
Sketching Algorithmic Design1

Renata Castelo-Branco1,2, Inês Caetano1, Inês Pereira1, and António Leitão12

1INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal3

2renata.castelo.branco@tecnico.ulisboa.pt4

Note: This document is a draft version of a manuscript published as part of the Journal of5

Architectural Engineering, © 2022 American Society of Civil Engineers, ISSN 1076-0431. DOI:6

10.1061/(ASCE)AE.1943-5568.00005397

ABSTRACT8

In the last decades, architecture has experienced paradigm shifts prompted by newcomputational9

tools. Algorithmic Design (AD), a design approach based on algorithms, is one such example.10

However, the architectural design practice is strongly based on visual and spatial reasoning, which11

is not easy to translate onto algorithmic descriptions. Consequently, even using tailored AD tools,12

AD programs are generally hard to understand and develop, independently of one’s programming13

abilities. To address this problem, we propose a methodology and a design environment to support14

AD in a way that is more akin to the workflow typically employed by architects, who represent15

their ideas mostly through sketches and diagrams. The design environment is implemented as16

a computational notebook, with the ability to intertwine code, textual descriptions, and visual17

documentation in an integrated storytelling experience that helps architects read and write AD18

programs.19

INTRODUCTION20

Architectural drawings have for centuries been done by hand (Mitchell 2004). In the last few21

decades, however, representation methods have changed due to the invention of digital tools and,22

more recently, due to the emergence of Algorithmic Design (AD), a design approach based on23

1 Castelo-Branco, March 2, 2022

https://doi.org/10.1061/(ASCE)AE.1943-5568.0000539

algorithms (Caetano et al. 2020). Using AD, architects design in a fundamentally different manner,24

exploring design ideas through algorithmic descriptions, i.e., algorithmic representations of design25

concepts, written as computer programs. AD not only reduces the modelling effort (Burry 2011)26

but, when coupled with analysis and optimization routines (Nguyen et al. 2014), also motivates the27

search for better-performing solutions.28

Despite these advantages, AD has a major drawback: it imposes a translation process from29

the abstract imagery in the creator’s mind into concrete, often textual, descriptions (Boshernitsan30

and Downes 2004). These descriptions are not as intuitive as other representation means, such31

as sketches (Victor 2012), thus hindering communication in collaborative projects, an ever more32

present reality. Naturally, architectural projects also rely on multiple file formats to share informa-33

tion, which can also work as comprehension support for the AD descriptions. However, this brings34

about another common issue that AD must overcome: compatibility (Kensek and Noble 2014).35

Furthermore, the simple exchange of data among team members, particularly when working with36

different digital tools, motivates inconsistencies and version conflicts.37

This research tackles three main difficulties identified in the use of AD in the industry: (1)38

understanding algorithmic descriptions developed by others (Myers 1990; Davis et al. 2011); (2)39

addressing design tasks that require different design tools (O’Donnell et al. 2013; Eastman et al.40

2008; Martinho et al. 2020; Lopes and Leitão 2011); and (3) ensuring a consistent view of the41

design among team members (Baker 2016; Sanchez 2016). To address these problems, we propose42

the AD Sketchbook, a methodology inspired by the idea of the digital visual narrative that promotes43

the intertwining of code with textual and visual documentation for a storytelling experience that44

helps architects read, write, and share AD programs.45

METHODS46

The present research aims at responding to the question: how can we improve collaborative47

AD practices? The proposed answer is a methodology to support readability, compatibility, and48

reproducibility in shared AD solutions. To that end, we adopt a design research focused on49

the study of design processes and practices (Cross 2006). Inspired by Research through Design50

2 Castelo-Branco, March 2, 2022

paradigms, which regard design methods and processes as generators of new knowledge (Stappers51

and Giaccardi 2017; Isley and Rider 2018), this investigation encompasses the following stages:52

(1) literature review, (2) methodology development, (3) project evaluation, and (4) data analysis53

and discussion.54

The first stage identifies the existing cognitive barriers, the limitations of current solutions, and55

which strategiesmay lead to successful results. Based on the collected information, the second stage56

focuses on developing a set of ideas and design guidelines addressing the research question. More57

specifically, we develop a theoretical methodology for collaboratively developing AD programs58

and implement a design environment that supports it.59

The evaluation stage entails the development of an architectural project using both the proposed60

methodology and design environment. Albeit subjective, the exploratory design research method61

used for the evaluation is adequate to gain a better understanding of the potential improvements to62

collaborative AD practices. The last stage encompasses the analysis of the results, aiming to answer63

our research question. Based on the previous findings, we identify the weaknesses and strengths of64

our proposal. Finally, we draw conclusions while outlining future research paths.65

LITERATURE REVIEW66

AD uses algorithms to develop architectural designs (Caetano et al. 2020). Since the design67

entities are logically connected, changes applied to the algorithm’s parameters are automatically68

propagated through the entire program (Burry 2011), allowing effortless exploration of a variety of69

design ideas. Combinedwith architects’ innate tendency to challenge the limits of creativity, ADhas70

led to increasingly complex design solutions that simultaneously complywith the growing requisites71

of the building industry. This scenario has been motivating the need for collaborative design72

environments integrating different experts and tools (Laing 2019), where design representations73

need to be easily understood and handled by all participants.74

Barriers75

Design thinking and computational thinking are two very distinct processes. While the former76

is a nonlinear, messy, iterative process (Cross 2006), highly reliant on artistic sensibility and77

3 Castelo-Branco, March 2, 2022

intuitive playfulness (Terzidis 2006), that typically aims to find a context-specific solution (Kelly78

and Gero 2021), the latter forces designers to move from the iconic representation plane, where the79

referred playfulness typically takes place, onto the analogue and symbolic planes, where designs are80

abstractly represented by their properties and their potential, instead of their literal form (Mitchell81

1975). In computational thinking, solutions usually havemore general applications (Kelly and Gero82

2021), which in the case of AD means designers can expand their ideation process from particular83

design solutions towards a design space containing potentially infinite solutions (Ameireh 2007).84

In trying to merge the two worlds, AD programs tend to become unstructured products (Davis85

et al. 2011): the computational equivalent to the experimentation process that characterizes design86

thinking (Woodbury 2010). Therefore, in addition to the already challenging task of using pro-87

gramming languages to represent design concepts (Myers 1990), architects struggle to understand88

AD programs developed by others or by themselves too far in the past for the memory to reach.89

More specifically, in collaborative AD projects, where the same algorithmic descriptions are being90

edited by different parties, the propensity for mismatches is high, more so if the parties involved91

fail to understand each other’s work or fail to reproduce it faithfully (Wang et al. 2019). Although92

some of these issues have already been addressed by programming environments, these are mostly93

tailored to general-purpose software development and, thus, practitioners find it hard to use them94

as design tools.95

Programming Paradigms96

Specialized design environments for AD have been developed in the past, with two main97

paradigms standing out: Visual Programming (VP) and Textual Programming (TP). VP describes98

programs by interconnecting elements that can be interactively manipulated (Myers 1990), whereas99

TP describes them as text. As such, while TP disregards our natural inclination towards imagery100

(Zhang 2007), VP explores it.101

Nevertheless, the features that make VP so appealing also hinder its use at large scales (Leitão102

et al. 2012; Janssen 2014): graphic representations tend to rapidly overflow the bounds of the103

screen, with node relations obscuring the program’s structure (Nardi 1993). In contrast, and despite104

4 Castelo-Branco, March 2, 2022

having a steeper learning curve, TP offers more scalability (Sammer et al. 2019; Burnett 1999),105

resolving information density problems with abstraction and filtering mechanisms. Unfortunately,106

independently of the programming paradigm, architects still struggle to understand AD programs,107

since translating designs to/from algorithmic representations is a considerable challenge even for108

the most gifted and creative ones (Boshernitsan and Downes 2004).109

Program Comprehension110

Literate Programming (Knuth 1984) proposes developing computer programs as literary works111

for humans to read, by documenting the implementation details along with the rationale behind112

them. Unfortunately, the idea is not directly applicable to architecture, because it is mostly based on113

textual explanations, while architectural design thinking requires different types of visualizations114

and graphic elements, such as sketches and drawings (Seitamaa-Hakkarainen and Hakkarainen115

2000; Bresciani 2019).116

Most architects sketch while designing and most do so as well when programming. In fact117

computer scientists alike often draw to help translate abstract concepts onto a more concrete118

representation such as a program (Stasko and Patterson 1992). In the architectural context, these119

sketches often represent the architect’s intentions towards their AD program, explaining the logic120

behind its conception and what they expect it to produce. It is then essential that they fuse with the121

algorithmic description itself, taking part in the understanding process as well.122

Some authors developed documentation techniques directly targeting textual AD. Illustrated123

programming (Leitão et al. 2014), for instance, proposed the inclusion of sketches, images, and124

renders in textual AD programs to establish correlations between these graphical elements, the125

program, and the generated model. However, these correlations had scalability problems, making126

their use unviable in large-scale projects. Furthermore, the proposal lacked other useful forms of127

program documentation, like formatted text and mathematical formulas. Some VP languages, such128

as Grasshopper, also allow for the inclusion of imagery and formulae in midst program.129

Other features that greatly contribute to the comprehension of AD programs are traceability,130

i.e., the ability to relate program parts with the model parts they generate and vice versa, and131

5 Castelo-Branco, March 2, 2022

interactivity, i.e., a fast response of the system that allows users to rapidly visualize the impact of132

the changes made. One- or bi-directional traceability is supported by most VP languages used in133

architecture and by some TP languages as well (Leitão et al. 2014; Castelo-Branco et al. 2020b).134

Interactivity is more commonly found in the former, less so in latter (Alfaiate et al. 2017), but in135

either case scalability is an issue.136

DESIGN SKETCHBOOK137

In a creative process, such as architectural design, the narrative of how we got to the final design138

solution is just as important to comprehend it as the design itself. The sketchbook traditionally139

used by architects stands as proof to this. This creative journal gathers the history of the design’s140

evolution based on drawings, schemes, and textual descriptions, helping architects remember,141

summarize, or even reuse design ideas. We propose carrying this concept over to AD, creating a142

design environment inspired by the architect’s sketchbook.143

The Computational Equivalent144

Considering the above-mentioned difficulties in developing AD programs and the promising145

comprehension attributes of a design sketchbook, its computational equivalent has the potential to146

not onlymakeADmore akin to the typical design process, but also facilitate later comprehension and147

reuse of algorithmic descriptions. This is particularly beneficial for collaborative work scenarios,148

where the person trying to decipher the AD project is rarely its creator. Finally, it should support149

exploration and explanation, two fundamental aspects of the development of any architectural150

project, and integrate the plethora of tools that typically take part in these projects as well.151

For the computational sketchbook to function as an executable depiction of the design process, it152

must track the AD program’s development history. Although there are already competent solutions153

addressing this problem (e.g., Githopper for Grashopper), implementing such an idea on top of VP154

languages is a troublesome task, since in the data flow paradigm it becomes harder to distinguish155

between functional and esthetical changes to the program. Considering that TP languages have for156

decades been the object of version control research and do not share VP’s scalability issues, our157

preference lies with TP.158

6 Castelo-Branco, March 2, 2022

Computational Notebooks159

Some of the proposed ideas, namely illustration, interactivity, and reproducibility, are at the160

core of the computational notebook paradigm (Rule et al. 2018). Embodied in tools such as161

Mathcad, Mathematica, or Jupyter, the concept was designed to support reproducible computational162

narratives, allowing for the incremental development of programs with immediate feedback on their163

results, as well as the intertwining of code with textual and visual documentation.164

Although computational notebooks have been around for years, only more recently have they165

started to be widely used across multiple fields (Perez and Granger 2007; Randles et al. 2017).166

Notebooks allow users to simultaneously execute, document, and communicate their experiments167

(Rule et al. 2018), making their work reliable, reproducible, and comprehensible to others, and even168

to themselves at a later date. Due to these features, the same notebook can serve multiple purposes,169

such as tutorials, interactive manuals, presentations, or even scientific publications (Perkel 2018).170

Given the above-mentioned advantages, we propose an adaptation of the computational note-171

book workflow to the architectural practice, providing a richer, more interactive, programming172

experience for architects, and an easier way for them to understand and reproduce each other’s work173

in collaborative environments (Baker and Penny 2016; Wang et al. 2019).174

ALGORITHMIC DESIGN SKETCHBOOK175

To address program comprehension and maintenance in collaborative AD, we propose the AD176

Sketchbook, a methodology and a design environment that allow for the creation of algorithmic177

descriptions in an incremental and documented way. Our approach targets architects with pro-178

gramming experience who, nevertheless, feel the need for more adequate design mechanisms in179

collaborative AD approaches. The integration of the AD Sketchbook with the typical architec-180

tural design workflow involves not only incorporating the most used graphic-based representation181

methods, but also communicating and sharing information across multiple digital design tools.182

Algorithmic Design Methodology183

We previously identified three main issues with the use of AD in the industry: (1) understanding184

algorithmic descriptions; (2) addressing design tasks that require different design tools; and (3)185

7 Castelo-Branco, March 2, 2022

avoiding the inconsistencies that occur in shared AD projects. Directly responding to these prob-186

lems, we propose a methodology divided in the three main principles illustrated in Figure 1: (1)187

storytelling to aid the comprehension of AD program; (2) compatibility among the digital design188

tools used in an AD project; and (3) reproducibility to support collaborative AD projects.189

Storytelling implies preserving the history of design development, keeping the tale of the190

creative process available for future reference. To promote it, the AD Sketchbook allows architects191

to store the artifacts produced along the way in an organized fashion, entailing three concepts:192

• Incremental development - to support the development of AD solutions piecemeal by193

defining small fragments of code and testing them right after, visualizing the result in the194

AD Sketchbook itself. The aim is to make the programming activity a more responsive and195

comprehensible endeavor, and help track the changes made from one iteration to another.196

• Interactivity - to test program fragments in a reactive manner, with interactive mechanisms197

that facilitate design exploration, e.g., using sliders and toggles to more intuitively manipu-198

late the design’s parameters and, thus, better understand their impact. The aim is to bestow199

upon TP some of the features that make VP easier to comprehend.200

• Documentation - to effectively tell the story of the design development, while guaranteeing201

the program is yielding the expected results. The aim is to turn the program into a202

narrative that others can follow and reproduce; thus, both textual and visual documentation203

is supported. The former includes textual descriptions explaining both the program and204

the images, and mathematical formulas illustrating the program’s computations. The latter205

includes handmade sketches, rendered images, and other artifacts resulting from incremental206

development and interactivity.207

The second principle is compatibility, which allows architects to use a single AD representation208

to interoperate with Computer-AidedDrafting (CAD) tools, Building InformationModelling (BIM)209

tools, and analysis tools, among others. The intention is to merge the AD methodology with210

the architect’s typical workflow by encompassing its multiple design stages, namely exploration,211

8 Castelo-Branco, March 2, 2022

analysis, and optimization, and design outputs, such as the production of renders for presentation212

and technical documentation for fabrication.213

Finally, the AD Sketchbook methodology encourages reproducibility, which guarantees the214

results are replicable at any time and by any of the parties involved in the project. To this end, the215

AD Sketchbook makes all software dependencies explicit, including datasets and software versions216

used. This ensures that several developers can work simultaneously in the same AD program,217

overcoming many of the difficulties architects face when sharing code.218

Implementation219

Despite their novelty in architecture, some ideas behind the proposedADSketchbook are already220

addressed in the computational notebooks described above. Particularly, the fact that they motivate221

users to write interactive computational narratives instead of programs. Jupyter is an example of222

a browser-based and open-source notebook (Perkel 2018), whose interface and exploratory style223

were originally inspired on Wolfram’s, and which currently benefits from the support of a vast224

community of users and developers.225

Given the aforementioned characteristics, we decided to adapt the computational notebook226

concept to fit AD processes by implementing the AD Sketchbook methodology on top of the227

Jupyter notebook editor. To make the resulting AD Sketchbook compatible with the design tools228

typically used in the field, we coupled Jupyter to Khepri (Sammer et al. 2019), an AD tool capable229

of communicating with several CAD, BIM, game engine, rendering, analysis, and optimization230

tools (Castelo-Branco and Leitão 2017; Martinho et al. 2020). Khepri supports the development of231

AD programs that generate equivalent models in these tools, while automating their analysis and232

optimization regarding structural, thermal, and lighting performance. This equivalence is ensured233

by Khepri’s frontend/backend software architecture, where the frontend provides abstract modeling234

operations that have different implementations depending on the backend tool used. As an example,235

the abstract operation wall generates, in a CAD backend, just the geometry of the wall; in a BIM236

backend, the geometry plus the necessary construction detail encoded in a wall family; in a game237

engine, the geometry plus rendering textures; and in a lighting analysis tool, just a set of surfaces238

9 Castelo-Branco, March 2, 2022

with the corresponding lighting characteristics.239

The AD Sketchbook communicates with Khepri through a bi-directional channel: evaluating240

program fragments in the AD Sketchbook prompts Khepri to create the intended digital models241

in the selected design or analysis tool and return the evaluation results to the AD Sketchbook in242

the latter case. However, to improve the storytelling experience and make the AD Sketchbook243

independent of the named tools, we embedded additional web-based visualizers that allow users to244

see and keep different kinds of graphical results next to the program fragments that generate them.245

EVALUATION246

In this section we evaluate the AD Sketchbook methodology in a collaboratively developed247

architectural project. Three of the architects among the authors of this article were involved in the248

project, working remotely on the same AD Sketchbook. The project comprised an office building249

façade in Lisbon, Portugal, whose design was inspired by tiling techniques. Figure 2 shows some250

conceptual drawings of the project integrated in the AD Sketchbook. The complete project can be251

found at https://github.com/KhepriNotebook/FacadeTiling.252

Within the AD Sketchbook, the team coordinated several design tasks: the algorithmic de-253

velopment of both the façade design and the building’s pre-existing geometry and surroundings,254

the analysis/optimization of the façade design in terms of indoor lighting performance, and the255

generation of fabrication schemes. Since the methods chosen to evaluate the proposed solution rely256

on a hands-on approach to test the AD Sketchbook methodology and implementation, the ensuing257

sections describe and illustrate the development of the project from a first-person point of view.258

The authors summarized their observations from the experience in three parts, corresponding to259

each of the AD Sketchbook’s features.260

Storytelling261

The proposed methodology defends the preservation of the history of the algorithmic develop-262

ment. Incremental development allowed the architects to develop the AD program by performing263

small changes or additions that could be immediately tested, producing a new graphical represen-264

tation each time. Each development step and corresponding tests and results were kept available265

10 Castelo-Branco, March 2, 2022

https://github.com/KhepriNotebook/FacadeTiling

for future consultation. Figure 3 shows two tests performed during the façade pattern development266

that were recorded in the AD Sketchbook, together with the explanation and documentation of267

the design decisions made. In this case, the applied design changes resulted from the sensitivity268

analysis study of the daylight performance conducted midway, which showed that some interior269

spaces were below the standard metrics.270

Interactivity motivates architects to explore their designs using sliders, toggles, and other271

widgets, to visually manipulate parameters. In the developed project, this feature was important272

to quickly explore design variants for the façade (Figure 4), assess the differences between the273

obtained solutions, and understand the impact each parameter had on the design.274

The AD Sketchbook provides both textual and visual documentationmechanisms to explain its275

content and tell the creative story of the project. In this project, the three architects took advantage of276

both types of documentation to improve the collaborative design process. On the one hand, textual277

documentation was particularly important to structure the project’s development history according278

to the different design stages and explain the design decisions (Figures 2 and 3), as was the use279

of mathematical formulas to illustrate the algorithms in a more comprehensible notation (Figure280

3). On the other hand, visual documentation was useful to ensure the algorithm was producing the281

expected results: as we often introduce bugs in the program without noticing, having an image of282

the intended result available for comparison was crucial in debugging (Figures 3 and 4).283

Compatibility284

The use of multiple tools in design projects is a common practice motivated by the tools’285

different advantages (Castelo-Branco and Leitão 2017; Martinho et al. 2020). The AD Sketchbook286

allows designers to specify, in the algorithmic description itself, the tools they want to use at each287

stage of the project.288

In the developed project, compatibility allowed the architects involved to centralize all the289

information and coordinate the entire design process from within the AD Sketchbook. In practice,290

they took advantage of the integrated visualizers during the design exploration stage due to their291

real-time feedback and more direct correlation between the AD program and its result; for more292

11 Castelo-Branco, March 2, 2022

complex geometric modelling tasks they switched to a CAD tool (Rhinoceros 3D); and to integrate293

construction details and produce documentation for the building structure, they transited to a BIM294

tool (Revit). To produce the technical documentation for the fabrication of the façade tiles, they295

once more resorted to a CAD tool (AutoCAD) as the laser-cutting process required .dwg files. They296

also used a game engine (Unity) to rapidly visualize and navigate through the complete model297

and a rendering tool (POV-Ray) to produce realistic films and other presentation imagery (Figure298

5). Finally, they used an analysis tool (Radiance) and Khepri’s optimization module to evaluate299

and optimize the daylight performance of the solution, without ever leaving the AD Sketchbook’s300

environment (Figure 6). In all these cases, the exact same AD description of the design was used.301

Note that the AD Sketchbook’s features frequently intertwine with one another. For instance,302

in the context of performance optimization, the parametric nature of AD allows the architects to303

write scripts that automate the time-consuming iterative evaluation of design variations (Aguiar304

et al. 2017). However, since optimization results are frequently hard to visualize and interpret,305

the AD Sketchbook also provides interactive plots to help bridge part of this comprehension gap306

via storytelling. In this project, the architects benefited from such mechanisms to visualize the307

results of the performed daylight optimization, creating a Parallel Coordinates plot (Figure 6 bottom308

right) and an interactive Pareto front (Khazaii 2016): by clicking on a point in the Pareto front309

graph (Figure 6 top right), they could visualize the corresponding 3D model (Figure 6 bottom310

left). This facilitated the understanding of the trade-offs between the esthetical quality and lighting311

performance of the project.312

Reproducibility313

The workflowmotivates listing all the necessary software packages and their respective versions314

in the AD Sketchbook itself, which contributes to the reproducibility of shared AD programs.315

Moreover, as it is compatible with several design tools, different co-workers are free to choose their316

preferred tool to generate their models. This notion is further stretched by the AD Sketchbook’s317

embedded visualizers, which allow users to visualize the results in the same environment where318

the algorithm is being developed.319

12 Castelo-Branco, March 2, 2022

In the façade project, the constant testing of the developed AD solutions, promoted by the320

interactive development process, and the documentation of the obtained results proved to increase321

its reproducibility, enabling all team members to easily compare results. Figure 7 presents part322

of the evolution of the façade design: successive versions of the algorithm were stored in the AD323

Sketchbook, accompanied by explanatory images, texts, and tests, which were critical to document324

the creative process and the changes each co-worker made to it. Furthermore, as this example325

relies on the AD Sketchbook’s specific visualizers, the results could be easily reproduced on the326

co-workers’ machines.327

DISCUSSION328

In this section we discuss the benefits and limitations of the AD Sketchbook. Naturally,329

architectural projects and design workflows can vary significantly (Rittel and Webber 1973) since330

they depend on ever-changing variables (Isley and Rider 2018), e.g., the architect’s interpretation of331

the problem and both its temporality and site-dependency. Thus, we do not expect our proposal to332

generically apply to all circumstances and design scenarios. Instead, the AD Sketchbook features333

must be molded to each design brief and team, responding to their own issues and synergies.334

Moreover, the presented evaluation was conducted through exploratory research, having three335

of the authors of the article been the test subjects as well. Both the previously described experience336

and the ensuing discussion correspond to their agreed opinions on the impact each feature had on337

the project’s development, as well as their benefits and shortcomings. While a joint opinion may338

obscure individual impressions, we believe these to be of lesser importance in a methodology that339

must, in any case, abide by specific design circumstances and team workflows.340

A Tale of Design Development341

Storytelling has shown to promote program comprehension and increase reproducibility in342

this shared programming experience. Having the design history in the AD Sketchbook can help343

architects (1) comprehend how and why certain design decisions were made, (2) reproduce each344

step taken, and (3) recall and revise their own past decisions. In the developed project, storytelling345

was critical for those involved to understand each other’s work and to locate themselves in the346

13 Castelo-Branco, March 2, 2022

design process: as design changes were documented in the AD Sketchbook, each architect could347

easily be put up to date on the project status and, therefore, proceed with the design process in348

a coherent and coordinated way. Nevertheless, there is one setback to storytelling: the verbosity349

resulting from incremental development due to the accumulation of (1) tests that may no longer be350

necessary; (2) repeated code pieces resulting from multiple iterations over the same design detail;351

and (3) scattered code pieces that impair the organization of the sketchbook.352

In this project, the architects were able to reduce some of this verbosity by using mechanisms353

available in the Jupyter environment to join, hide, and summarize dispersed code (Castelo-Branco354

and Leitão 2021). This process may partially relinquish the design’s history, but it is a necessary355

trade-off, since the order in which one creates a story may not necessarily correspond to the order356

in which one wishes to tell it. Many users may, in fact, prefer to work with a summarized version357

of the sketchbook throughout. In such cases, instead of embedding the narrative in the program358

itself, the storytelling process can be managed by a version control system. More on this topic is359

explored in Castelo-Branco et al. (2020a).360

More Is More361

To merge with the architect’s typical workflow, the AD Sketchbook is compatible with different362

tools. To keep the AD Sketchbook’s consistency, the interactivity and documentation features363

have the same behavior with all supported tools. The difference between tools therefore lies in the364

advantages they offer to the design process, aswell as on how they support incremental development.365

As an example, the AD Sketchbook’s integrated visualizers allow the graphics to coexist with366

the AD program: the resulting images appear right next to the program fragment that originated367

it (see Figure 7). However, there is a trade-off: these visualizers do not have the capabilities of368

external visualizers, such as CAD tools or game engines, and thus are only suitable for conceptual369

exploration processes. In this project, the architects strived for a balance between the two extremes,370

utilizing both integrated and external visualization tools throughout the entire process depending371

on the design problems faced at each stage and each collaborator’s preferences.372

14 Castelo-Branco, March 2, 2022

Remotely and Collaboratively373

The third goal of the AD Sketchbook is reproducibility; a feature that is heavily dependent374

on the two previous ones. On the one hand, storytelling can help architects comprehend each375

other’s work and guarantee that the AD program yields the expected results. On the other hand,376

compatibility allows architects to choose the tools that best fit their design requirements. Both377

features contribute to reproducibility, helping anyone obtain identical results anywhere and at any378

time. This is particularly important for collaborative and remote work, two increasingly common379

scenarios nowadays due to the growing complexity of architectural projects and the general tendency380

towards global networks.381

This was also the case in the presented façade design, where reproducibility allowed participants382

to individually develop and test parts of the project and, afterwards, share them with the other383

members of the design team, who could then understand, reproduce, and further develop them. The384

collaboration made possible by reproducibility not only accelerated the design process, as multiple385

architects were simultaneously contributing to it, but also improved the quality of the final solution,386

as different minds have different perspectives on the same design problem. Notwithstanding, the387

use of the AD Sketchbook in a collaborative work scenario must be coordinated among practitioners388

to avoid conflicting versions or repeated work.389

CONCLUSION390

Architecture is experiencing paradigm shifts prompted by new computational tools, with new391

design approaches emerging as a result, namely Algorithmic Design (AD). Nevertheless, architec-392

tural practice is strongly based on visual and spatial reasoning, whereas AD is based on algorithms,393

requiring architects to overcome the non-trivial task of translating their ideas onto algorithmic394

descriptions. As such, even using tailored AD tools, AD programs are generally hard to understand395

and develop. Three main problems were identified, namely (1) understanding programs developed396

by others or ourselves sometime in the past, (2) using different design tools as required by different397

design tasks or preferences; and (3) reproducing the resulting designs in different circumstances.398

We addressed these problems by proposing the AD Sketchbook, a computational analogy399

15 Castelo-Branco, March 2, 2022

to the architect’s creative sketchbook, which embodies a design medium where architects can400

incrementally and interactively develop and document their AD descriptions in a more responsive401

and comprehensible programming activity. Our proposal includes a methodology and a design402

environment implemented on top of the Jupyter computational notebook and the Khepri AD tool.403

To evaluate the proposal, three of the authors collaboratively and remotely developed an ex-404

perimental architectural project using the AD Sketchbook. Their experience was documented in405

this article. The proposed methodology allowed each of them to (1) independently develop parts406

of the project in the same environment, resulting in a storytelling process that facilitated the com-407

prehension of design decisions; (2) use different design tools according to the design task; and (3)408

remotely execute the program parts developed by others and obtain the same results, which was409

critical for keeping the coherency of the design process.410

Given that our proposal primarily targets architecture professionals that intend to use AD,411

it must contemplate the variety of existing design workflows and fuse with them in a suiting412

manner for each professional. There will doubtfully ever be a silver bullet befitting all possible413

design approaches. Nevertheless, we believe the AD Sketchbook can promote the adoption of AD414

approaches, whether individually or collaboratively, improving the otherwise difficult process of415

developing AD solutions. Furthermore, although the proposal focused on architectural design, the416

solution can be easily adapted to other design areas.417

As future work, we plan on exploring different interaction mechanisms for different types of418

algorithmic parameters. Additionally, we will augment the current one-way interaction with the419

CAD and BIM paradigms by integrating visual inputs mechanisms (Sammer et al. 2019), allowing420

direct manipulation of geometry used as input to the AD program. Finally, we plan on conducting421

user studies on the use of the AD Sketchbook methodology, comparing its performance in terms422

of comprehension, compatibility, and reproducibility, with traditional means of employing AD in423

collaborative architectural projects.424

16 Castelo-Branco, March 2, 2022

Data Availability Statement425

Some or all data, models, or code generated or used during the study are available in a426

repository online in accordance with funder data retention policies (https://github.com/427

KhepriNotebook/FacadeTiling)428

Acknowledgments429

This work was supported by national funds through Fundação para a Ciência e a Tecnologia430

(FCT) (references UIDB/50021/2020 and PTDC/ART-DAQ/31061/2017) and PhD grants under431

contract of FCT (grant numbers SFRH/BD/128628/2017, DFA/BD/4682/2020, andDFA/BD/06302/2021).432

REFERENCES433

Aguiar, R., Cardoso, C., andLeitão, A. (2017). “Algorithmic design and analysis fusing disciplines.”434

Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA),435

Cambridge, Massachusetts, USA, 28–37.436

Alfaiate, P., Caetano, I., and Leitão, A. (2017). “Luna Moth: Supporting creativity in the cloud.”437

Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA),438

Cambridge, Massachusetts, USA, 72–81.439

Ameireh, O. M. (2007). “Abstract thinking: An introduction to creative thinking in basic de-440

sign.” International Conference of the Arab Society for Computer Aided Architectural Design441

(ASCAAD), Alexandria, Egypt, 527–542.442

Baker, M. (2016). “1,500 scientists lift the lid on reproducibility.” Nature, 533, 452–454.443

Baker, M. and Penny, D. (2016). “Is there a reproducibility crisis?.” Nature, 533(7604), 452–454.444

Boshernitsan, M. and Downes, M. S. (2004). “Visual programming languages: A survey.” Report445

no., University of California, Berkeley, USA.446

Bresciani, S. (2019). “Visual design thinking: A collaborative dimensions framework to profile447

visualisations.” Design Studies, 63, 92–124.448

Burnett, M. M. (1999). “Visual programming.” Wiley Encyclopedia of Electrical and Electronics449

Engineering, J. G. Webster, ed., John Wiley & Sons, Inc., 275–283.450

17 Castelo-Branco, March 2, 2022

https://github.com/KhepriNotebook/FacadeTiling
https://github.com/KhepriNotebook/FacadeTiling
https://github.com/KhepriNotebook/FacadeTiling

Burry, M. (2011). Scripting Cultures: Architectural Design and Programming. JohnWiley & Sons,451

West Sussex, UK.452

Caetano, I., Santos, L., and Leitão, A. (2020). “Computational design in architecture: Defining453

parametric, generative, and algorithmic design.” Frontiers of Architectural Research, 9(2), 287–454

300.455

Castelo-Branco, R., Caetano, I., Pereira, I., and Leitão, A. (2020a). “The collaborative algorithmic456

design notebook.” International Conference of the Architectural Science Association (ANZAScA),457

Auckland, New Zealand, 1056–1065.458

Castelo-Branco, R. and Leitão, A. (2017). “Integrated algorithmic design: A single-script approach459

for multiple design tasks.” Education and research in Computer Aided Architectural Design in460

Europe (eCAADe) Conference, Vol. 1, Rome, Italy, 729–738.461

Castelo-Branco, R. and Leitão, A. (2021). “Comprehending algorithmic design.” Design Im-462

peratives: Proceedings of the Computer-Aided Architectural Design Futures (CAAD Futures)463

Conference, Springer, Berlin, Heidelberg, University of Southern California, USA. (to appear).464

Castelo-Branco, R., Leitão, A., and Brás, C. (2020b). “Program comprehension for live algorithmic465

design in virtual reality.” International Conference on the Art, Science, and Engineering of466

Programming (<Programming’20> Companion), Porto, Portugal, ACM, New York, NY, USA,467

69–76.468

Cross, N. (2006). Designerly Ways of Knowing. Springer-Verlag, London, UK.469

Davis, D., Burry, J., and Burry, M. (2011). “Understanding visual scripts: Improving collaboration470

through modular programming.” International Journal of Architectural Computing, 9(4), 361–471

376.472

Eastman, C., Teicholz, P., Sacks, R., and Liston, K. (2008). BIM Handbook: A Guide to Building473

Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers.474

Wiley, Hoboken, New Jersey.475

Isley, C. G. and Rider, T. (2018). “Research-through-design: Exploring a design-based research476

paradigm through its ontology, epistemology, andmethodology.”Design Research Society (DRS)477

18 Castelo-Branco, March 2, 2022

International Conference, Limerick, Ireland, 25–28.478

Janssen, P. (2014). “Visual dataflow modelling - some thoughts on complexity.” Education and479

research in Computer Aided Architectural Design in Europe (eCAADe) Conference, Vol. 2,480

Newcastle upon Tyne, England, UK, 547–556.481

Kelly, N. and Gero, J. S. (2021). “Design thinking and computational thinking: A dual process482

model for addressing design problems.” Design Science, (May), 1–15.483

Kensek, K. and Noble, D. (2014). Building Information Modeling: BIM in Current and Future484

Practice. Wiley, Hoboken, New Jersey.485

Khazaii, J. (2016). Advanced Decision Making for HVAC Engineers: Creating Energy Efficient486

Smart Buildings. Springer, Switzerland.487

Knuth, D. (1984). “Literate programming.” The Computer Journal, 27(2), 97–111.488

Laing, R. (2019).Digital Participation and Collaboration in Architectural Design. Taylor & Francis489

(Routledge), Abingdon.490

Leitão, A., Lopes, J., and Santos, L. (2012). “Programming languages for generative design: A491

comparative study.” International Journal of Architectural Computing, 10(1), 139–162.492

Leitão, A., Lopes, J., and Santos, L. (2014). “Illustrated programming.” Annual Conference of493

the Association for Computer Aided Design in Architecture (ACADIA), Los Angeles, California,494

USA, 291–300.495

Lopes, J. and Leitão, A. (2011). “Portable generative design for CAD applications.” Annual Con-496

ference of the Association for Computer Aided Design in Architecture (ACADIA), Banff, Canada,497

196–203.498

Martinho, H., Pereira, I., Feist, S., and Leitão, A. (2020). “Integrated algorithmic design in practice:499

A renovation case study.” Education and research in Computer Aided Architectural Design in500

Europe (eCAADe) Conferencee, Vol. 1, Berlin, Germany, 429–438.501

Mitchell, W. J. (1975). “The theoretical foundation of computer-aided architectural design.” Envi-502

ronment and Planning B, 2(2), 127–150.503

Mitchell, W. J. (2004). “Foreword.” Architecture’s New Media: Principles, Theories, and Methods504

19 Castelo-Branco, March 2, 2022

of Computer-Aided Design, Y. Kalay, ed., MIT Press, ix–xii.505

Myers, B. (1990). “Taxonomies of visual programming and program visualization.” Journal of506

Visual Languages & Computing, 1(1), 97–123.507

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User Computing. MIT508

Press, Cambridge, MA, USA.509

Nguyen, A.-T., Reiter, S., and Rigo, P. (2014). “A review on simulation-based optimization methods510

applied to building performance analysis.” Applied Energy, 113, 1043–1058.511

O’Donnell, J., Maile, T., Rose, C., Mrazovic, N., Morrissey, E., Regnier, C., Parrish, K., and512

Bazjanac, V. (2013). “Transforming BIM to BEM: Generation of building geometry for the513

NASA Ames sustainability base BIM.” Report no., Lawrence Berkley National Laboratory,514

Berkeley, USA, <https://eta.lbl.gov/publications/transforming-bim-bem-generation>.515

Perez, F. and Granger, B. E. (2007). “IPython: A system for interactive scientific computing.”516

Computing in Science Engineering, 9(3), 21–29.517

Perkel, J. M. (2018). “Why jupyter is data scientists’ computational notebook of choice.” Nature,518

563(7729), 145–146.519

Randles, B. M., Pasquetto, I. V., Golshan, M. S., and Borgman, C. L. (2017). “Using the jupyter520

notebook as a tool for open science: An empirical study.”ACM/IEEE Joint Conference on Digital521

Libraries (JCDL), Toronto, Ontario, Canada, 1–2.522

Rittel, H. W. J. and Webber, M. M. (1973). “Dilemmas in a general theory of planning.” Policy523

Sciences, 4, 155–169.524

Rule, A., Tabard, A., and Hollan, J. D. (2018). “Exploration and explanation in computational note-525

books.” CHI Conference on Human Factors in Computing Systems, Vol. 2018-April, Montreal,526

Canada, Association for Computing Machinery, 1–12.527

Sammer, M. J., Leitão, A., and Caetano, I. (2019). “From visual input to visual output in textual528

programming.” International Conference of the Association for Computer-Aided Architectural529

Design Research in Asia (CAADRIA), Vol. 1, Wellington, New Zealand, 645–654.530

Sanchez, J. (2016). “Massive re-patterning of the urban landscape.” Architectural Design, 86(5),531

20 Castelo-Branco, March 2, 2022

48–51.532

Seitamaa-Hakkarainen, P. and Hakkarainen, K. (2000). “Visualization and sketching in the design533

process.” The Design Journal: An International Journal for All Aspects of Design, 3(1), 3–14.534

Stappers, P. J. and Giaccardi, E. (2017). “Research through design.” The Encyclopedia of Human-535

Computer Interaction, C. Ghaoui, ed., IGI Publishing, Hershey, PA, Chapter 43.536

Stasko, J. T. and Patterson, C. (1992). “Understanding and characterizing software visualization537

systems.” IEEE Workshop on Visual Languages, IEEE, 3–10.538

Terzidis, K. (2006). Algorithmic Architecture. Architectural Press, New York.539

Victor, B. (2012). “Stop drawing dead fish, <https://vimeo.com/64895205>. Accessed 1May 2021.540

Wang, A. Y., Mittal, A., Brooks, C., and Oney, S. (2019). “How data scientists use computa-541

tional notebooks for real-time collaboration.” Proceedings of the ACM on Human-Computer542

Interaction, 3.543

Woodbury, R. (2010). Elements of parametric design. Routledge, Oxon and New York.544

Zhang, K. (2007). Visual languages and applications. Springer-Verlag US, New York.545

21 Castelo-Branco, March 2, 2022

List of Figures546

1 Design environment’s supported features. 23547

2 Design concept documentation in the AD Sketchbook. 24548

3 Façade design options: central stain effect (top) and vertical stains effect (bottom). . 25549

4 Parametric manipulation of façade parameters. 26550

5 Rendered images of the final model in POV-Ray. 27551

6 Optimization of the façade project: problemdescription (top left), interactive Pareto552

Front (top right), generation of the selected solution in the chosen visualization tool553

(bottom left), and parallel coordinates graph (bottom right). 28554

7 Part of the development history of the polygonal tile algorithm: first (on the left)555

and final version (on the right). 29556

22 Castelo-Branco, March 2, 2022

Fig. 1. Design environment’s supported features.

23 Castelo-Branco, March 2, 2022

Fig. 2. Design concept documentation in the AD Sketchbook.

24 Castelo-Branco, March 2, 2022

Fig. 3. Façade design options: central stain effect (top) and vertical stains effect (bottom).

25 Castelo-Branco, March 2, 2022

Fig. 4. Parametric manipulation of façade parameters.

26 Castelo-Branco, March 2, 2022

Fig. 5. Rendered images of the final model in POV-Ray.

27 Castelo-Branco, March 2, 2022

Fig. 6. Optimization of the façade project: problem description (top left), interactive Pareto Front
(top right), generation of the selected solution in the chosen visualization tool (bottom left), and
parallel coordinates graph (bottom right).

28 Castelo-Branco, March 2, 2022

Fig. 7. Part of the development history of the polygonal tile algorithm: first (on the left) and final
version (on the right).

29 Castelo-Branco, March 2, 2022

	Barriers
	Programming Paradigms
	Program Comprehension
	The Computational Equivalent
	Computational Notebooks
	Algorithmic Design Methodology
	Implementation
	Storytelling
	Compatibility
	Reproducibility
	A Tale of Design Development
	More Is More
	Remotely and Collaboratively
	Data Availability Statement
	Acknowledgments

