
1 International Journal of Architectural Computing

Navigating Design Spaces: Finding Designs, Design

Collections, and Design Subspaces

Abstract

Generative design systems can generate a wide panoply of solutions, from which designers search for

those that best suit their interests. However, without guidance, this search can be highly inefficient, and

many interesting solutions may remain unexplored. This problem is mitigated with automated exploration

methods. Still, the ones typically provided by generative design tools are mostly based on black-box

methods that drastically reduce the role of the designer, while more straightforward white-box mechanisms

are dispersedly found in specific applications. This paper proposes the Navigator tool, which gathers a set

of white-box mechanisms that automate the generation of default, random, similar, and hybrid designs and

design subspaces, while also supporting the generation of design collections. The proposed mechanisms

were tested with two generative systems that create, respectively, tower and chair designs. We expect that,

by providing understandable mechanisms for navigating design spaces, designers can become more

engaged in the search process.

Keywords

Generative Design, Design Space Exploration, Randomness, Hybridity, Similarity

Introduction

The design process comprehends the exploration of design alternatives and the selection of a solution that

better responds to a given design problem. The generation, evaluation, comparison, modification, and

selection of alternatives is crucial at the design concept phase as it can lead to better solutions.1

Traditionally, alternatives are manually generated – for instance, by producing a multitude of sketches or

editing a digital model. However, in such processes, designers deal with a single state at a time and the

modification of one design takes considerable amounts of time and effort.

Generative Design Systems (GDSs) enable the fast generation and exploration of design alternatives by

the means of computational processes. They can potentiate the creation of unforeseen solutions and thus

tickle designers’ imagination and creativity.2 The set of all possible design alternatives (complete or not,

feasible or not) producible by a GDS is called the design space. Exploring the design space consists of

navigating from one alternative to another until a satisfactory solution (or set of solutions) is achieved.3

Three types of design spaces can be identified: implicit space (the set of all designs that a system can

possibly generate), explicit space (the set of visited designs)3, and hysterical space (the set of designs from

an implicit space that is achievable by recombining data from an explicit space).1 The latter give the

designer novel and potentially meaningful directions that, although may be parametrically close to what

they have previously explored, may look entirely different.

2 International Journal of Architectural Computing

GDSs can easily generate an enormous number of designs, since the design space grows exponentially

with the number of parameters and the size of their ranges. Even a system with a very small number of

parameters can generate a complex design space – as John von Neumann once said, it only takes four

parameters to describe an elephant.

Visiting all possible solutions is out of question, thus users are left with the task of navigating

throughout the design space until they find one design that satisfies their needs. However, manual

exploration processes can easily become time-consuming, tedious, and inefficient. One can typically

visualize few designs at a time2 and, from all the solutions, not all are acceptable or complete. In fact,

using these processes designers will end up exploring very few design alternatives.3 This asks for tools that

support designers in exploring solution spaces, allowing them to visit designs that would not be considered

otherwise.

There are several exploration strategies, such as: parametric exploration (manual manipulation of

parameter values), similarity-based exploration (semi-automated exploration of parametrically close

alternatives), and optimization-based exploration (automatic selection of alternatives according to certain

goals).4 These approaches possess different degrees of automation, ranging from more manual to more

automatic, which affect users’ intervention in the search process. They also have different degrees of

computational cost, which influence the speed in the search for solutions: e.g., optimization-based methods

are more expensive (as they involve cycles of generation-analysis-regeneration), while parametric methods

are less expensive (as they only involve cycles of generation).

Generative design tools comprehend a series of exploration methods, which can be classified by using

the white-box and black-box metaphors. The first address explainable methods that allow users to be more

interventive (thus able to influence the search) and are less computationally expensive, when compared to

the latter. GDSs can be developed and used in several tools, such as Algorithmic Design (AD) tools (e.g.,

Grasshopper and Dynamo), where such systems are algorithmically described. Unfortunately, AD tools

present limitations with regards to solution exploration and visualization, as they mostly address black-box

exploration methods and often present a single model at a time, instead of multiple models.4 Other tools

are more oriented towards navigating GDSs, such as design space explorers, although these are more

focused on the visualization and interaction aspects of the exploration process.2,5 White-box methods can

be dispersedly found in specific GDSs.1,6

In this paper, we propose the Navigator tool, which gathers and clarifies some of the most well-known

white-box exploration mechanisms, combining human judgment with fast automated generation. These

mechanisms generate designs and design subspaces from default, random, similar, and hybrid processes,

giving the user the potential to explore solutions in the hysterical space.1

In the following sections we summarize some of the existing exploration methods, present the

methodology employed in the development of Navigator and illustrate its applicability with two case

studies.

3 International Journal of Architectural Computing

Related Work

Exploration methods allow users to navigate throughout the design space until finding one or more

satisfactory solutions. In this section, we briefly describe some of these methods, with particular emphasis

on the white-box ones, as these are the focus of this paper.

Black-box Exploration

Goal-oriented search is one of the most used black-box methods by AD tools nowadays. Automatic search

techniques, combining generation, analysis, and optimization, select the best solutions in a design space

considering one or more design goals (e.g., structural performance, cost, and tallness). This technique is

used, for instance, in the Autodesk’s Refinery tool.7 Other methods are based on the premise that users’

choices are often intuitive, rather than being based on exact criteria.2 In those cases, machine learning can

be employed to refine the design space according to users’ subjective preferences. This technique is used,

for instance, in Autodesk’s Dream Lens – based on user ranks, the system automatically selects the designs

that better match their choices.2

These black-box methods are helpful in finding interesting solutions but lack an explainable definition

and limit the designer’s role in the exploration process, unlike white-box methods. Unfortunately, the latter

have received less attention than the former, although they can be found in more specific generative design

applications, as detailed in the next subsection.

White-box Exploration

There are different white-box methods to generate designs and design spaces. Designs can be found

through several strategies, obtaining random, similar, and hybrid designs, design matrices and design

collections.

Random designs, resulting from an arbitrary selection of parameter values, are probably one of the

easiest and popular methods to select designs.1,8 However, without any kind of guidance, the probability of

randomly selecting a meaningful design from a large design space is very small.3 In fact, random designs

can look absurd, incomplete, or rather abstract. Nevertheless, these are the kind of solutions that are

expectable at the design concept phase.9 Remarkably, these can trigger unexplored ideas and lead to

potentially interesting designs.2,3 Beyond that, random choices are often used as staring points (e.g., in

optimization processes) and are also valuable for debugging and refining a generative system.

Similar designs take inspiration from an existing design to create a new design. These designs can be

obtained by different processes, namely by randomly generating values within a narrow range close to a

design’s parameter values7 or by estimating the similarity degree between a design and other designs of the

space – given by a distance (e.g., Euclidean similarity or Bray–Curtis dissimilarity) between pairs of

design alternatives – and selecting the designs that have a lower degree.4 While this is a valuable process

for generating alternatives, consideration should be given to not overwhelming users with very similar

variations.1

4 International Journal of Architectural Computing

Hybrid designs share features of two or more designs. Hybrid designs can be generated from different

strategies, namely, from a weighted interpolation between two or more designs6,10, which gives a smooth

transition from one design to another – a process also known as morphing. Another technique is to

recombine parameter values, or voxels from several voxel-based models (i.e., models composed of small

cubes in 3D space).11,12

Design matrices are sets of designs arranged in rows and columns. These can be generated by the

Cartesian product of two sets of parametric values, which can be obtained from the interpolation of

parametric ranges.1,2,5,7 This strategy allows the user to perceive the meaning of a parameter and how it

affects the design.

Design collections comprise designs typically from the same style but from different types (e.g.,

tableware collections composed of plates, bowls, mugs, and cups). These can be obtained by a system

where a change in one design is propagated to the remaining designs of the collection.6

Besides designs, exploration methods can also generate design spaces. Design spaces characterize a

coherent language whose designs share some recognizable features and principles concerning appearance,

function, and meaning.13 Languages can feature, for instance, a type (e.g., tableware6), a style (e.g.,

Mughul gardens13), or a brand (e.g., Harley-Davidson motorcycles14).

Design spaces can be extended or restricted. More generic design spaces (i.e., design superspaces) or

more specific design spaces (i.e., design subspaces) can be obtained by adding or deleting parameters or

relaxing or narrowing parametric ranges, respectively.4 This was successfully demonstrated with shape

grammars, where specific grammars are achieved by restricting rules, parameters, and/or labels of a more

generic grammar. For example, a motorcycle grammar can be constrained to become a Harley-Davison

grammar14.

Hybrid design spaces result from the combination of two or more design spaces. For instance, hybrid

(or composite) grammars can be obtained by merging two or more grammars according to different

methods, such as: (1) merging shapes, (2) mixing shapes and rules, or (3) merging rules.14,15 Note that,

unless the grammars to be merged are subsets of a more generic grammar (thus sharing the same structure

and vocabulary), the blending process will often require their modification. Hybrid grammars can be used

to analyze the influences and analogies of different design languages and create new languages. For

example, a crossover vehicle grammar can be restricted to existing vehicle subclasses (coupes, pickups,

and SUVs), a hybrid class (combining features of several classes), and an original vehicle subclass.16

Similar design spaces are obtained from two or more overlapping design spaces, characterizing the

similar features between them. This was tested with overlapping grammars, which have rules that are

shared among them and rules specific to each one.17 The similar (or common) grammar is given by the

intersection of the grammars, i.e., using the rules and parametric ranges that are common to both.

Although the white-box mechanisms detailed in this section are available in several applications, these

are specific to a given generative system. Generative design tools, on the contrary, provide several features

for designers to create GDSs, but lack white-box mechanisms to navigate the design space generated by

such systems. In fact, in comparison with the development of GDSs, the exploration of the design space

produced by such systems has been less researched.3 In the next section, we propose an implementation of

5 International Journal of Architectural Computing

such mechanisms to be used by any GDS. We assume that the GDS is a white box itself, i.e., that the

correlation between the parameters and the generated design is perceivable.

Methodology

This section describes the methodology employed in the development of a design space exploration tool,

called Navigator. The tool includes mechanisms to produce designs and design spaces, which are

synthetically described in Table 1 and illustrated in Figure 1. The subsequent paragraphs detail the

calculation procedures.

Table 1. Navigation mechanisms (name, symbol, and short definition).

Designs

Default Design, 𝐷𝐷 The default design of a design space

Random Designs, 𝐷𝑅 A design or set of designs randomly generated from a design space

Similar Designs, 𝐷𝑆 A design or set of designs similar to another design, in relation to a design space

Hybrid Designs, 𝐷𝐻 A hybrid design or set of designs generated by merging a set of designs

Design Collection, 𝐷𝐶 A set of designs generated from one design and a set of transformations

Design Matrix, 𝐷𝑀 A matrix of designs generated from one design and variations of two of its parameter values

Design Spaces

Default Design Space, 𝐷𝑆𝐷 A design space generated from a set of designs

Random Design Space, 𝐷𝑆𝑅 A design space randomly generated

Similar Design Space, 𝐷𝑆𝑆 A design space generated from the intersection of design spaces

Hybrid Design Space, 𝐷𝑆𝐻 A design space generated from the union of design spaces

Design Space Size, |𝐷𝑆| The size (or cardinality) of a design space

6 International Journal of Architectural Computing

Figure 1. Navigation mechanisms (in black) given from a design space (in grey).

A design 𝐷 is defined by a list of 𝑛 parameters 𝑝1 , … , 𝑝𝑛 and respective values 𝑣1, … , 𝑣𝑛. A design space

𝐷𝑆 is defined by a list of 𝑛 parameters 𝑝1, … , 𝑝𝑛 and respective range of variations. When a parameter 𝑝𝑖 is

categorical (ordinal or unordered), its range is represented by an ordered set of 𝑚 elements {𝑒1, … , 𝑒𝑚}

(although in the case of unordered parameters this order is irrelevant); when a parameter 𝑝𝑖 is numeric, its

range is represented by the interval [𝑚𝑖, 𝑀𝑖], where 𝑚𝑖 and 𝑀𝑖 are the minimum and maximum values for

𝑝𝑖 , respectively. From these definitions, the methods for calculating the navigation mechanisms are

presented below for each dimension, given a set of user-specified inputs. Such methods are then replicated

for all dimensions.

Default Design: given a design space 𝐷𝑆, it returns, for each parameter, a default value. In the case of

numerical parameters, it returns the mid-range value between the minimum and maximum values

(Equation 1). This approach is adequate for the frequent case of parameters that have linear effects on the

design (e.g., the effect of a circle’s radius on its perimeter); in the case of nonlinear effects (e.g., the effect

of a circle’s radius on its area), a different approach that takes the nonlinearity into account may be more

appropriate. In the case of categorical parameters, it returns the first element of the range. This mechanism

is useful to quickly create default designs for given design spaces.

𝐷𝐷 =
𝑚 + 𝑀

2
(1)

7 International Journal of Architectural Computing

Random Designs: given a design space 𝐷𝑆, it returns, for each parameter, a random value between the

minimum and maximum values (Equation 2), or a random element from the set of variations. Given a

number 𝑛, it returns a set of 𝑛 random values. Random designs are useful for both developers (for

debugging and refinement of the design space) and users (by suggesting new directions or ideas).2 This

mechanism can also be restricted to valid designs, where random designs are generated only if their

parameter values meet a certain condition (e.g., at least one parameter value is greater than a certain

measure).

𝐷𝑅 = random(𝑚, 𝑀) (2)

Similar Designs: given a design 𝐷 characterized by the set of values 𝑣, a design space 𝐷𝑆, and a weight

𝑤 ∈ [0,1] ⊂ ℝ, it returns, for each parameter, a design similar to the design 𝐷 (Equation 3). The weight

indicates the degree of similarity with the original: the higher the weight, the less similar the design, and

the closer it will be to the limits of the design space. If the weight is 0, the resulting design corresponds to

the original design; if the weight is 1, the resulting design is the most possible dissimilar design (located on

the border of the design space). Values of categorical parameters remain unchanged. If instead a weight 𝑤

we give a range of weights [𝑤1, 𝑤2] and a number 𝑛, it returns a set of 𝑛 similar designs for 𝑛 weights in

the range [𝑤1, 𝑤2]. Similar designs allow the user to ‘ask’ the system to ‘make more designs like this one’

or ‘show me different designs’, by manipulating the weight.

𝐷𝑠 = 𝑣 ± 𝑤 ⋅ max(𝑣 − 𝑚, 𝑀 − 𝑣) (3)

Hybrid Designs: given a set of designs 𝐷1, … , 𝐷𝑛, a hybrid design can be calculated from one of two

methods: given a set of weights 𝑤1, … , 𝑤𝑛, the mean method returns, for each parameter, the weighted

mean value between the design parameter’s values (Equation 4a), while the random method returns a

random combination of the said values (Equation 4b). In the first method, we can control the degree of

similarity that the hybrid design has with existing designs, which we cannot control in the second method.

As in the Default Design mechanism, the first approach better suits parameters with linear effects. In

categorical parameters, the random method is applied. A set of hybrid designs can be obtained by giving a

number 𝑛 and, in the case of the mean method, giving a range of weights [𝑤𝑖1
, 𝑤𝑖2

] instead of a weight 𝑤𝑖 .

𝐷𝐻 =
∑ 𝑣𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (4a)

𝐷𝐻 = random(𝑣1, … , 𝑣𝑛) (4b)

Design Collection: given a design 𝐷 and a set of transformations 𝑡1 … 𝑡𝑚, such that 𝑡𝑖 replaces a set of

values of parameters 𝑝1 … 𝑝𝑛 in design 𝐷 with new values 𝑣1 … 𝑣𝑛, a design collection is the set

containing the original design 𝐷 and the 𝑚 resulting designs from applying the transformations to 𝐷

(Equation 5). New values may or may not depend on other parameters’ values. Transformations may be

motivated by a given design space 𝐷𝑆 (if a value 𝑣 does not fit a range in the 𝐷𝑆, 𝑣 will be replaced by the

default value of the range).

𝐷𝐶 = {𝐷, 𝑡1(𝐷), … , 𝑡𝑚(𝐷)} (5)

Design Matrix: given a design 𝐷 and incremental variations 𝑚 and 𝑛 in two of its parameter values, it

returns an 𝑚 × 𝑛 matrix of designs 𝐷𝑀 (Equation 6). Each design 𝐷𝑖𝑗 is the entry at the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ

8 International Journal of Architectural Computing

column of 𝐷𝑀. This kind of incremental variation allows someone who is not familiar with the GDS to

relate the parameters with their visual output.4 Note that, although this approach can be easily generalized

to more than two parameter values, it becomes difficult to visualize.

𝐷𝑀 = [
𝐷11 ⋯ 𝐷1𝑛

⋮ ⋱ ⋮
𝐷𝑚1 ⋯ 𝐷𝑚𝑛

] (6)

Default Design Space: given a set of designs 𝐷1, … , 𝐷𝑛, it returns, for each parameter, the minimum and

maximum values among them (Equation 7). In the case of a categorical parameter, it returns all the distinct

elements of their ranges of variation (sorted in ascending order). The resulting design space will reproduce

the input designs and new designs in between. This mechanism can be used, for example, to quickly define

a language from a set of designs sharing that language.

𝐷𝑆𝐷 = [min(𝑣1, … , 𝑣𝑛) , max(𝑣1, … , 𝑣𝑛)] (7)

Random Design Space: given a design space 𝐷𝑆, it returns, for each parameter, two random values

between the minimum and maximum values, sorted in ascending order (Equation 8), or a set of distinct

random values among the elements of the range (for categorical parameters). Note that this mechanism

will not bring much benefit if one wants to generate a random design within a random design space, but it

can be used to create new sub-languages from an existing language.

𝐷𝑆𝑅 = [𝐷𝑅1
, 𝐷𝑅2

], 𝐷𝑅1
≤ 𝐷𝑅2

(8)

Similar Design Space: given a set of design spaces 𝐷𝑆1, … , 𝐷𝑆𝑛, it returns the intersection of the

parametric ranges17. This is given by the second smallest min2 and the second largest max2 values

(Equation 9), or by the set’s intersection (in the case of categorical parameters). If the intervals do not

overlap (i.e., with disjoint sets), it will return the interval between them (for numerical parameters) or the

elements of the first set (for categorical parameters). The reason why we considered non-overlapping

intervals was that, for large sets of parametric ranges, it is probable that at least one of them does not

overlap; thus, we prefer to provide an approximate solution than to not provide one at all. The similar

design space gathers the common features of a set of design spaces, featuring an ambiguous language that

can fit any of the original ones.

𝐷𝑆𝑆 = [min2(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛) , max2(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛)] (9)

Hybrid Design Space: given a set of design spaces 𝐷𝑆1, … , 𝐷𝑆𝑛, it returns the union of the parametric

ranges17. This is given by the smallest and largest values (Equation 10) or by the set’s union (for

categorical parameters). If the intervals do not overlap, it will return an interval containing the values in

the original intervals and the values between said intervals (in the case of numerical parameters). The

hybrid design space gathers all the features of a set of design spaces.

𝐷𝑆𝐻 = [min(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛) , max(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛)] (10)

Design Space Size: given a design space 𝐷𝑆, it returns the product of the parametric ranges’ sizes

(Equation 11a). The size is defined by the minimum 𝑚𝑖 and maximum 𝑀𝑖 values and the step 𝑠𝑖 (by

default, the step is 1) of an interval (Equation 11b), or by the number of elements in the range (for

9 International Journal of Architectural Computing

categorical parameters). Unlike the aforementioned mechanisms, this one is not meant for navigation, but

for the analysis of a given design space.

|𝐷𝑆| = 𝑠𝑖𝑧𝑒1 ⋅ … ⋅ 𝑠𝑖𝑧𝑒𝑛 (11𝑎)

𝑠𝑖𝑧𝑒𝑖 = 1 +
(𝑀𝑖 − 𝑚𝑖)

𝑠𝑖

(11b)

The mechanisms described in this section were implemented in a tool called Navigator. The parameters

and respective values and ranges are stored in spreadsheets, a common practice in parametric design.3

Because Navigator can work separately from generative design tools, it can be applied to any set of data in

the format of parameters, values, and ranges. One advantage of this approach is that we can generate

spreadsheets without generating the design. These files can then be used to create designs in any

generative design tool that can process spreadsheet-like files.

Navigator allows designs to be exported and imported. Thus, designers can save a design at any point in

the process, use existing designs as templates for further exploration, and easily share their designs. With

these mechanisms, users can design from scratch or from existing designs or design spaces. Moreover,

although the implemented mechanisms are based on simple straightforward methods, the user can

complement them with more complex ones. In the following section, we will see how Navigator can be

applied to generate designs of towers and chairs.

Evaluation

This section addresses the evaluation of the Navigator tool with two case studies. The first is a low-

dimensional parametric-based system that generates designs of towers, while the second is a high-

dimensional grammar-based system that generates designs of chairs. These cases illustrate the Navigator’s

ability to suit different generative systems, with different design domains and complexity levels.

Towers

The first case study is a parametric-based system that generates designs representing a simplified facade of

superellipse-sectioned towers. The GDS is defined by seven numerical parameters: height, floor height,

twist angle, taper ratio, base width, base length, and squareness. The superellipse section is defined by the

width, length, and squareness, and can assume diverse shapes, such as: a star (when squareness < 1), a

rhombus (when squareness = 1), an ellipse (when squareness = 2), a rounded rectangle (when squareness >

2), and a rectangle (as squareness approaches infinity). The taper ratio (varying between 0 and 1) and the

twist angle (given in radians) define how much the tower narrows and rotates towards the top, respectively.

This GDS is implemented in Khepri, a portable text-based AD tool.18 Khepri scales better with design

complexity (when compared to visual-based AD tools) and can generate, evaluate, and optimize designs in

several modeling, analysis, and optimization tools from a single algorithmic description. In this case,

Navigator mechanisms were used in Khepri’s environment to read and write CSV spreadsheets and

generate designs in a modeling tool. Figure 2 shows four towers generated by the manual manipulation of

the squareness parameter (from left to right: 0.5, 1, 2, and 6) and twist angle (from left to right: 0, π/4, π/2,

and π).

10 International Journal of Architectural Computing

Figure 2. User-defined towers (left to right: squareness = 0.5, 1, 2, and 6, and twist angle = 0, π/4, π/2, and π).

The Navigator’s Random Design mechanism was used to generate the five random towers presented in

Figure 3. The image shows, from left to right, towers with shapes resembling a twisted star prism, a

conical spiral, a twisted cone, a double helix, and a pyramid. These designs reveal the variety of shapes we

can obtain even with a relatively small design space.

Figure 3. Randomly generated towers.

Figure 4 shows one user-defined design (on the left) and three similar designs generated with

Navigator’s Similar Design. The similarity of the designs in relation to the source design on the left is

decreasing from left to right, while the weights are increasing (respectively, 0.1, 0.5, and 1). One can see

that the design whose weight is 0.1 is very similar to the original, while the design whose weight is 1 looks

very dissimilar.

11 International Journal of Architectural Computing

Figure 4. User-defined tower (on the left) and three similar towers (weights, from left to right: 0.1, 0.5, and 1).

Navigator’s Hybrid Design allows us to make interpolations between two designs. This is illustrated in

Figure 5, which shows us two user-defined designs (the leftmost and the rightmost), and two hybrid

designs in between (from left to right, with a weight of 0.6 and 0.3 in relation to the leftmost design).

Figure 5. User-defined towers (the left and the rightmost) and hybrid towers in between (with weights of 0.6 and

0.3, from left to right).

Navigator can also generate collections of designs. For instance, Figure 2 displays a collection of

towers that can be generated with Navigator’s Design Collection mechanism. Figure 6 shows a matrix of

towers generated with Navigator’s Design Matrix. This set of designs presents two parameter values

varying incrementally: the squareness varies from 1 to 4 from left to right and the twist angle varies from

π/4 to 3π/4 from front to back.

12 International Journal of Architectural Computing

Figure 6. Matrix of towers (left to right: squareness = 1, 2, 3, and 4, and front to back: twist angle = π/4, π/2, and

3π/4).

We are now going to look at the generation of subspaces. Design spaces can be restricted to subspaces

by limiting ranges, deleting parameters, or make an independent parameter a dependent one (e.g., to

constrain the GDS to squared towers, the width must be equal to the length). In this case, we have defined

two subspaces with the Navigator’s Default Design Space, that characterize two types of towers: twisted

towers (with taper ratio = 1) and tapered towers (with twist angle = 0). Figure 7 and Figure 8 show four

towers from each type, being the first three on the left user defined and the one on the right randomly

generated.

In Figure 7, the tower on the left is inspired by the Zeidler’s Al Majdoul Tower, the second is a replica

of the first but with a rectangular section, and the third has four times more twist than the first one. The

fourth is a randomly generated twisted tower.

Figure 7. Twisted towers: three user defined and one randomly generated (from left to right).

From left to right in Figure 8, the first tower is inspired by the Skidmore, Owings & Merrill’s John

Hancock Center, the second is a variation of the first (changing the taper ratio from 0.6 to 0), the third was

inspired by the Foster + Partners’ Millennium Tower, and the fourth is a random tapered tower.

13 International Journal of Architectural Computing

Figure 8. Tapered towers: three user defined and one randomly generated (from left to right).

From the two subspaces characterizing twisted and tapered towers, similar and hybrid spaces were

created with Navigator’s Similar and Hybrid Design Space, respectively. Figure 9 illustrates four towers,

where the first two belong to the similar space and the last two belong to the hybrid space. For each pair of

towers of one space, there is one that was manually defined and another that was randomly generated. We

can observe that, as expected, the similar space is far more restricted than the hybrid space, as it can only

generate straight towers (with twist angle = 0 and taper ratio = 1). Contrariwise, the hybrid space can

generate a variety of tapered twisted towers.

Figure 9. From left to right: similar user-defined tower, similar randomly generated tower, hybrid user-defined

tower, and hybrid randomly generated tower.

Chairs

The second case study considers the [removed for blind review] design tool.8 It provides a good case

scenario for Navigator as it has a high-dimensional design space, with 162 parameters (both numerical and

categorical). The generation is made by adding or deleting chair components (legs, seat, back, stretchers,

base, and arms) and editing their dimensions and positions (e.g., seat width, depth, height, tilt angle, front

and rear radii, and taper width). The design space is characterized by a wide diversity of bilaterally

symmetric chairs, restricted to standard anthropometric dimensions. The designs comprise a simplified

representation – they only address lines and arcs, planar surfaces, and constant thickness (except the

chair’s legs that can be tapered).

14 International Journal of Architectural Computing

The chair design tool is based on a parametric set grammar. It presents an interface mostly composed of

checkboxes and sliders whose manipulation edits a design represented in a modeling tool. Moreover, the

tool can export and import designs from Excel spreadsheets. Users can create a design from scratch

(adding elements step by step), from editing a design (of a library of predefined chairs or their own chairs),

or from random generation. In this case, Navigator was used to read and write CSV spreadsheets that were

converted to Excel spreadsheets to be read by [removed for blind review].

This GDS was devised from a corpus of 26 iconic modern chairs.8 Figure 10 shows four of such

designs, from left to right: Eero Saarinen’s Tulip, Mart Stam’s S33, Arne Jacobsen’s Ant, and Ernest

Race’s Antelope chair. The figure illustrates the ability of the system to generate a wide variety of chair

types, namely: one- to four-legged chairs, arm and armless chairs, rounded and squared seats, and solid

and splat back, among others.

Figure 10. User-defined chairs inspired by existing designs (from left to right: Tulip, S33, Ant, and Antelope chairs).

Users can also produce random designs. Figure 11 shows four designs generated with Navigator’s

Random Design. In this case, the random mode was restricted to valid chairs, i.e., to designs with at least

one leg, one seat, and one backrest element. This prevents the system to generate stools or incomplete

designs but does not avoid random designs to look extravagant and unrealistic. Nevertheless, such

unconventional designs turned out to be interesting for designers, who regarded them as a starting point for

new ideas.8 Also note that, although there is no ambiguity in the system, results have proven to be vehicles

of unpredictable emergent meanings, such as the ‘wheel’ in the leftmost design of Figure 11. Yet, more

feasible randomly generated designs can be obtained by restricting the design space, as we will see later.

Figure 11. Randomly generated chairs.

15 International Journal of Architectural Computing

Designs generated with the Navigator’s Similar Design mechanism can be either very similar or very

dissimilar to a given design. Figure 12 shows the Ant chair (on the left) and three similar designs (the

three rightmost). From left to right, the designs gradually become less similar to the Ant chair, as

increasing weights are applied (0.1, 0.4, and 0.8, respectively). The rightmost design is close to the border

of the design space, i.e., their parametric values are close to the limits of the parametric ranges. This design

illustrates how broad the design space is.

Figure 12. Ant chair (on the left) and three similar chairs (weights from left to right: 0.1, 0.4, 0.8).

Hybrid designs capture characteristics of two or more designs. Figure 13 shows two chairs from the

corpus: Thonet 214 chair and Ernest Race’s Antelope chair (the leftmost and the rightmost, respectively).

In the middle, we have two hybrid designs generated with the two different methods available in

Navigator’s Hybrid Design: the first uses the mean method (with a weight of 0.5), and the second uses the

random method.

Figure 13. Hybrid chairs. From left to right: Thonet chair, hybrid using mean method, hybrid using random method,

and Antelope chair.

Navigator’s mechanisms can also generate collections. This is a particularly useful feature in furniture

design as it often comprises designs of different types that share the same style. Navigator’s Design

Collection was used to generate the Antelope collection, composed of an armchair, a chair, a stool, and a

table (Figure 14, from left to right). The leftmost design is inspired by the Antelope chair, and the others

were obtained from slight parameter changes in relation to their predecessor: remove the arms (to obtain

the chair), remove the back and eliminate the seat tilt and taper (to obtain the stool); and increase the seat

width and decrease the seat height (to obtain the table).

16 International Journal of Architectural Computing

Figure 14. Antelope collection (from left to right: armchair, chair, stool, and table).

The design space can be restricted according to different criteria, such as: usability (e.g., omit

parameters that are less frequently used), function (e.g., discard unstable chairs), type (e.g., consider

armchairs only), manufacturing (e.g., constrain thickness to that of standard wood panels), aesthetics (e.g.,

address golden proportions), style (e.g., chairs from one designer), and dimensions (e.g., restrict to given

anthropometric data). Conversely, the design space can be expanded (e.g., to include lounge chairs).

In this case, we restricted the design space to the styles of two renowned designers: the Portuguese

designer Daciano da Costa (1930-2005) and the English designer Jasper Morrison (1959-). The styles were

automatically created from a corpus of five wooden frame chairs from the named designers using

Navigator’s Default Design Space. Beyond the corpus of designs, the design space also includes other

existing designs from the same style and original designs within the style.17

Figure 15 shows four designs of Daciano’s style: the three on the left were inspired by Daciano’s Alvor

(coffee shop), Palace, and Penta (restaurant) chairs, while the rightmost is a randomly generated design,

arguably of the same style. Figure 16 shows four designs of Jasper’s style: the first three, from left to

right, were inspired by Jasper’s Basel, Bac, and Lightwood chairs, while the fourth was randomly

generated. As one can see, the random designs in Figure 15 and Figure 16 look much more realistic than

the ones in Figure 11, since the design space is much more restricted. Nevertheless, we can further fine-

tune the spaces (e.g., the rightmost chair in Figure 15 could benefit from a restriction in the orientation of

the base rails to match that of the arms).

The distinguishing features of each style can be externalized by analyzing their parametric ranges

(Table 2). On the one hand, Daciano’s style is characterized by rigid straight lines. Chairs have a square

sectioned frame, three or four vertical legs, a rectangular or semi-circular seat, no stretchers connecting the

legs, and optional base and arms. On the other hand, Jasper’s style is defined by softer and rounder shapes

(which is reflected on the size of the design space – 1 ⋅ 1012 times bigger than the Daciano space). Chairs

have a square or round frame, four slightly inclined legs, a rectangular or rounded seat, and can optionally

have stretchers and arms, but no base rails. Note that, although this analysis may provide a good starting

point for style characterization, we must consider that the low level of shape detail (which disregards, e.g.,

the legs’ curvatures), the small number of exemplar designs, and the lack of an expert’s evaluation

prevents this characterization from being more robust.

17 International Journal of Architectural Computing

Figure 15. Daciano chairs: Alvor, Palace, Penta, and an in-style randomly generated chair.

Figure 16. Jasper chairs: Basel, Bac, Lightwood, and an in-style randomly generated chair.

Similar and hybrid styles were generated from the styles of Daciano and Jasper, using Navigator’s

Similar and Hybrid Design Space (Table 2). Figure 17 shows two chairs from the similar style (left) and

two chairs from the hybrid style (right). The similar design space is much more restricted than the hybrid

design space (3 ⋅ 1053 times smaller), as it only allows the generation of square-sectioned chairs with four

vertical legs, with no stretchers nor base. Contrariwise, although the hybrid style is restricted to wooden

frame chairs, it can generate designs from more simple and rectilinear lines to more complex and

curvilinear ones.

Figure 17. From left to right: similar user-defined chair, similar randomly generated chair, hybrid user-defined chair,

and hybrid randomly generated chair.

18 International Journal of Architectural Computing

Table 2. Some parameters and ranges of Daciano, Jasper, Similar, and Hybrid Design Spaces

 Daciano Space Jasper Space Similar Space Hybrid Space

Frame section square round square {round, square}

Legs number [3, 4] 4 4 [3, 4]

Leg splat angle 0 [0, 15] 0 [0, 15]

Leg rake angle 0 [15, 33] [0, 15] [0, 33]

Seat front radius [0, 12] [0, 60] [0, 12] [0, 60]

Sear rear radius [0, 100] [0, 80] [0, 80] [0, 100]

Stretchers false {false, true} false {false, true}

Base {false, true} false false {false, true}

Arms {false, true} {false, true} {false, true} {false, true}

Conclusion

Generative design allows us to quickly generate design alternatives. This benefits designers’ creativity and

can lead to better design solutions. However, design alternatives are usually overwhelming, and designers

end up exploring a very small area of the design space. This is mitigated with exploration mechanisms,

which guide the designer throughout the design space to unexplored and potentially interesting areas.

Generative design tools provide a good amount of black-box search mechanisms but provide less

support for the more fast, interactive, and comprehensible white-box ones. Given this drawback, we

implemented a compendium of well-known white-box mechanisms in the Navigator tool to find designs

and design subspaces. Those mechanisms can generate default, random, similar, and hybrid designs and

design spaces, design collections, and design matrices. The tool also provides a mechanism to compute the

size of a design space. Navigator can be applied to any generative system; in this paper, it was illustrated

with the generation of designs of towers and chairs.

Navigator promotes an engaging and playful experience in exploring design spaces. Designers can test

different ways of navigation using randomness or existing designs while maintaining control of the

process. Such exploration can aid users in finding areas of the design space that they probably would not

find otherwise, which can lead to new, unforeseen, and exciting ideas. We have seen that meaningful

alternatives do not need to be necessarily reliable or coherent, as they can lead at some point to new

directions for further explorations. Navigator’s mechanisms also proved to be valuable for fine-tuning

generative systems (e.g., increasing the parameter’s range step to obtain higher geometric distinctions).

For future work, we intend to develop a user-friendly graphical interface for the manipulation of these

mechanisms and for the simultaneous visualization of multiple design alternatives. We will then perform

user tests with designers, to assess whether these mechanisms help them in their design process. Moreover,

we plan to complement Navigator with some black-box mechanisms, such as machine learning guided

exploration, to filter meaningful solutions for the designer.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or

publication of this article.

19 International Journal of Architectural Computing

Funding

This work was supported by [removed for blind review], under projects [removed for blind review].

References

1. Sheikholeslami M. Design Space Exploration. In: Elements of Parametric Design. Abingdon, UK: Routledge,

2010, pp. 275–287.

2. Matejka J, Glueck M, Bradner E, et al. Dream Lens: Exploration and Visualization of Large-Scale Generative

Design Dataset. In: Proceedings of the 2018 CHI Conference. 2018, pp. 1–12.

3. Woodbury R, Burrow A. Whither design space? Artificial Intelligence for Engineering Design, Analysis and

Manufacturing 2006; 20: 63–82.

4. Erhan H, Wang IY, Shireen N. Harnessing Design Space: A Similarity-Based Exploration Method for

Generative Design. International Journal of Architectural Computing 2015; 12: 217–236.

5. Mohiuddin A, Woodbury R. Interactive Visualization for Design Dialog. In: Design Computing and Cognition

’20. 2021, pp. 507–526.

6. Castro e Costa E, Jorge J, Knochel AD, et al. Enabling parametric design space exploration by non-designers.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 2020; 34: 160–175.

7. Autodesk. Autodesk Project Refinery, http://www.autodesk.com/campaigns/refinery-beta (2016, accessed 10

February 2021).

8. Removed for blind review.

9. Lawson B. How Designers Think: The Design Process Demystified. 4th ed. Oxford, Burlington, MA:

Elsevier/Architectural Press, 2005.

10. Bidgoli A, Veloso P. DeepCloud: The Application of a Data-driven, Generative Model in Design. In: ACADIA

2018: Recalibration. On imprecision and infidelity. 2018, pp. 176–185.

11. Roman M. Four Chairs and All the Others - Eigenchair: Data driven design. In: Computation and Performance

– Proceedings of the 31st eCAADe Conference. 2013, pp. 405–414.

12. Sanchez M, Fryazinov O, Vilbrandt T, et al. Morphological Shape Generation through User-Controlled Group

Metamorphosis. Computers & Graphics 2013; 37: 620–627.

13. Stiny G, Mitchell WJ. The grammar of paradise: on the generation of Mughul gardens. Environment and

Planning B 1980; 7: 209–226.

14. Pugliese M, Cagan J. Capturing a rebel: modeling the Harley-Davidson brand through a motorcycle shape

grammar. Research in Engineering Design 2002; 13: 139–156.

15. Chase S, Ahmad S. Grammar Transformations: Using Composite Grammars to Understand Hybridity in

Design, With an Example from Medieval Islamic Courtyard Buildings. In: Learning from the Past a

Foundation for the Future (Special publication of papers presented at the CAAD futures 2005 conference).

2005, pp. 89–98.

16. Orsborn S, Cagan J, Pawlicki R, et al. Creating cross-over vehicles: Defining and combining vehicle classes

using shape grammars. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 2006; 20:

217–246.

17. Removed for blind review.

18. Leitão A, Castelo-Branco R, Santos G. Game of Renders: The Use of Game Engines for Architectural

Visualization. In: Proceedings of the 24th CAADRIA Conference. 2019, pp. 655–664.

