
Metaobject Protocols for Julia
Marcelo Santos #

Instituto Superior Técnico, University of Lisbon, Portugal

António Menezes Leitão #

INESC-ID/Instituto Superior Técnico, University of Lisbon, Portugal

Abstract
Metaobject Protocols enable programmers to extend programming languages without the need to
understand the lower level details of their implementation. However, designing these protocols
comes with two challenges: allow programmers to limit their concerns to higher level concepts
and minimize performance penalties in programs. In this work, we propose metaobject protocol
for the programming language Julia. Julia’s object system is very limited, when compared to
languages following the Object-Oriented paradigm. However, Julia’s compilation approach allows
for a considerable degree of code optimization through the exploration of runtime type information.
Through the usage of Julia’s run-time optimizations, we propose a metaobject protocol that combines
user-extensibility with limited performance penalties. This paper focuses on the development of
a multiple inheritance method dispatch and method combination mechanisms with zero runtime
overhead.

2012 ACM Subject Classification Software and its engineering → Language features

Keywords and phrases Julia, Metaobject Protocols, Object-Oriented Programming, Performance

Digital Object Identifier 10.4230/OASIcs.SLATE.2022.13

Supplementary Material Software (Source Code): https://github.com/tosmarcel/julia-mop
archived at swh:1:dir:b1f9259d39045b00963846ba7d4b8a3dd3829971

Funding This work was supported by national funds through Fundação para a Ciência e a Tecnologia
(FCT) with references UIDB/50021/2020 and PTDC/ART-DAQ/31061/2017.

1 Introduction

Traditionally, there has been a separation between programmers and language designers.
Programmers treat languages as black boxes with their own rules, as established by the
language designers. In this model, the semantics of a language is seen as unchangeable, thus
imposing limits to its expressiveness.

Metaobject Protocols (MOPs) come to blur the distinction between programmers and
language designers, by providing programmers with an interface to modify the language. By
treating the language itself as a mutable object-oriented program, one can alter the semantics
and introduce new behaviours to the language through the abstractions made available by
the OOP paradigm. We provide two examples as motivation for the use of MOPs:

As shown in [8], a programmer might be discontent with the performance of the im-
plementation of slot accessing for objects of class A, but an implementation satisfying
performance requirements for class A could damage performance for slot accessing for
objects of class B. This, in turn, demonstrates the impossibility of the creation of an
implementation satisfying every programmer’s needs. With the use of MOPs, one can
define a specific implementation for only one class and leave the default implementation
for the remaining classes.
With MOPs, it becomes fairly straightforward to add new behaviour to existing code
without directly modifying it. Suppose that it becomes a requirement to serialize objects,
i.e., save their data to disk, each time they’re modified. One can leverage the interfaces
provided by MOPs to intercept each time object’s slots are changed and thus serialize the
object’s state as desired. One could accomplish this task with plain OOP strategies but it

© Marcelo Santos and António Menezes Leitão;
licensed under Creative Commons License CC-BY 4.0

11th Symposium on Languages, Applications and Technologies (SLATE 2022).
Editors: João Cordeiro, Maria João Pereira, Nuno F. Rodrigues, and Sebastião Pais; Article No. 13; pp. 13:1–13:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcelocmsantos@tecnico.ulisboa.pt
https://orcid.org/0000-0003-1450-5280
mailto:antonio.menezes.leitao@tecnico.ulisboa.pt
https://orcid.org/0000-0001-7216-4934
https://doi.org/10.4230/OASIcs.SLATE.2022.13
https://github.com/tosmarcel/julia-mop
https://archive.softwareheritage.org/swh:1:dir:b1f9259d39045b00963846ba7d4b8a3dd3829971;origin=https://github.com/tosmarcel/julia-mop;visit=swh:1:snp:5ef89e0e9e38334b5b2d866650e17f4d94c09854;anchor=swh:1:rev:54c3e76b8e853ab4dd7271a3e3a4e770b85c6e1c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

13:2 Metaobject Protocols for Julia

would require the creation of frontends for slot modification to be able to track changes.
This would, in turn, result in the mixture of code relevant to the object’s nature and
code responsible for serialization, two very distinct concerns. With MOPs, the handling
of these concerns would trivially be separated.

A prime example on the implementation of MOPs is the one present in the Common Lisp
Object System (CLOS).

1.1 The Julia Programming Language

One of the main problems faced in the implementation of the CLOS metaobject protocol
was guaranteeing good performance alongside the flexibility of the MOP [9]. This is a
recurring problem in the implementation of higher-level languages, known as the Paradox
of High-Level Languages [9]. The main premise of high-level languages is that they allow
programmers to better formulate what their programs do through more expressive methodo-
logies. Consequently, compilers for these languages should be able to exploit this knowledge
and output faster programs than their low-level counterparts. But reality lies on the opposite
side, meaning that there are concepts which are, in fact, not being expressed more clearly,
instead requiring programmers to provide sufficient detail to enable efficient execution. We
can further divide languages in two categories: static and dynamic languages. Dynamic
languages are seen as higher level than static languages, as they allow us to express ideas
harder to write in static languages. In the most recent years we’ve seen a fast growth in
popularity of languages featuring object-oriented and dynamic properties [11, 5]. This is due
to the increased productivity felt by developers. Python, one of these languages, is used
extensively in the fields of numerical and scientific computing, which often require large-scale
computations to be executed. One of the major complaints regarding Python is that it is
slow [12], so, to resolve that problem, a few strategies are applied:

Create libraries relying on faster languages to process more intensive operations (e.g.
Numpy, a numerical computing library for python which relies on calling C code);
Optimize the underlying compiler/interpreter (e.g. Pypy, an alternative python imple-
mentation featuring Just-in-Time (JIT) compilation);
Prototyping in this high-level language and then translating the code to a more performant
and often lower level language like C, C++, or Fortran. This last route is the one yielding
the best results performance-wise, but it falls short for relying on a dichotomy of languages,
requiring more knowledge and work from the programmer.

The Julia programming language [2], a dynamic language with a focus on performance, tries
to solve this problem. By employing strategies like JIT compilation and code specialization
on run-time types, it achieves outstanding results compared to other dynamic languages like
Python, while being close to very performant languages like C++ [1].

Multiple dispatch is used extensively in Julia. It is the dynamic dispatch of methods based
on the run-time information of all the arguments. Multiple dispatch is applied when calling
generic functions to choose which method to dispatch. “A generic function is a function
whose behavior depends on the classes or identities of the arguments supplied to it. The
methods define the class-specific behavior and operations of the generic function”[3]. This
allows for extension of the language by creating more methods for a generic function.

Julia features a very basic object system. Subtyping can only be accomplished from
abstract types, the equivalent of abstract classes in Java. So, inheritance must be planned
ahead, if one were intending to inheriting behaviour from a struct (concrete class).

M. Santos and A. M. Leitão 13:3

1.2 Objectives
Throughout computer language history we have seen a demand for the development of
Object Systems atop existing languages. The Lisp community saw the development of
CommonLoops [4], which joined Lisp’s procedure-oriented paradigm with object-oriented
programming. The same evolutionary strategy was applied to Objective-C, which stemmed
from the C language and became a prime example of an OOP language by just adding a small
number of syntactic features taken from the Smalltalk language while keeping compatibility
with the remaining aspects of C [7].

In this work, we focus on the Julia Programming Language. Currently, the Julia
community uses composition as a mechanism to express the sharing of functionality between
concrete types. We will design and implement, in Julia, a performant MOP alongside a more
expressive Object System.

2 Related Work

The Common Lisp Object System is an object-oriented extension to the Common Lisp[13]
language.

CLOS decouples methods from objects through the usage of generic functions. Generic
functions are functions whose behaviour depends on the types of the arguments supplied to
them. A method defines the behaviour of a generic function for a set of arguments. This
object system allows the extension of methods through the definition of method combinations.
A method combination results in the application of auxiliary methods triggered by the calling
of primary methods, the methods to which auxiliary methods connect to.

CLOS also allows the implementation of mixins, which, like inheritance, allow the sharing
of functionality, but without the relationship of subclass. This pattern avoids ambiguity
issues related to multiple-inheritance.

CLOS provides a way of changing objects structure through the redefinition of classes
at run-time. When a class is redefined, changes are propagated to all instances and the
instances of its subclasses[3].

2.1 Metaobject Protocol Implementations
Although many languages leverage MOPs to extend their functionality, we will only focus on
the most expressive one, the CLOS MOP, and another one which stands out for its different
implementation.

2.1.1 CLOS
The motivation for the development of the CLOS MOP came from the need to give developers
the ability to modify the language from a high-level perspective, i.e., without low-level
knowledge of the inner workings of the language. The CLOS language provides ways to
incrementally change the behaviour of fundamental language constructs. This is possible
through the reification of elements such as class, generic-function, and method. These
elements are said to be metaobjects and their exposure and consequent modification is what
allows for the manifestation of changes to the language semantics. As is often the case,
applying global changes to an already existing system without proper testing can lead to
unforeseen results. Furthermore, a programmer’s intent might be to just change a portion
of the language for a specific section of the program and not its entirety. This problem is

SLATE 2022

13:4 Metaobject Protocols for Julia

solved by CLOS by exposing metaobjects as part of an object-oriented hierarchy capable of
being extended. As such, one can look at the semantics of the language as an object-oriented
program as well.

In a traditional class-based object-oriented language, objects, e.g, a car, and classes, e.g.,
Car and Vehicle, are related through the instance-of and subclass-of relations, as follows:

my_car Car Vehicle
instance of subclass of

The implementation of a MOP integrates metaobjects in the system through the reification
of classes. Classes are now themselves objects, instances of another class:

my_car Car Vehicle

standard-class

instance of subclass of
insta

nce
of instance of

The class standard-class is said to be a class metaobject class, or a metaclass. It defines
the behaviour of its instances, class metaobjects (Car and Vehicle in this example), which
in turn define the behaviour of regular objects (my_car in this example). We can define
a subclass of standard-class to specify new semantics for the classes Car and Vehicle,
rendering the relationship between the objects as such:

my_car Car Vehicle

special-class

standard-class

instance of subclass of
insta

nce
of instance of

subcla
ss

of

Because standard-class still exists and is left unmodified, all other class metaobjects will
exhibit the same behaviour as before the creation of special-class. Furthermore, only
classes explicitly told to have special-class as a class metaobject class will follow its defined
rules. This MOP allows one to only change a subset of class behaviour, as the remaining
functionality will be provided by parent metaclasses, i.e., standard-class will be responsible
for handling functionality not overridden by special-class, as is usual in the inheritance
relation of object systems. The selective nature of metaclass specialization is what allows for
the incremental extension of programming languages.

Listing 1 presents a concrete CLOS example of metaclass specialization from [9]: We
explain how the MOP was used to achieve a modification on the semantics of object
instantiation:

We begin by creating a new metaclass counted-class whose main goal is to give classes
the ability to track how many times they have been instantiatied. It is a subclass of
standard-class, the default metaclass. We give it a slot, counter initialized to zero to
track this number, which will be present in all classes that are instances of counted-class.

M. Santos and A. M. Leitão 13:5

Listing 1 CLOS Metaclass Example.
* (defclass counted -class (standard -class)

((counter : initform 0)))

* (defclass counted - rectangle () ()
(: metaclass counted -class))

* (defmethod make - instance :after
((class counted -class) &key)
(incf (slot -value class ’counter)))

* (slot -value (find -class ’counted - rectangle) ’counter)
0
* (make - instance ’counted - rectangle)
#<COUNTED - RECTANGLE {10042 DAC03}>
* (slot -value (find -class ’counted - rectangle) ’counter)
1

Then, we define a class, counted-rectangle. This macro also defines it as a metaobject
and sets counted-class as its metaobject class. The relationship between the classes is
as follows:

counted-rectangle counted-class standard-class
instance of subclass of

We define a method combination for the make-instance generic function. Method
combinations are a mechanism through which one appends functionality to existing
generic functions. In this case, we are adding instructions to be executed after the default
implementation runs. This version of make-instance is specialized for arguments which
are instances of counted-class. This method specifies what happens when a new instance
is created. In this example, we are incrementing the counter slot. This step illustrates
the essence of incremental modification - create methods that specialize for the desired
metaclasses.
The remaining instructions demonstrate how the counter from the counted-rectangle
class has been updated after creating an instance of counted-rectangle.

The CLOS MOP exposes a reflection interface that enables the program to understand
itself while it is running. In the example above, we used find-class to retrieve a class
metaobject from its name. This mechanism is essential to achieve the reification of language
constructs, which is needed for the modification of the language. Besides instantiation, the
protocol allows for the inspection and control of the following concepts:

Class precedence lists - the modification of these structures permits the reordering of
the priority of superclasses. Given that some languages possessing multiple-inheritance
exhibit different ordering schemes, this allows, for example, to port libraries from languages
similar to CLOS while maintaining inheritance priority compatibility.
Slot Access - this defines what actions are taken when attempting to access an object’s
slots.
Instance Allocation - how instances are allocated. The motivation example given in
Section 1 would have to resort to this interface in order to accomplish its goal.

SLATE 2022

13:6 Metaobject Protocols for Julia

Listing 2 Julia Generic Functions and Methods.
f(x:: Integer) = x + 1
f(x:: Real) = x + 2

The reference [9] provides an extensive list of capabilities and methods of the CLOS
MOP.

2.1.2 OpenC++

One of the main problems of the CLOS MOP is the performance hit taken. The cause for
this problem is the existence of metaobjects at run-time, which are needed to change the
semantics of the language. Although this allows for greater flexibility, it increases the level
of additional run-time logic.

OpenC++[6] is a metaobject protocol extension to C++[14] similar to CLOS but with a
very different approach. It moves all the logic of the MOP to compile time. The purpose of
this move is to incur zero run-time speed or space overhead, while still allowing the compiler
to perform optimizations. The basic system architecture is as follows: The OpenC++

OpenC++
Source

OpenC++
Compiler

C++
Source

C++
Compiler

compiler generates the metaobjects responsible for executing the protocol when compiling
OpenC++ to C++. These metaobjects intercept the parsing of regular C++ entities (e.g.,
class definitions, member access, object creation, virtual function invocation) and take control
of their compilation. In essence, these metaobjects modify the program’s semantics through
the manipulation of parse trees. The resulting modifications are then passed as a regular C++
source to a C++ compiler which doesn’t have knowledge of the MOP. With this strategy, no
metaobjects exist at run-time, thus saving time and memory. One big disadvantage of this
approach is the fact that since the protocol only acts at compile time, it becomes impossible
to apply the same changes at run-time. Another minor problem is the increase of time and
complexity of compilation.

This solution, which tries to solve the performance issues from metaobject protocols,
seems to hint the existence of a tradeoff between execution speed and flexibility, similar to
the aforementioned Paradox of High-Level Languages.

2.2 Julia
In this section, we present features of Julia that we consider relevant for our proposal. These
include patterns which allow us to build an object system and performance optimizations
capable of minimizing the overhead of our implementation.

Julia provides the concepts of generic functions and methods just like in CLOS[3]. Generic
functions are implicitly declared through the definition of methods.

We now concern ourselves with method specialization. It is an aggressive mechanism
employed by the Julia run-time which, combined with JIT compilation, generates compiled
code and caches functions based on their arguments. In Listing 2, we create a generic function
f with two method implementations: one for Real and its subtypes and another for Integer
and its subtypes. In Listing 3 we perform the respective method calls.

M. Santos and A. M. Leitão 13:7

Listing 3 REPL evaluation of generic function f.
julia > f(1)
2
julia > f(1.0)
3.0

Listing 4 Inspection of methods’ IR.
julia > @code_llvm f(1)
define i64 @julia_f_163 (i64 signext %0) {

%1 = add i64 %0, 1
ret i64 %1

}

julia > @code_llvm f(1.0)
define double @julia_f_182 (double %0) {

%1 = fadd double %0, 2.000000 e+00
ret double %1

}

The Julia programming environment allows us to inspect the Intermediate Representation
(IR) of language constructs. IR is a higher level representation of assembly used by LLVM[10],
the section of Julia’s implementation responsible for generating architecture-specific machine
code and applying lower level optimizations. Listing 4 shows that although methods have
the same name, they exist in different sections of memory and possess distinct behaviour, as
one can see through the IR output by the @code_llvm macro.

As a dynamically typed language, Julia allows the programmer to omit types of parameters
in function definitions. We can take the example in Listing 4 and generalize it in Listing 5.
Intuitively, this method would result in the generation of generic code capable of receiving
arguments of any type. By handling a broader set of types, we lose the opportunity to exploit
type-specific information that would allow the compiler to optimize this method. Luckily,
the approach taken by the developers of the language is far different from this.

We can observe in Listing 6 that each method call executes different code. What this
shows is that Julia implicitly employs a JIT strategy to compile at run-time type specific
versions of a method according to its arguments. Consequently, exploiting type information
becomes possible.

2.2.1 Method redefinition

Immutability, of which Julia takes advantage of, comes as a decisive factor when it comes to
compiler optimization. The more structures that are guaranteed to stay constant, the more

Listing 5 Dynamic Typing.
g(x) = x + 1

g(1) # 2
g(1.0) # 2.0

SLATE 2022

13:8 Metaobject Protocols for Julia

Listing 6 Specialization of generic function.
julia > @code_llvm g(1)
define i64 @julia_g_167 (i64 signext %0) {

%1 = add i64 %0, 1
ret i64 %1

}

julia > @code_llvm g(1.0)
define double @julia_g_186 (double %0) {

%1 = fadd double %0, 1.000000 e+00
ret double %1

}

optimizations the compiler can perform. A function accessing variables from the outside will
have completely different assemblies depending on the mutability of those variables. If we
can assert the immutability of our system, the faster it will run. However, given the nature
of run-time metaobject systems, the opposite happens. The ability of changing program
structure at run-time is one of the main benefits of using MOPs. Luckily, we can exploit
another feature of Julia: function redefinition.

The redefinition of a method changes its behaviour and triggers the recompilation of
methods which depend on it. Redefinition allows for behaviour changes without relying
on data structures to hold mutable data. This also provides fast access to data without
compromising flexibility.

Julia is thus inserted in the group of languages allowing the modification of a program
with zero downtime, which opposes the traditional model of shutting down, recompiling, and
rerunning programs.

2.3 Problem
This section has shown two Metaobject Protocol systems and exposed a dilemma between
them: either opt for a flexible system or a performant one. The nature of these two
implementations focuses on the time-frame in which metaobjects exist: run-time or compile-
time. Our goal is to bridge the gap between these two architectures and create a performant
run-time metaobject protocol on top of the Julia language and its optimizations.

3 Solution

In this section we will describe our implementation proposal for multiple-inheritance method
dispatch and method combination mechanisms with zero run-time overhead for the Julia
language, without changing its implementation or semantics.

3.1 Class Definition
We begin by describing our class definition mechanism. One can define a new class by calling
the @defclass macro. It takes the name of the class to be defined and a list of superclasses
from which it inherits behaviour. In Listing 7, we define four classes: A, which has no
superclasses, B and C which both inherit from A, and D which inherits from B and C. This
macro is responsible for ensuring the following:

M. Santos and A. M. Leitão 13:9

Listing 7 Class definition.
@defclass A ()
@defclass B (A,)
@defclass C (A,)
@defclass D (B, C)

Listing 8 Defining and calling methods (following Listing 7).
> @defmethod bar(a::A) = 0
> bar(D())
0
> @defmethod bar(b::B) = 1
> @defmethod bar(c::C) = 2
> bar(D())
1

Create a Julia structure with the name of the class. This structure has no supertypes,
even if it is defined with superclasses.
Define the method superclasses which takes the Julia type for the class and returns the
types corresponding to the superclasses. If the class is defined without superclasses, its
only superclass is Any, the type in Julia of which every type is a subtype of.
Define the method preclist which takes the Julia type for the class and returns the
precedence list for the class. A precedence list is an ordered list of classes which determines
which are more specific than the others. This is necessary to determine from what classes
objects inherit behaviour. By default this order is determined by applying a topological
sort to the class hierarchy, similar to CLOS.
Define the method classof, which when receiving an instance of the class, returns the
class itself. This method is analogous to Julia’s typeof.

These mechanisms for retrieving class information rely on methods and not mutable data
structures or constants because:

Although constants allow for the optimization of generated code, they forbid future
changes, which goes against the purpose of metaobject protocols.
Even though mutable data structures would allow for changes in the class system, they
prevent the same optimizations done to constants.

Methods whose only purpose is to return data give us the best of both worlds: mutability
and optimizations. The only cost for mutability is recompilation time.

3.2 Method Dispatch
We now describe how we use Julia’s language feature to build a multiple-inheritance method
dispatch mechanism. We provide the @defmethod macro, that, just like regular Julia
method definitions, takes a method name, the list of arguments and optionally their types,
and the method body, as we can see in Listing 8.

This macro is responsible for:
Store an anonymous function taking generic arguments with the same method body as
the one passed to @defmethod macro. This is stored in a key-value manner, in which
the key is the list of the types of the parameters and the value is the anonymous function.

SLATE 2022

13:10 Metaobject Protocols for Julia

Listing 9 Method combination.
> @defmethod foo(d::D) = println (" Primary method ")
> foo(D())
Primary method
> @defmethod foo :: before (d::D) = println (" Calling before ")
> @defmethod foo :: after(d::D) = println (" Calling after ")
> foo(D())
Calling before
Primary method
Calling after

Create a julia method, the method computer, taking generic arguments with the same
number of arguments as the one specified with @defmethod whose purpose is to select
the appropriate method to apply given the types of the arguments. If the method
computer already exists, it is redefined to include the update of the available anonymous
functions.

3.2.1 The Method Computer
The method computer is where most of the dispatch work takes place. It executes the
following steps:

Gather a list of the types of the arguments supplied to the method.
Get the list of methods whose parameters are compatible with the arguments.
Sort this list of methods in order to obtain the most specific method.
Call the most specific method by passing it the arguments received and return its return
value.

We say that a list of parameters P is compatible with a list of arguments A if:
The length of P is equal to the length of A.
For each pair (Pk, Ak) where Pk is the kth parameter and Ak is the kth argument, Pk is
in the precedence list of Ak.

A method M is more specific than some method N , with respect to a list of arguments A

if M has the smallest k for which MPk
comes before NPk

in the precedence list of Ak, where
MPk

is the kth element of the parameters of M , NPk
is the kth element of the parameters of

N , and Ak is the kth argument.

3.3 Method Combination
Currently we support the same method combination implemented by the CLOS Standard
Method Combination: before, after and around methods. See Listing 9 for an example.

Besides selecting the most specific method, the Method Computer must also take into
account method combination. To do so, it must:

Separate the method lists into four groups: before, after, around and primary. Primary
methods are those defined without any method combination specifier.
Apply the same filtering and ordering from the arguments for each group.
Generate and call an effective method, which comes from applying all valid methods from
the combination.

M. Santos and A. M. Leitão 13:11

Listing 10 Joining anonymous functions with join_lambdas.
function join_lambdas (around :: Tuple , b:: Tuple , p:: Tuple , a:: Tuple)

(x...) -> begin
next = join_lambdas (around [2: end], b, p, a)
callnextmethod () = next(x...)
callnextmethod (y...) = next(y...)
hasnextmethod () = true
around [1](x..., callnextmethod , hasnextmethod)

end
end

3.3.1 Computing the Effective Method
The effective method is an anonymous function returned by the recursive method
join_lambdas. join_lambdas receives four arguments, one for each method group.
Each call to join_lambdas attaches one method from one group, while processing one
group at a time. The order for processing groups is the same as the one specified by CLOS’
method combination semantics: around, before, primary, and after.

The method join_lambdas has a different way of joining methods depending on which
group it is currently processing:

While processing a method from the around group, return an anonymous function which
calls the method being processed. Besides receiving the arguments passed to the effective
method, the method being processed also receives two functions as arguments: next-
method and hasnextmethod. nextmethod is the next recursive call to join_lambdas.
hasnextmethod returns true if there are more methods following in the combination
and false otherwise. The join_lambdas method for processing the around group is
shown in Listing 10.
Processing the before group is much simpler. The only concern of the returned anonymous
function is calling the current method and recurring into the join_lambdas call.
Handling the primary group is very similar to the around group, given that it must allow
calling hasnextmethod and nextmethod. The biggest difference from the around
group processing is storing the return value from the call and returning it only after the
after group.
Processing the after group is identical to what is done to the before group.

We follow these steps instead of an iterative method calling approach because the JIT
can better optimize method call chains. The resulting effective method of foo in Listing 9
can be seen in Listing 11.

3.4 Integrating Julia Types
Since the classes created by our system are Julia types, the preexisting Julia types are
automatically partially supported. To fully integrate them, we need to define for the regular
types the same methods we define for classes and their instances:

superclasses is equivalent to calling the built-in function supertype and returning a
single element list;
preclist, the precedence list of a type, is equivalent to returning a list of every supertype
until the Any type is reached;
classof is the same as calling the built-in typeof.

With all of these equivalences in place, we can create methods through our @defmethod
macro with regular Julia types.

SLATE 2022

13:12 Metaobject Protocols for Julia

Listing 11 Resulting effective method of foo from Listing 9 (simplified).
(x1 ...) -> begin

((d) -> println (" Calling before "))(x1 ...)

((x2 ...) -> begin
res = ((d) -> println (" Primary method "))(x2 ...)

((x3 ...) -> begin
((d) -> println (" Calling after "))(x3 ...)

end)(x2 ...)

return res
end)(x1 ...)

end

Listing 12 IR code from calling bar(D()).
define i64 @julia_foo_1266 () #0 {
top:

ret i64 1
}

4 Evaluation

We now proceed to analyse the performance of our solution. We will take two approaches.
First, to look at the LLVM Intermediate Representation (IR) language, a higher-level assembly,
generated by the JIT. Second, to compare execution times with CLOS. The following tests
were executed on an Intel Core i5-8250U 3.4GHz PC with 16GiB of RAM running the Linux
operating system.

4.1 Generated IR

We can analyse the performance of our method dispatch mechanism by taking the code from
Listing 8 and reading its IR in Listing 12. As we can see, no computation from method
dispatch is present in the end result. Only the relevant method body remains. We can
thus conclude that our multiple-inheritance method dispatch is just as performant as Julia’s
single-inheritance method dispatch.

The overhead resulting from computing the effective method in Listing 9 can be seen
in Listing 13. Just like in the previous example, no overhead is present. Not only that,
but there are also no intermediate method calls being made from the chain produced by
join_lambdas. The bodies from each method were joined into a single body. Only the code
relevant for printing is displayed. This makes the use of our method combination mechanism
equivalent to creating a regular Julia method with a body as the concatenation of the bodies
of the methods defined for the combination. This regular Julia method, defined in Listing 14
yields the same IR as the method combination in Listing 9, shown in Listing 13, thus having
the same execution times.

M. Santos and A. M. Leitão 13:13

Listing 13 IR code from calling the method combination of foo(D()) (simplified).
define void @julia_foo_1172 () #0 {
top:

%0 = alloca {}*, align 8

store {}* inttoptr (i64 139884251139280 to {}*) , {}** %0, align 8
%1 = call nonnull {}* @j1_println_1178 (...)

store {}* inttoptr (i64 139884243053904 to {}*) , {}** %0, align 8
%2 = call nonnull {}* @j1_println_1179 (...)

store {}* inttoptr (i64 139884260369712 to {}*) , {}** %0, align 8
%3 = call nonnull {}* @j1_println_1180 (...)

ret void
}

Listing 14 Regular Julia method equivalent to method combination in Listing 9.
function foo_effective (d::D)

println (" Calling before ")
println (" Primary method ")
println (" Calling after ")

end

4.2 Execution time against CLOS
The Steel Bank Common Lisp (SBCL) is a high-performance Common Lisp implementation.
In this section we will compare an ad-doc example of method dispatch between the SBCL
CLOS and our Julia solution. For this example, we iterate a list of objects to force method
dispatch. We have the Julia version in Listing 15 and the SBCL CLOS in Listing 16. Both
versions assume a class hierarchy like the one specified in Listing 7. Each iteration example
was ran once. The results for calling foo with arr as an argument yields times of 0.409013
seconds for Julia and 0.229447 seconds for CLOS, which means SBCL is more optimized.
However, Julia only exhibits a worse time because it cannot infer the types of the elements
of arr. If we specify arr as being an array of D, then we get a much better result: 0.000012
seconds.

Listing 15 Julia example.
@defmethod baz(b::B, n) = n+1
@defmethod baz(c::C, n) = n*2
arr = []
for i in 1:10000000 push !(arr , D()) end
foo(a) =

let y = 0
for e in a

y += baz(e, 10)
end
y

end

SLATE 2022

13:14 Metaobject Protocols for Julia

Listing 16 CLOS example.
(defmethod baz ((b B) n) (+ n 1))
(defmethod baz ((c C) n) (* n 2))
(defparameter arr (make -list 10000000

:initial - element (make - instance ’D)))
(defun foo (a)

(let ((y 0))
(loop for e across a do

(incf y (baz e 10)))
y))

5 Future Work

The work presented in this paper is an element of a metaobject protocol being implemented
in Julia. Our future work is to continue adding features to our implementation in order to
get closer to levels of expressiveness of CLOS.

6 Conclusion

In this paper, we discussed metaobject protocols. We analysed two different implementations
choosing different trade-offs in terms of performance and expressiveness. Through the
described optimizations of the Julia language, we proposed a zero run-time overhead solution
to two main pieces of metaobjects protocols: multiple-inheritance method dispatch and
method combinations.

References
1 S Borağan Aruoba and Jesús Fernández-Villaverde. A comparison of programming languages

in macroeconomics. Journal of Economic Dynamics and Control, 58:265–273, 2015.
2 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to

numerical computing. SIAM review, 59(1):65–98, 2017.
3 Daniel G Bobrow, Linda G DeMichiel, Richard P Gabriel, Sonya E Keene, Gregor Kiczales, and

David A Moon. Common lisp object system specification. ACM Sigplan Notices, 23(SI):1–142,
1988.

4 Daniel G Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank
Zdybel. Commonloops: Merging lisp and object-oriented programming. ACM Sigplan Notices,
21(11):17–29, 1986.

5 Stephen Cass. The 2015 top ten programming languages.
6 Shigeru Chiba. A metaobject protocol for C++. In Proceedings of the tenth annual conference

on Object-oriented programming systems, languages, and applications, pages 285–299, 1995.
7 Brad J Cox. Object oriented programming: an evolutionary approach. Addison-Wesley Longman

Publishing Co., Inc., 1986.
8 Gregor Kiczales, J Michael Ashley, Luis Rodriguez, Amin Vahdat, and Daniel G Bobrow.

Metaobject protocols: Why we want them and what else they can do. Object-Oriented
Programming: The CLOS Perspective, pages 101–118, 1993.

9 Gregor Kiczales, Jim Des Rivieres, and Daniel G Bobrow. The art of the metaobject protocol.
MIT press, 1991.

10 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75–86. IEEE, 2004.

M. Santos and A. M. Leitão 13:15

11 Linda Dailey Paulson. Developers shift to dynamic programming languages. Computer,
40(2):12–15, 2007.

12 Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes,
and João Saraiva. Energy efficiency across programming languages: How do energy, time,
and memory relate? In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2017, pages 256–267, New York, NY, USA, 2017.
Association for Computing Machinery. doi:10.1145/3136014.3136031.

13 Guy Steele. Common LISP: the language. Elsevier, 1990.
14 Bjarne Stroustrup. The C++ programming language. Pearson Education India, 2000.

SLATE 2022

https://doi.org/10.1145/3136014.3136031

	1 Introduction
	1.1 The Julia Programming Language
	1.2 Objectives

	2 Related Work
	2.1 Metaobject Protocol Implementations
	2.1.1 CLOS
	2.1.2 OpenC++

	2.2 Julia
	2.2.1 Method redefinition

	2.3 Problem

	3 Solution
	3.1 Class Definition
	3.2 Method Dispatch
	3.2.1 The Method Computer

	3.3 Method Combination
	3.3.1 Computing the Effective Method

	3.4 Integrating Julia Types

	4 Evaluation
	4.1 Generated IR
	4.2 Execution time against CLOS

	5 Future Work
	6 Conclusion

