
Extending PyJL to Translate Python Libraries to Julia
Miguel Marcelino

INESC-ID/Instituto Superior Técnico, University of Lisbon
Lisbon, Portugal

miguel.marcelino@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID/Instituto Superior Técnico, University of Lisbon

Lisbon, Portugal
antonio.menezes.leitao@tecnico.ulisboa.pt

ABSTRACT
Many new high-level programming languages have emerged in
recent years. Julia is one of these languages, offering the speed of C,
the macro capabilities of Lisp, and the user-friendliness of Python.
Regarding the latter, Julia’s syntax is one of its major strengths,
which makes it ideal for scientific and numerical computing. Fur-
thermore, Julia’s high performance on modern hardware makes it
an appealing alternative to Python. However, its library set is still
reduced when compared to Python.
To address this issue, we propose extending PyJL, a transpilation
tool, to convert Python libraries into Julia and bridge the gap be-
tween the two languages. Although the development of PyJL is still
at an early stage, our preliminary results reveal that the generated
code is human-readable and capable of high performance.

KEYWORDS
Source-to-Source Compiler, Automatic Transpilation, Library Trans-
lation, Python, Julia

1 INTRODUCTION
Transpilers translate source code between an input and a target
language. Nowadays, they are used to translate source code be-
tween high-level programming languages. As an example, consider
TypeScript [2], whic is transpiled to JavaScript.

The use of transpilers as library conversion tools becomes more
relevant with the rise of new programming languages, as they lack
the large library sets found in more established languages and it is
expensive to develop these libraries from scratch. However, auto-
matically translating a source language to a target language requires
a careful analysis of syntactic and semantic incompatibilities that
can be difficult to overcome.

To address this issue, we present PyJL, a transpiler that trans-
lates Python source code to Julia that we have been developing
to speedup the production of libraries to Julia. Preliminary results
reveal that a significant subset of Python code can be converted
into pragmatic Julia code with minimal programmer intervention.
Furthermore, the produced code frequently achieves good perfor-
mance with small adjustments. On the other hand, many Python
functionalities are difficult to convert into semantically equivalent
and pragmatic Julia code. The current limitations are described in
Section 3.

2 PYJL
PyJL [3] is part of the Py2Many [4] transpiler, which is a rule-based
transpilation tool. Py2Many offers a generic framework to transpile
Python to many C-like programming languages, such as Rust, Go,
and C++. PyJL builds upon that framework to translate Python
source code to Julia. It is also a flexible translation tool, allowing

Figure 1: PyJL Architecture

the programmer to change the output of translation using external
annotation files. In this section, we briefly describe the architecture
of the transpiler.

As seen in Figure 1, the PyJL transpiler receives Python source
code as input and first parses it with Python’s ast module,1 which
generates an Abstract Syntax Tree (AST). It then uses several in-
termediate transformation phases to generate the equivalent Julia
source code. A brief description of each phase follows:

(1) Rewriters can be both language-specific or -independent.
A rewriter changes the structure of nodes in the AST to
match equivalent nodes in the target language.

(2) Core Transformers are language-independent transformers
that add relevant information for the translation process.

(3) Transformers are language-specific and add information to
nodes. An example would be to add type annotations for
type inference.

(4) Post Rewriters are Rewriters that have dependencies on
some previous phase. Their functionality is identical to that
of Rewriters.

(5) Configuration Rewriters supports configuration files in JSON
and YAML format that specify AST modifications.

(6) Transpiler translates language syntax and semantics and
converts the AST to a string representation in the target
language.

Notice that the Core Transformers phase is executed at two stages.
The first makes core information available to the Transformers
and Post Rewriters stages. The second ensures that core Py2Many
transformations are not overwritten, making them available in the
Transpiler phase.

3 LIMITATIONS
One of the major difficulties in the conversion of Python source
code to Julia is the lack of type information at transpilation time.
As Python is a dynamically typed language, type information is

1Abstract Syntax Tree - Python 3.10: https://docs.python.org/3/library/ast.html (Re-
trieved on January 27th, 2022)

https://docs.python.org/3/library/ast.html


Miguel Marcelino and António Menezes Leitão

Python Ref. Julia Translated Julia w/ Fix Julia Ref.
0

5

10

4.11

11.09

0.21 0.02

Se
co
nd

s

Figure 2: N-Body Implementations

only available at runtime. Currently, PyJL requires type hints in
function arguments and return types, which is still susceptible to
the problem of type soundness, as Python does not check for type
hint correctness. To solve this issue, we are currently integrating
pytype [1] in PyJL to perform type verification.

PyJL also maps a subset of Python’s Object-Oriented features.
To map Python’s classes, PyJL currently supports two alternatives:
(1) Mapping classes to structs and functions in Julia and creating
a hierarchy with abstract types, (2) Using the Classes package,
which offers a comparable syntax to Python. In both aproaches, class
constructors and also the __init__ method are mapped to Julia
constructors. More improvements are required to support Python’s
special methods, such as __repr__, which could be mapped to a
Base.show() in Julia. In addition, there are also specific methods,
such as __add__, which are not supported.

Furthermore, the translation of Python’s multiprocessing li-
brary is also a subject of future study. This would require the use
of Julia’s Distributed library and proper handling of namespaces
when using multiple processors.

4 EVALUATION
To assess the capabilities of the PyJL transpiler, we use Py2Many’s
test suite together with a subset of Python’s formal test suite. The
outputs of the tests are compared with expected test results to
detect any errors.

Regarding the performance of the translated code, we used the
transpiler to convert commonly used benchmarks, of which we
present two. The first is an implementation of the N-Body problem,
which predicts the gravitational interactions of planets in the so-
lar system. The second tests Garbage Collection performance by
allocating short-lived trees and iterating through them recursively.
The translation results are publicly available.2

The N-Body benchmarks in Figure 2, show the translated Julia
source code being almost 3 times slower than the Python reference
implementation, which is unexpected given Julia’s high perfor-
mance. Analyzing the generated code revealed that the slowdown
was caused by insufficient type information. However, by annotat-
ing just one line of code, we managed a speedup of 52.6×when com-
pared to the initial translation result, which makes the translated
Julia code 19.5× faster than the reference Python implementation.
2PyJL Benchmarks Repository: https://github.com/MiguelMarcelino/pyjl_benchmarks

Python Ref. Julia Translated Julia Ref.
0

50

100
100.94

11.74 6.63

Se
co
nd

s

Figure 3: Binary Trees Implementations

Julia’s reference implementation is an order of magnitude faster,
but it is highly optimized and benefits from Julia’s performance
characteristics

Regarding the second benchmark, its results can be seen in Fig-
ure 3. In this case, translating Python’s reference implementation
yields good results without any user changes, resulting in an 8.6×
faster execution time. Both the Python Reference version and the
generated Julia code use a similar amount of memory, measured at
270MiB and 250MiB respectively. The reference Julia version runs
almost twice as fast as the translated version, although it also uses
about twice as much memory.

5 CONCLUSIONS
This work aims to automate the translation of Python libraries to
Julia, with the aim of increasing Julia’s available library set. The
generated code should respect the pragmatics of Julia, allowing it
to be further maintained by Julia programmers.

As demonstrated by our preliminary evaluation, the PyJL tran-
spiler requires little programmer intervention to generate high
performance Julia source code.

The development of the PyJL transpiler is still at an early stage,
although preliminary results are favorable, both in terms of code in-
telligibility and the performance obtained with few, if any, changes
to the generated source code.

REFERENCES
[1] Google. Pytype: A static type analyzer for python code, March 2015. [Online.

Retrieved February 25th, 2022 from: https://github.com/google/pytype].
[2] P. Japikse, K. Grossnicklaus, and B. Dewey. Introduction to TypeScript. Apress,

2017. Chapter 7.
[3] M. Marcelino and A. Menezes Leitão. Pyjl implementation, 2021. Retrieved April

8th, 2022 from: https://github.com/MiguelMarcelino/py2many.
[4] A. Sharma, L. Martinelli, J. Konchunas, and J. Vandenberg. Py2many: Python

to many clike languages transpiler, 2015. Retrieved November 18th, 2021 from:
https://github.com/adsharma/py2many.

https://github.com/MiguelMarcelino/pyjl_benchmarks
https://github.com/google/pytype
https://github.com/MiguelMarcelino/py2many
https://github.com/adsharma/py2many

	Abstract
	1 Introduction
	2 PyJL
	3 Limitations
	4 Evaluation
	5 Conclusions
	References

