architecture: Defining parametric,

generative, and algorithmic design.” Frontiers of Architectural Research 9, 2 (2020), 287–300.

DOI:https://doi.org/10.1016/j.foar.2019.12.008

[5] P. Janssen, “Visual Dataflow Modelling: Some thoughts on complexity”. In Proceedings of the 32nd

Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference,

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

14/15

Newcastle upon Tyne, UK (2014), 305–314

[6] E. Lee and D. Messerschmitt, “Synchronous data flow”. Proceedings of the IEEE 75, 9 (1987), 1235–1245.

DOI:https://doi.org/10.1109/PROC.1987.13876

[7] D. Davis, “Modelled on Software Engineering: Flexible Parametric Models in the Practice of

Architecture”. PhD Dissertation, RMIT University (2013).

[8] A. Leitão and L. Santos, “Programming Languages for Generative Design: Visual or Textual?” In

Proceedings of the 29th Education and research in Computer Aided Architectural Design in Europe

(eCAADe) Conference, Ljubljana, Slovenia (2011),139–162.

[9] M Zboinska, “Hybrid CAD/E Platform Supporting Exploratory Architectural Design”. CAD Computer

Aided Design 59, (2015), 64–84. DOI:https://doi.org/10.1016/j.cad.2014.08.029

[10] D. Rauch, P. Rein, S. Ramson, J. Lincke, and R. Hirschfeld, “Babylonian-style Programming: Design and

Implementation of an Integration of Live Examples into General-purpose Source Code”. The Art,

Science, and Engineering of Programming, 3, 3 (2019), 9:1-9:39.

DOI:https://doi.org/10.22152/programming-journal.org/2019/3/9

[11] H. Abelson, G.J. Sussman, and J. Sussman (1st ed. 1985), Structure and Interpretation of Computer

Programs (Cambridge, Massachusetts, and London, England: MIT Press, 1996)

DOI:https://doi.org/10.1109/TASE.2008.40

[12] B. Cantrell and A. Mekies (Eds.), Codify: Parametric and Computational Design in Landscape Architecture.

(Routledge, 2018). DOI:https://doi.org/10.1017/CBO9781107415324.004

[13] A. Al-Attili and M. Androulaki, “Architectural abstraction and representation”. In Proceedings of the 4th

International Conference of the Arab Society for Computer Aided Architectural Design, Manama

(Kingdom of Bahrain) (2009), 305–321.

[14] M. Vitruvius, The Ten Books on Architecture. (Cambridge & London, UK: Harvard University Press &

Oxford University Press, 1914).

[15] K. Zhang, Visual languages and applications. (Springer Science + Business Media, 2007).

[16] N. Shu, 1986, “Visual Programming Languages: A Perspective and a Dimensional Analysis”. In Visual

Languages. Management and Information Systems, SK. Chang, T. Ichikawa and P.A Ligomenides (eds.).

(Boston, MA: Springer, 1986). DOI: https://doi.org/10.1007/978-1-4613-1805-7_2

[17] E. Do and M. Gross, “Thinking with Diagrams in Architectural Design”. Artificial Intelligence Review. 15,

1 (2001), 135–149. DOI:https://doi.org/10.1023/A:1006661524497

[18] M. Carpo, The Alphabet and the Algorithm. (Cambridge, Massachusetts: MIT Press, 2011).

[19] I. Caetano, G. Ilunga, C. Belém, R. Aguiar, S. Feist, F. Bastos, and A. Leitão, “Case Studies on the

Integration of Algorithmic Design Processes in Traditional Design Workflows”. In Proceedings of the

23rd International Conference of the Association for Computer-Aided Architectural Design Research in

Asia (CAADRIA), Hong Kong (2018), 129–138.

[20] M. Fowler, Refactoring: Improving the Design of Existing Code. (Reading, Massachusetts: Addison-

Wesley Longman, 1999)

[21] T. Mens and T. Tourwe, “A survey of software refactoring”. IEEE Transactions on Software Engineering.

Published at B-pro Prospective Journal, Bartlett School of Architecture UCL (April 2022)

15/15

30, 2 (2004), 126–139. DOI:https://doi.org/10.1109/TSE.2004.1265817

[22] A. Leitão, J. Lopes, and L. Santos, “Illustrated Programming”. In Proceedings of the 34th Annual

Conference of the Association for Computer Aided Design in Architecture (ACADIA), Los Angeles,

California, USA (2014), 291–300.

[23] P. Alfaiate, I. Caetano, and A. Leitão, “Luna Moth Supporting Creativity in the Cloud”. In Proceedings of

the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA),

Cambridge, MA (2017), 72–81.

[24] M. Sammer, A. Leitão, and I. Caetano, “From Visual Input to Visual Output in Textual Programming”. In

Proceedings of the 24th International Conference of the Association for Computer-Aided Architectural

Design Research in Asia (CAADRIA), Wellington, New Zealand (2019), 645–654.

[25] M. Maleki and R. Woodbury, “Programming in the Model: A new scripting interface for parametric CAD

systems:”. In Proceedings of the Annual Conference of the Association for Computer Aided Design in

Architecture (ACADIA), Cambridge, Canada (2013), 191–198.

[26] R. Castelo-Branco, A. Leitão, and C. Brás, “Program Comprehension for Live Algorithmic Design in

Virtual Reality”. In Companion Proceedings of the 4th International Conference on the Art, Science, and

Engineering of Programming (<Programming’20> Companion), ACM, New York, NY, USA, Porto,

Portugal, (2020), 69–76. DOI:https://doi.org/10.1145/3397537.3398475

[27] L. Gimenez, J. Hippolyte, S. Robert, F. Suard, and K. Zreik, “Review: Reconstruction of 3D building

information models from 2D scanned plans”. Journal of Building Engineering 2, (2015), 24–35.

DOI:https://doi.org/10.1016/j.jobe.2015.04.002

[28] P. Janssen, K. Chen, and A. Mohanty, “Automated Generation of BIM Models”. In Proceedings of the

34th Education and research in Computer Aided Architectural Design in Europe (eCAADe) Conference,

Oulu, Finland, (2016) 583–590.

[29] J. Donahue, L. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, and T. Darrell,

“Long-Term Recurrent Convolutional Networks for Visual Recognition and Description”. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 39, 4 (2017), 677–691.

DOI:https://doi.org/10.1109/TPAMI.2016.2599174

[30] A. Leitão and S. Garcia., “Reverse Algorithmic Design”. In Proceedings of Design Computing and

Cognition (DCC’20) Conference, Georgia, Atlanta, USA (2021). p. 317–328. DOI:

https://doi.org/10.1007/978-3-030-90625-2_18

[31] P. Mogensen and A. Riseth, “Optim: A mathematical optimization package for Julia”. Journal of Open

Source Software. 3, 24 (2018), 615. DOI:https://doi.org/10.21105/joss.00615

[32] T. Kotnik, “Digital Architectural Design as Exploration of Computable Functions”. International Journal

of Architectural Computing 8, 1 (2010), 1–16. DOI:https://doi.org/10.1260/1478-0771.8.1.1

