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Navigating Design Spaces: Finding Designs, Design 

Collections, and Design Subspaces 
 

Abstract 

Generative design systems can generate a wide panoply of solutions, from which designers search for 

those that best suit their interests. However, without guidance, this search can be highly inefficient, and 

many interesting solutions may remain unexplored. This problem is mitigated with automated exploration 

methods. Still, the ones typically provided by generative design tools are mostly based on black-box 

methods that drastically reduce the role of the designer, while more straightforward white-box mechanisms 

are dispersedly found in specific applications. This paper proposes the Navigator tool, which gathers a set 

of white-box mechanisms that automate the generation of default, random, similar, and hybrid designs and 

design subspaces, while also supporting the generation of design collections. The proposed mechanisms 

were tested with two generative systems that create, respectively, tower and chair designs. We expect that, 

by providing understandable mechanisms for navigating design spaces, designers can become more 

engaged in the search process. 
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Introduction 

The design process comprehends the exploration of design alternatives and the selection of a solution that 

better responds to a given design problem. The generation, evaluation, comparison, modification, and 

selection of alternatives is crucial at the design concept phase as it can lead to better solutions.1 

Traditionally, alternatives are manually generated – for instance, by producing a multitude of sketches or 

editing a digital model. However, in such processes, designers deal with a single state at a time and the 

modification of one design takes considerable amounts of time and effort. 

Generative Design Systems (GDSs) enable the fast generation and exploration of design alternatives by 

the means of computational processes. They can potentiate the creation of unforeseen solutions and thus 

tickle designers’ imagination and creativity.2 The set of all possible design alternatives (complete or not, 

feasible or not) producible by a GDS is called the design space. Exploring the design space consists of 

navigating from one alternative to another until a satisfactory solution (or set of solutions) is achieved.3 

Three types of design spaces can be identified: implicit space (the set of all designs that a system can 

possibly generate), explicit space (the set of visited designs)3, and hysterical space (the set of designs from 

an implicit space that is achievable by recombining data from an explicit space).1 The latter give the 

designer novel and potentially meaningful directions that, although may be parametrically close to what 

they have previously explored, may look entirely different. 
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GDSs can easily generate an enormous number of designs, since the design space grows exponentially 

with the number of parameters and the size of their ranges. Even a system with a very small number of 

parameters can generate a complex design space – as John von Neumann once said, it only takes four 

parameters to describe an elephant. 

Visiting all possible solutions is out of question, thus users are left with the task of navigating 

throughout the design space until they find one design that satisfies their needs. However, manual 

exploration processes can easily become time-consuming, tedious, and inefficient. One can typically 

visualize few designs at a time2 and, from all the solutions, not all are acceptable or complete. In fact, 

using these processes designers will end up exploring very few design alternatives.3 This asks for tools that 

support designers in exploring solution spaces, allowing them to visit designs that would not be considered 

otherwise. 

There are several exploration strategies, such as: parametric exploration (manual manipulation of 

parameter values), similarity-based exploration (semi-automated exploration of parametrically close 

alternatives), and optimization-based exploration (automatic selection of alternatives according to certain 

goals).4 These approaches possess different degrees of automation, ranging from more manual to more 

automatic, which affect users’ intervention in the search process. They also have different degrees of 

computational cost, which influence the speed in the search for solutions: e.g., optimization-based methods 

are more expensive (as they involve cycles of generation-analysis-regeneration), while parametric methods 

are less expensive (as they only involve cycles of generation).  

Generative design tools comprehend a series of exploration methods, which can be classified by using 

the white-box and black-box metaphors. The first address explainable methods that allow users to be more 

interventive (thus able to influence the search) and are less computationally expensive, when compared to 

the latter. GDSs can be developed and used in several tools, such as Algorithmic Design (AD) tools (e.g., 

Grasshopper and Dynamo), where such systems are algorithmically described. Unfortunately, AD tools 

present limitations with regards to solution exploration and visualization, as they mostly address black-box 

exploration methods and often present a single model at a time, instead of multiple models.4 Other tools 

are more oriented towards navigating GDSs, such as design space explorers, although these are more 

focused on the visualization and interaction aspects of the exploration process.2,5 White-box methods can 

be dispersedly found in specific GDSs.1,6 

In this paper, we propose the Navigator tool, which gathers and clarifies some of the most well-known 

white-box exploration mechanisms, combining human judgment with fast automated generation. These 

mechanisms generate designs and design subspaces from default, random, similar, and hybrid processes, 

giving the user the potential to explore solutions in the hysterical space.1 

In the following sections we summarize some of the existing exploration methods, present the 

methodology employed in the development of Navigator and illustrate its applicability with two case 

studies. 
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Related Work 

Exploration methods allow users to navigate throughout the design space until finding one or more 

satisfactory solutions. In this section, we briefly describe some of these methods, with particular emphasis 

on the white-box ones, as these are the focus of this paper. 

Black-box Exploration 

Goal-oriented search is one of the most used black-box methods by AD tools nowadays. Automatic search 

techniques, combining generation, analysis, and optimization, select the best solutions in a design space 

considering one or more design goals (e.g., structural performance, cost, and tallness). This technique is 

used, for instance, in the Autodesk’s Refinery tool.7 Other methods are based on the premise that users’ 

choices are often intuitive, rather than being based on exact criteria.2 In those cases, machine learning can 

be employed to refine the design space according to users’ subjective preferences. This technique is used, 

for instance, in Autodesk’s Dream Lens – based on user ranks, the system automatically selects the designs 

that better match their choices.2  

These black-box methods are helpful in finding interesting solutions but lack an explainable definition 

and limit the designer’s role in the exploration process, unlike white-box methods. Unfortunately, the latter 

have received less attention than the former, although they can be found in more specific generative design 

applications, as detailed in the next subsection. 

White-box Exploration 

There are different white-box methods to generate designs and design spaces. Designs can be found 

through several strategies, obtaining random, similar, and hybrid designs, design matrices and design 

collections. 

Random designs, resulting from an arbitrary selection of parameter values, are probably one of the 

easiest and popular methods to select designs.1,8 However, without any kind of guidance, the probability of 

randomly selecting a meaningful design from a large design space is very small.3 In fact, random designs 

can look absurd, incomplete, or rather abstract. Nevertheless, these are the kind of solutions that are 

expectable at the design concept phase.9 Remarkably, these can trigger unexplored ideas and lead to 

potentially interesting designs.2,3 Beyond that, random choices are often used as staring points (e.g., in 

optimization processes) and are also valuable for debugging and refining a generative system. 

Similar designs take inspiration from an existing design to create a new design. These designs can be 

obtained by different processes, namely by randomly generating values within a narrow range close to a 

design’s parameter values7 or by estimating the similarity degree between a design and other designs of the 

space – given by a distance (e.g., Euclidean similarity or Bray–Curtis dissimilarity) between pairs of 

design alternatives – and selecting the designs that have a lower degree.4 While this is a valuable process 

for generating alternatives, consideration should be given to not overwhelming users with very similar 

variations.1 
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Hybrid designs share features of two or more designs. Hybrid designs can be generated from different 

strategies, namely, from a weighted interpolation between two or more designs6,10, which gives a smooth 

transition from one design to another – a process also known as morphing. Another technique is to 

recombine parameter values, or voxels from several voxel-based models (i.e., models composed of small 

cubes in 3D space).11,12 

Design matrices are sets of designs arranged in rows and columns. These can be generated by the 

Cartesian product of two sets of parametric values, which can be obtained from the interpolation of 

parametric ranges.1,2,5,7 This strategy allows the user to perceive the meaning of a parameter and how it 

affects the design. 

Design collections comprise designs typically from the same style but from different types (e.g., 

tableware collections composed of plates, bowls, mugs, and cups). These can be obtained by a system 

where a change in one design is propagated to the remaining designs of the collection.6 

Besides designs, exploration methods can also generate design spaces. Design spaces characterize a 

coherent language whose designs share some recognizable features and principles concerning appearance, 

function, and meaning.13 Languages can feature, for instance, a type (e.g., tableware6), a style (e.g., 

Mughul gardens13), or a brand (e.g., Harley-Davidson motorcycles14). 

Design spaces can be extended or restricted. More generic design spaces (i.e., design superspaces) or 

more specific design spaces (i.e., design subspaces) can be obtained by adding or deleting parameters or 

relaxing or narrowing parametric ranges, respectively.4 This was successfully demonstrated with shape 

grammars, where specific grammars are achieved by restricting rules, parameters, and/or labels of a more 

generic grammar. For example, a motorcycle grammar can be constrained to become a Harley-Davison 

grammar14. 

Hybrid design spaces result from the combination of two or more design spaces. For instance, hybrid 

(or composite) grammars can be obtained by merging two or more grammars according to different 

methods, such as: (1) merging shapes, (2) mixing shapes and rules, or (3) merging rules.14,15 Note that, 

unless the grammars to be merged are subsets of a more generic grammar (thus sharing the same structure 

and vocabulary), the blending process will often require their modification. Hybrid grammars can be used 

to analyze the influences and analogies of different design languages and create new languages. For 

example, a crossover vehicle grammar can be restricted to existing vehicle subclasses (coupes, pickups, 

and SUVs), a hybrid class (combining features of several classes), and an original vehicle subclass.16 

Similar design spaces are obtained from two or more overlapping design spaces, characterizing the 

similar features between them. This was tested with overlapping grammars, which have rules that are 

shared among them and rules specific to each one.17 The similar (or common) grammar is given by the 

intersection of the grammars, i.e., using the rules and parametric ranges that are common to both. 

Although the white-box mechanisms detailed in this section are available in several applications, these 

are specific to a given generative system. Generative design tools, on the contrary, provide several features 

for designers to create GDSs, but lack white-box mechanisms to navigate the design space generated by 

such systems. In fact, in comparison with the development of GDSs, the exploration of the design space 

produced by such systems has been less researched.3 In the next section, we propose an implementation of 
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such mechanisms to be used by any GDS. We assume that the GDS is a white box itself, i.e., that the 

correlation between the parameters and the generated design is perceivable. 

Methodology 

This section describes the methodology employed in the development of a design space exploration tool, 

called Navigator. The tool includes mechanisms to produce designs and design spaces, which are 

synthetically described in Table 1 and illustrated in Figure 1. The subsequent paragraphs detail the 

calculation procedures. 

Table 1. Navigation mechanisms (name, symbol, and short definition). 

Designs  

Default Design, 𝐷𝐷 The default design of a design space 

Random Designs, 𝐷𝑅 A design or set of designs randomly generated from a design space 

Similar Designs, 𝐷𝑆 A design or set of designs similar to another design, in relation to a design space 

Hybrid Designs, 𝐷𝐻 A hybrid design or set of designs generated by merging a set of designs 

Design Collection, 𝐷𝐶  A set of designs generated from one design and a set of transformations 

Design Matrix, 𝐷𝑀 A matrix of designs generated from one design and variations of two of its parameter values 

Design Spaces  

Default Design Space, 𝐷𝑆𝐷 A design space generated from a set of designs 

Random Design Space, 𝐷𝑆𝑅  A design space randomly generated 

Similar Design Space, 𝐷𝑆𝑆 A design space generated from the intersection of design spaces 

Hybrid Design Space, 𝐷𝑆𝐻 A design space generated from the union of design spaces 

Design Space Size, |𝐷𝑆| The size (or cardinality) of a design space 
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Figure 1. Navigation mechanisms (in black) given from a design space (in grey). 

A design 𝐷 is defined by a list of 𝑛 parameters 𝑝1 , … , 𝑝𝑛 and respective values 𝑣1, … , 𝑣𝑛. A design space 

𝐷𝑆 is defined by a list of 𝑛 parameters 𝑝1, … , 𝑝𝑛 and respective range of variations. When a parameter 𝑝𝑖  is 

categorical (ordinal or unordered), its range is represented by an ordered set of 𝑚 elements {𝑒1, … , 𝑒𝑚} 

(although in the case of unordered parameters this order is irrelevant); when a parameter 𝑝𝑖  is numeric, its 

range is represented by the interval [𝑚𝑖, 𝑀𝑖], where 𝑚𝑖 and 𝑀𝑖 are the minimum and maximum values for 

𝑝𝑖 , respectively. From these definitions, the methods for calculating the navigation mechanisms are 

presented below for each dimension, given a set of user-specified inputs. Such methods are then replicated 

for all dimensions. 

Default Design: given a design space 𝐷𝑆, it returns, for each parameter, a default value. In the case of 

numerical parameters, it returns the mid-range value between the minimum and maximum values 

(Equation 1). This approach is adequate for the frequent case of parameters that have linear effects on the 

design (e.g., the effect of a circle’s radius on its perimeter); in the case of nonlinear effects (e.g., the effect 

of a circle’s radius on its area), a different approach that takes the nonlinearity into account may be more 

appropriate. In the case of categorical parameters, it returns the first element of the range. This mechanism 

is useful to quickly create default designs for given design spaces. 

𝐷𝐷 =
𝑚 + 𝑀

2
(1) 
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Random Designs: given a design space 𝐷𝑆, it returns, for each parameter, a random value between the 

minimum and maximum values (Equation 2), or a random element from the set of variations. Given a 

number 𝑛, it returns a set of 𝑛 random values. Random designs are useful for both developers (for 

debugging and refinement of the design space) and users (by suggesting new directions or ideas).2 This 

mechanism can also be restricted to valid designs, where random designs are generated only if their 

parameter values meet a certain condition (e.g., at least one parameter value is greater than a certain 

measure). 

𝐷𝑅 = random(𝑚, 𝑀) (2) 

Similar Designs: given a design 𝐷 characterized by the set of values 𝑣, a design space 𝐷𝑆, and a weight 

𝑤 ∈ [0,1] ⊂ ℝ, it returns, for each parameter, a design similar to the design 𝐷 (Equation 3). The weight 

indicates the degree of similarity with the original: the higher the weight, the less similar the design, and 

the closer it will be to the limits of the design space. If the weight is 0, the resulting design corresponds to 

the original design; if the weight is 1, the resulting design is the most possible dissimilar design (located on 

the border of the design space). Values of categorical parameters remain unchanged. If instead a weight 𝑤 

we give a range of weights [𝑤1, 𝑤2] and a number 𝑛, it returns a set of 𝑛 similar designs for 𝑛 weights in 

the range [𝑤1, 𝑤2]. Similar designs allow the user to ‘ask’ the system to ‘make more designs like this one’ 

or ‘show me different designs’, by manipulating the weight. 

𝐷𝑠 = 𝑣 ± 𝑤 ⋅ max(𝑣 − 𝑚, 𝑀 − 𝑣) (3) 

Hybrid Designs: given a set of designs 𝐷1, … , 𝐷𝑛, a hybrid design can be calculated from one of two 

methods: given a set of weights 𝑤1, … , 𝑤𝑛, the mean method returns, for each parameter, the weighted 

mean value between the design parameter’s values (Equation 4a), while the random method returns a 

random combination of the said values (Equation 4b). In the first method, we can control the degree of 

similarity that the hybrid design has with existing designs, which we cannot control in the second method. 

As in the Default Design mechanism, the first approach better suits parameters with linear effects. In 

categorical parameters, the random method is applied. A set of hybrid designs can be obtained by giving a 

number 𝑛 and, in the case of the mean method, giving a range of weights [𝑤𝑖1
, 𝑤𝑖2

] instead of a weight 𝑤𝑖 . 

𝐷𝐻 =
∑ 𝑣𝑖𝑤𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (4a) 

𝐷𝐻 = random(𝑣1, … , 𝑣𝑛) (4b) 

Design Collection: given a design 𝐷 and a set of transformations 𝑡1 … 𝑡𝑚, such that 𝑡𝑖  replaces a set of 

values of parameters 𝑝1 … 𝑝𝑛 in design 𝐷 with new values 𝑣1 … 𝑣𝑛, a design collection is the set 

containing the original design 𝐷 and the 𝑚 resulting designs from applying the transformations to 𝐷 

(Equation 5). New values may or may not depend on other parameters’ values. Transformations may be 

motivated by a given design space 𝐷𝑆 (if a value 𝑣 does not fit a range in the 𝐷𝑆, 𝑣 will be replaced by the 

default value of the range). 

𝐷𝐶 = {𝐷, 𝑡1(𝐷), … , 𝑡𝑚(𝐷)} (5) 

Design Matrix: given a design 𝐷 and incremental variations 𝑚 and 𝑛 in two of its parameter values, it 

returns an 𝑚 × 𝑛 matrix of designs 𝐷𝑀 (Equation 6). Each design 𝐷𝑖𝑗 is the entry at the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ 
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column of 𝐷𝑀. This kind of incremental variation allows someone who is not familiar with the GDS to 

relate the parameters with their visual output.4 Note that, although this approach can be easily generalized 

to more than two parameter values, it becomes difficult to visualize. 

𝐷𝑀 = [
𝐷11 ⋯ 𝐷1𝑛

⋮ ⋱ ⋮
𝐷𝑚1 ⋯ 𝐷𝑚𝑛

] (6) 

Default Design Space: given a set of designs 𝐷1, … , 𝐷𝑛, it returns, for each parameter, the minimum and 

maximum values among them (Equation 7). In the case of a categorical parameter, it returns all the distinct 

elements of their ranges of variation (sorted in ascending order). The resulting design space will reproduce 

the input designs and new designs in between. This mechanism can be used, for example, to quickly define 

a language from a set of designs sharing that language. 

𝐷𝑆𝐷 = [min(𝑣1, … , 𝑣𝑛) , max(𝑣1, … , 𝑣𝑛)] (7) 

Random Design Space: given a design space 𝐷𝑆, it returns, for each parameter, two random values 

between the minimum and maximum values, sorted in ascending order (Equation 8), or a set of distinct 

random values among the elements of the range (for categorical parameters). Note that this mechanism 

will not bring much benefit if one wants to generate a random design within a random design space, but it 

can be used to create new sub-languages from an existing language. 

𝐷𝑆𝑅 = [𝐷𝑅1
, 𝐷𝑅2

], 𝐷𝑅1
≤ 𝐷𝑅2

(8) 

Similar Design Space: given a set of design spaces 𝐷𝑆1, … , 𝐷𝑆𝑛, it returns the intersection of the 

parametric ranges17. This is given by the second smallest min2 and the second largest max2 values 

(Equation 9), or by the set’s intersection (in the case of categorical parameters). If the intervals do not 

overlap (i.e., with disjoint sets), it will return the interval between them (for numerical parameters) or the 

elements of the first set (for categorical parameters). The reason why we considered non-overlapping 

intervals was that, for large sets of parametric ranges, it is probable that at least one of them does not 

overlap; thus, we prefer to provide an approximate solution than to not provide one at all. The similar 

design space gathers the common features of a set of design spaces, featuring an ambiguous language that 

can fit any of the original ones. 

𝐷𝑆𝑆 = [min2(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛) , max2(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛)] (9) 

Hybrid Design Space: given a set of design spaces 𝐷𝑆1, … , 𝐷𝑆𝑛, it returns the union of the parametric 

ranges17. This is given by the smallest and largest values (Equation 10) or by the set’s union (for 

categorical parameters). If the intervals do not overlap, it will return an interval containing the values in 

the original intervals and the values between said intervals (in the case of numerical parameters). The 

hybrid design space gathers all the features of a set of design spaces. 

𝐷𝑆𝐻 = [min(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛) , max(𝑚1, … , 𝑚𝑛 , 𝑀1, … , 𝑀𝑛)] (10) 

Design Space Size: given a design space 𝐷𝑆, it returns the product of the parametric ranges’ sizes 

(Equation 11a). The size is defined by the minimum 𝑚𝑖 and maximum 𝑀𝑖 values and the step 𝑠𝑖 (by 

default, the step is 1) of an interval (Equation 11b), or by the number of elements in the range (for 
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categorical parameters). Unlike the aforementioned mechanisms, this one is not meant for navigation, but 

for the analysis of a given design space. 

|𝐷𝑆| = 𝑠𝑖𝑧𝑒1 ⋅ … ⋅ 𝑠𝑖𝑧𝑒𝑛 (11𝑎) 

𝑠𝑖𝑧𝑒𝑖 = 1 +
(𝑀𝑖 − 𝑚𝑖)

𝑠𝑖

(11b) 

The mechanisms described in this section were implemented in a tool called Navigator. The parameters 

and respective values and ranges are stored in spreadsheets, a common practice in parametric design.3 

Because Navigator can work separately from generative design tools, it can be applied to any set of data in 

the format of parameters, values, and ranges. One advantage of this approach is that we can generate 

spreadsheets without generating the design. These files can then be used to create designs in any 

generative design tool that can process spreadsheet-like files. 

Navigator allows designs to be exported and imported. Thus, designers can save a design at any point in 

the process, use existing designs as templates for further exploration, and easily share their designs. With 

these mechanisms, users can design from scratch or from existing designs or design spaces. Moreover, 

although the implemented mechanisms are based on simple straightforward methods, the user can 

complement them with more complex ones. In the following section, we will see how Navigator can be 

applied to generate designs of towers and chairs. 

Evaluation 

This section addresses the evaluation of the Navigator tool with two case studies. The first is a low-

dimensional parametric-based system that generates designs of towers, while the second is a high-

dimensional grammar-based system that generates designs of chairs. These cases illustrate the Navigator’s 

ability to suit different generative systems, with different design domains and complexity levels. 

Towers 

The first case study is a parametric-based system that generates designs representing a simplified facade of 

superellipse-sectioned towers. The GDS is defined by seven numerical parameters: height, floor height, 

twist angle, taper ratio, base width, base length, and squareness. The superellipse section is defined by the 

width, length, and squareness, and can assume diverse shapes, such as: a star (when squareness < 1), a 

rhombus (when squareness = 1), an ellipse (when squareness = 2), a rounded rectangle (when squareness > 

2), and a rectangle (as squareness approaches infinity). The taper ratio (varying between 0 and 1) and the 

twist angle (given in radians) define how much the tower narrows and rotates towards the top, respectively. 

This GDS is implemented in Khepri, a portable text-based AD tool.18 Khepri scales better with design 

complexity (when compared to visual-based AD tools) and can generate, evaluate, and optimize designs in 

several modeling, analysis, and optimization tools from a single algorithmic description. In this case, 

Navigator mechanisms were used in Khepri’s environment to read and write CSV spreadsheets and 

generate designs in a modeling tool. Figure 2 shows four towers generated by the manual manipulation of 

the squareness parameter (from left to right: 0.5, 1, 2, and 6) and twist angle (from left to right: 0, π/4, π/2, 

and π). 
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Figure 2. User-defined towers (left to right: squareness = 0.5, 1, 2, and 6, and twist angle = 0, π/4, π/2, and π). 

The Navigator’s Random Design mechanism was used to generate the five random towers presented in 

Figure 3. The image shows, from left to right, towers with shapes resembling a twisted star prism, a 

conical spiral, a twisted cone, a double helix, and a pyramid. These designs reveal the variety of shapes we 

can obtain even with a relatively small design space. 

 

Figure 3. Randomly generated towers. 

Figure 4 shows one user-defined design (on the left) and three similar designs generated with 

Navigator’s Similar Design. The similarity of the designs in relation to the source design on the left is 

decreasing from left to right, while the weights are increasing (respectively, 0.1, 0.5, and 1). One can see 

that the design whose weight is 0.1 is very similar to the original, while the design whose weight is 1 looks 

very dissimilar. 
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Figure 4. User-defined tower (on the left) and three similar towers (weights, from left to right: 0.1, 0.5, and 1). 

Navigator’s Hybrid Design allows us to make interpolations between two designs. This is illustrated in 

Figure 5, which shows us two user-defined designs (the leftmost and the rightmost), and two hybrid 

designs in between (from left to right, with a weight of 0.6 and 0.3 in relation to the leftmost design). 

 

Figure 5. User-defined towers (the left and the rightmost) and hybrid towers in between (with weights of 0.6 and 

0.3, from left to right). 

Navigator can also generate collections of designs. For instance, Figure 2 displays a collection of 

towers that can be generated with Navigator’s Design Collection mechanism. Figure 6 shows a matrix of 

towers generated with Navigator’s Design Matrix. This set of designs presents two parameter values 

varying incrementally: the squareness varies from 1 to 4 from left to right and the twist angle varies from 

π/4 to 3π/4 from front to back. 
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Figure 6. Matrix of towers (left to right: squareness = 1, 2, 3, and 4, and front to back: twist angle = π/4, π/2, and 

3π/4). 

We are now going to look at the generation of subspaces. Design spaces can be restricted to subspaces 

by limiting ranges, deleting parameters, or make an independent parameter a dependent one (e.g., to 

constrain the GDS to squared towers, the width must be equal to the length). In this case, we have defined 

two subspaces with the Navigator’s Default Design Space, that characterize two types of towers: twisted 

towers (with taper ratio = 1) and tapered towers (with twist angle = 0). Figure 7 and Figure 8 show four 

towers from each type, being the first three on the left user defined and the one on the right randomly 

generated. 

In Figure 7, the tower on the left is inspired by the Zeidler’s Al Majdoul Tower, the second is a replica 

of the first but with a rectangular section, and the third has four times more twist than the first one. The 

fourth is a randomly generated twisted tower. 

 

Figure 7. Twisted towers: three user defined and one randomly generated (from left to right). 

From left to right in Figure 8, the first tower is inspired by the Skidmore, Owings & Merrill’s John 

Hancock Center, the second is a variation of the first (changing the taper ratio from 0.6 to 0), the third was 

inspired by the Foster + Partners’ Millennium Tower, and the fourth is a random tapered tower. 
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Figure 8. Tapered towers: three user defined and one randomly generated (from left to right). 

From the two subspaces characterizing twisted and tapered towers, similar and hybrid spaces were 

created with Navigator’s Similar and Hybrid Design Space, respectively. Figure 9 illustrates four towers, 

where the first two belong to the similar space and the last two belong to the hybrid space. For each pair of 

towers of one space, there is one that was manually defined and another that was randomly generated. We 

can observe that, as expected, the similar space is far more restricted than the hybrid space, as it can only 

generate straight towers (with twist angle = 0 and taper ratio = 1). Contrariwise, the hybrid space can 

generate a variety of tapered twisted towers. 

 

Figure 9. From left to right: similar user-defined tower, similar randomly generated tower, hybrid user-defined 

tower, and hybrid randomly generated tower. 

Chairs 

The second case study considers the [removed for blind review] design tool.8 It provides a good case 

scenario for Navigator as it has a high-dimensional design space, with 162 parameters (both numerical and 

categorical). The generation is made by adding or deleting chair components (legs, seat, back, stretchers, 

base, and arms) and editing their dimensions and positions (e.g., seat width, depth, height, tilt angle, front 

and rear radii, and taper width). The design space is characterized by a wide diversity of bilaterally 

symmetric chairs, restricted to standard anthropometric dimensions. The designs comprise a simplified 

representation – they only address lines and arcs, planar surfaces, and constant thickness (except the 

chair’s legs that can be tapered). 
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The chair design tool is based on a parametric set grammar. It presents an interface mostly composed of 

checkboxes and sliders whose manipulation edits a design represented in a modeling tool. Moreover, the 

tool can export and import designs from Excel spreadsheets. Users can create a design from scratch 

(adding elements step by step), from editing a design (of a library of predefined chairs or their own chairs), 

or from random generation. In this case, Navigator was used to read and write CSV spreadsheets that were 

converted to Excel spreadsheets to be read by [removed for blind review]. 

This GDS was devised from a corpus of 26 iconic modern chairs.8 Figure 10 shows four of such 

designs, from left to right: Eero Saarinen’s Tulip, Mart Stam’s S33, Arne Jacobsen’s Ant, and Ernest 

Race’s Antelope chair. The figure illustrates the ability of the system to generate a wide variety of chair 

types, namely: one- to four-legged chairs, arm and armless chairs, rounded and squared seats, and solid 

and splat back, among others. 

 

Figure 10. User-defined chairs inspired by existing designs (from left to right: Tulip, S33, Ant, and Antelope chairs). 

Users can also produce random designs. Figure 11 shows four designs generated with Navigator’s 

Random Design. In this case, the random mode was restricted to valid chairs, i.e., to designs with at least 

one leg, one seat, and one backrest element. This prevents the system to generate stools or incomplete 

designs but does not avoid random designs to look extravagant and unrealistic. Nevertheless, such 

unconventional designs turned out to be interesting for designers, who regarded them as a starting point for 

new ideas.8 Also note that, although there is no ambiguity in the system, results have proven to be vehicles 

of unpredictable emergent meanings, such as the ‘wheel’ in the leftmost design of Figure 11. Yet, more 

feasible randomly generated designs can be obtained by restricting the design space, as we will see later. 

 

Figure 11. Randomly generated chairs. 
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Designs generated with the Navigator’s Similar Design mechanism can be either very similar or very 

dissimilar to a given design. Figure 12 shows the Ant chair (on the left) and three similar designs (the 

three rightmost). From left to right, the designs gradually become less similar to the Ant chair, as 

increasing weights are applied (0.1, 0.4, and 0.8, respectively). The rightmost design is close to the border 

of the design space, i.e., their parametric values are close to the limits of the parametric ranges. This design 

illustrates how broad the design space is. 

 

Figure 12. Ant chair (on the left) and three similar chairs (weights from left to right: 0.1, 0.4, 0.8). 

Hybrid designs capture characteristics of two or more designs. Figure 13 shows two chairs from the 

corpus: Thonet 214 chair and Ernest Race’s Antelope chair (the leftmost and the rightmost, respectively). 

In the middle, we have two hybrid designs generated with the two different methods available in 

Navigator’s Hybrid Design: the first uses the mean method (with a weight of 0.5), and the second uses the 

random method. 

 

Figure 13. Hybrid chairs. From left to right: Thonet chair, hybrid using mean method, hybrid using random method, 

and Antelope chair. 

Navigator’s mechanisms can also generate collections. This is a particularly useful feature in furniture 

design as it often comprises designs of different types that share the same style. Navigator’s Design 

Collection was used to generate the Antelope collection, composed of an armchair, a chair, a stool, and a 

table (Figure 14, from left to right). The leftmost design is inspired by the Antelope chair, and the others 

were obtained from slight parameter changes in relation to their predecessor: remove the arms (to obtain 

the chair), remove the back and eliminate the seat tilt and taper (to obtain the stool); and increase the seat 

width and decrease the seat height (to obtain the table). 
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Figure 14. Antelope collection (from left to right: armchair, chair, stool, and table). 

The design space can be restricted according to different criteria, such as: usability (e.g., omit 

parameters that are less frequently used), function (e.g., discard unstable chairs), type (e.g., consider 

armchairs only), manufacturing (e.g., constrain thickness to that of standard wood panels), aesthetics (e.g., 

address golden proportions), style (e.g., chairs from one designer), and dimensions (e.g., restrict to given 

anthropometric data). Conversely, the design space can be expanded (e.g., to include lounge chairs). 

In this case, we restricted the design space to the styles of two renowned designers: the Portuguese 

designer Daciano da Costa (1930-2005) and the English designer Jasper Morrison (1959-). The styles were 

automatically created from a corpus of five wooden frame chairs from the named designers using 

Navigator’s Default Design Space. Beyond the corpus of designs, the design space also includes other 

existing designs from the same style and original designs within the style.17 

Figure 15 shows four designs of Daciano’s style: the three on the left were inspired by Daciano’s Alvor 

(coffee shop), Palace, and Penta (restaurant) chairs, while the rightmost is a randomly generated design, 

arguably of the same style. Figure 16 shows four designs of Jasper’s style: the first three, from left to 

right, were inspired by Jasper’s Basel, Bac, and Lightwood chairs, while the fourth was randomly 

generated. As one can see, the random designs in Figure 15 and Figure 16 look much more realistic than 

the ones in Figure 11, since the design space is much more restricted. Nevertheless, we can further fine-

tune the spaces (e.g., the rightmost chair in Figure 15 could benefit from a restriction in the orientation of 

the base rails to match that of the arms). 

The distinguishing features of each style can be externalized by analyzing their parametric ranges 

(Table 2). On the one hand, Daciano’s style is characterized by rigid straight lines. Chairs have a square 

sectioned frame, three or four vertical legs, a rectangular or semi-circular seat, no stretchers connecting the 

legs, and optional base and arms. On the other hand, Jasper’s style is defined by softer and rounder shapes 

(which is reflected on the size of the design space – 1 ⋅ 1012 times bigger than the Daciano space). Chairs 

have a square or round frame, four slightly inclined legs, a rectangular or rounded seat, and can optionally 

have stretchers and arms, but no base rails. Note that, although this analysis may provide a good starting 

point for style characterization, we must consider that the low level of shape detail (which disregards, e.g., 

the legs’ curvatures), the small number of exemplar designs, and the lack of an expert’s evaluation 

prevents this characterization from being more robust. 
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Figure 15. Daciano chairs: Alvor, Palace, Penta, and an in-style randomly generated chair. 

 

Figure 16. Jasper chairs: Basel, Bac, Lightwood, and an in-style randomly generated chair. 

Similar and hybrid styles were generated from the styles of Daciano and Jasper, using Navigator’s 

Similar and Hybrid Design Space (Table 2). Figure 17 shows two chairs from the similar style (left) and 

two chairs from the hybrid style (right). The similar design space is much more restricted than the hybrid 

design space (3 ⋅ 1053 times smaller), as it only allows the generation of square-sectioned chairs with four 

vertical legs, with no stretchers nor base. Contrariwise, although the hybrid style is restricted to wooden 

frame chairs, it can generate designs from more simple and rectilinear lines to more complex and 

curvilinear ones. 

 

Figure 17. From left to right: similar user-defined chair, similar randomly generated chair, hybrid user-defined chair, 

and hybrid randomly generated chair. 
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Table 2. Some parameters and ranges of Daciano, Jasper, Similar, and Hybrid Design Spaces 

 Daciano Space Jasper Space Similar Space Hybrid Space 

Frame section square round square {round, square} 

Legs number [3, 4] 4 4 [3, 4] 

Leg splat angle 0 [0, 15] 0 [0, 15] 

Leg rake angle 0 [15, 33] [0, 15] [0, 33] 

Seat front radius [0, 12] [0, 60] [0, 12] [0, 60] 

Sear rear radius [0, 100] [0, 80] [0, 80] [0, 100] 

Stretchers false {false, true} false {false, true} 

Base {false, true} false false {false, true} 

Arms {false, true} {false, true} {false, true} {false, true} 

 

Conclusion 

Generative design allows us to quickly generate design alternatives. This benefits designers’ creativity and 

can lead to better design solutions. However, design alternatives are usually overwhelming, and designers 

end up exploring a very small area of the design space. This is mitigated with exploration mechanisms, 

which guide the designer throughout the design space to unexplored and potentially interesting areas.  

Generative design tools provide a good amount of black-box search mechanisms but provide less 

support for the more fast, interactive, and comprehensible white-box ones. Given this drawback, we 

implemented a compendium of well-known white-box mechanisms in the Navigator tool to find designs 

and design subspaces. Those mechanisms can generate default, random, similar, and hybrid designs and 

design spaces, design collections, and design matrices. The tool also provides a mechanism to compute the 

size of a design space. Navigator can be applied to any generative system; in this paper, it was illustrated 

with the generation of designs of towers and chairs. 

Navigator promotes an engaging and playful experience in exploring design spaces. Designers can test 

different ways of navigation using randomness or existing designs while maintaining control of the 

process. Such exploration can aid users in finding areas of the design space that they probably would not 

find otherwise, which can lead to new, unforeseen, and exciting ideas. We have seen that meaningful 

alternatives do not need to be necessarily reliable or coherent, as they can lead at some point to new 

directions for further explorations. Navigator’s mechanisms also proved to be valuable for fine-tuning 

generative systems (e.g., increasing the parameter’s range step to obtain higher geometric distinctions). 

For future work, we intend to develop a user-friendly graphical interface for the manipulation of these 

mechanisms and for the simultaneous visualization of multiple design alternatives. We will then perform 

user tests with designers, to assess whether these mechanisms help them in their design process. Moreover, 

we plan to complement Navigator with some black-box mechanisms, such as machine learning guided 

exploration, to filter meaningful solutions for the designer. 
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