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—— Abstract

Many high-level programming languages have emerged in recent years. Julia is one of these languages,
claiming to offer the speed of C, the macro capabilities of Lisp, and the user-friendliness of Python.
Julia’s syntax is one of its major strengths, making it ideal for scientific and numerical computing.
Furthermore, Julia’s high-performance on modern hardware makes it an appealing alternative to
Python. However, Python has a considerable advantage over Julia: its extensive library set.

There have been efforts to make Python libraries available to Julia either through Foreign Function
Interfaces (FFI’s), or through manual translation, but both have their tradeoffs: FFI’s do not take
advantage of Julia’s performance, as they call Python’s Virtual Machine, and manual translation is
demanding and time-consuming.

To address these issues and bridge the gap between the two languages, we propose PyJL, a
transpilation tool that converts Python source-code to human-readable Julia source-code. Although
the development of PyJL is still at an early stage, our preliminary results reveal that the generated
code follows the pragmatics of Julia and is capable of high performance.
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1 Introduction

Transpilation and compilation share identical mechanisms for processing source code, but
they have two distinct goals: compilers convert an input language to a lower-level language,
such as machine code, while transpilers translate it to another language with a similar level
of abstraction.

Transpilers were initially developed to convert lower-level source code. The first transpiler,
CONVS6 [6], was developed in 1978 by Intel to translate assembly source code from the
8080/8085 to the 8086 processor, providing compatibility between an 8-bit and a 16-bit
processor. Nowadays, as most modern programming languages are high-level languages,
it makes sense to develop transpilers that operate at this level. As an example, consider
Babel.js [1], a transpiler that converts newer versions of ECMAScript, such as ES6, to ES5.

Modern programming languages became more dependent on the quality and quantity of
available libraries, which highly influence its adoption. One solution to this problem is to
translate libraries from more established languages to newer and/or less popular ones [15].
However, manual translation requires an extensive amount of time and resources. On the
other hand, using a transpiler to automate this process can significantly speed up the
translation of libraries between languages.

© Miguel Marcelino and Anténio Menezes Leitdo;

licensed under Creative Commons License CC-BY 4.0
11th Symposium on Languages, Applications and Technologies (SLATE 2022).
Editors: Joao Cordeiro, Maria Joao Pereira, Nuno F. Rodrigues, and Sebastido Pais; Article No. 6; pp.6:1-6:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:miguel.marcelino@tecnico.ulisboa.pt
https://orcid.org/0000-0001-7374-7867
mailto:antonio.menezes.leitao@tecnico.ulisboa.pt
https://orcid.org/0000-0001-7216-4934
https://doi.org/10.4230/OASIcs.SLATE.2022.6
https://github.com/MiguelMarcelino/pyjl_translations
https://github.com/MiguelMarcelino/pyjl_translations
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2

Extending PyJL — Transpiling Python Libraries to Julia

Automatic translation is challenging, as different languages offer distinct syntactic and
semantic constructs. Additionally, if transpilers work with static source code information,
dynamic languages become considerably difficult to translate. All of these challenges influence
the translation’s quality.

There have been previous efforts regarding the transpilation of Python source code to Julia.
For instance, Py2JL[13] aims at translating Python source code to human-readable Julia
source code. Similarly to the work presented in this paper, it uses rule-based transpilation
to generate Julia source code. However, it can only translate simple Python code excerpts.
Thus, having a tool that can operate on larger code samples could benefit the community.

This paper extends our previous work on translating Python libraries to Julia [17]. PyJL
is a rule-based transpilation tool that translates Python source code into human-readable
Julia source code. Our previous evaluation of PyJL concluded that it is possible to translate
Python source code to Julia with minimal programmer intervention. Still, the transpiler
required more improvements regarding the generation of pragmatic code. Furthermore, with
improved translation coverage of Python’s standard library, we can now perform a more
in-depth analysis of the transpilers abilities.

2 Related Work

With the rise of many new high-level programming languages, translating between them
has become an increasingly important topic. Some programming languages are inclusively
using transpilers to maximize compatibility with existing languages. This is the case of
TypeScript [11], which transpiles to JavaScript and offers an improved syntax and additional
functionalities.

The topic of library translation was also discussed when developing LinJ [15], which
transpiles Common Lisp source code to Java. This work describes how the syntactic and
semantic incompatibilities of these two languages make in very hard to automatically translate
between them. This becomes increasingly more difficult if we want to preserve the pragmatics
of the target language.

Regarding the transpilers that use Python as a source language, PyRS is a transpiler that
translates Python to Rust and is also part of Py2Many [21]. It currently requires manual
intervention in some cases to generate running Rust source code. The Fortran-Python
transpiler [4] uses Python’s type hints to translate Legacy Fortran to Python and vice versa,
while producing human-readable code. It does not intend to entirely automate the translation
process, instead requiring manual intervention in certain cases. There are also transpilers,
such as Prometeo [23], which transpile Python source code to high-performance C source
code. However, the generated code is not human-readable, an important aspect of this work.

Transpilers that translate from Julia are less common, as the language is also very recent.
We previously mentioned Py2JL[13], which also transpiles Python to human-readable Julia
source code. Other transpilation approaches are not concerned with human-readability.

More generic tools include TXL [5], which was designed to restructure and modify source
code. Other notable tools include DMS [2], which targets automatic management and
improvement of source code in large software solutions.

3 Automatic Translation

Automatically generating code that preserves the pragmatics of the target language is
challenging, requiring the transpiler to at least use proper language constructs and suitable
code formatting with appropriate use of indentation rules. In practice, the translation process
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requires a careful analysis of syntactic and semantic incompatibilities that can be difficult to
overcome. For instance, in the case of Python and Julia, the semantics of language constructs
often require specific mappings. Python’s operators must be carefully mapped to Julia, as
they use overloading and apply different operations depending on their operator types.

Additionally, there is the problem of memory management, in which a transpiler must
account for memory allocations and remove unused objects in memory, which may require
the use of a garbage collection mechanism. This is important for transpilers such as ts2c
[18], which convert JavaScript and TypeScript to human-readable C source code.

Lastly, one should also consider the difference between dynamically and statically typed
languages. In a statically typed language, such as Java, all types have to be defined at compile
time, while in a dynamically typed language, types are determined at runtime. Translating a

dynamically typed language to a statically typed one requires a type inference mechanism.

However, the reliability of static type-inference mechanisms largely depends on the type
information available at compile time. Therefore, a transpiler might require restrictions
regarding which types must be available at compile time. Moreover, some languages, such as
Julia, also benefit from type annotations to provide better performance. That is the case of
Julia’s Arrays [3], where memory allocation can largely be improved if type annotations are
used, allowing for contiguous element allocations and less boxing/unboxing operations.

4 Translating Python to Julia

In the previous section, we highlighted several aspects of automatic translation that make the
conversion of syntax, semantics, and generation of pragmatic code more difficult. However,
Python and Julia have similar levels of abstraction, which might indicate that the translation
of Python libraries to Julia can occur with minimal programmer intervention. In this section,
we will briefly introduce both languages.

Python was introduced in 1991, and has gained popularity in recent years due to its
extensive library set and its use in Data Science. It is worth noting that there are several
implementations of Python. Its reference implementation is CPython, which was created by
Guido van Rossum in 1989 and is written in the C programming language. Two common

alternatives to CPython are Jython [9] and IronPython [10], both developed by Jim Hugunin.

The first compiles the input Python source code to JVM bytecode for the Java platform, and
the latter compiles it to IL bytecode for the .NET platform. However, these implementations
currently lack support for Python’s latest version.! Furthermore, there is also PyPy [20], an
implementation of Python using a Just-In-Time compiler written in RPython.

For the purpose of this research, we will use CPython, as it is the reference implementation.
However, CPython suffers from slow performance due to Python’s implicit dynamism. A
common problem of CPython is known as the two language problem, which occurs when
the prototype language differs from the main implementation language. Programmers who
require high-performance typically convert the kernel parts of their programs to C, using
Python only as a prototyping language.

On the other hand, Julia promises to solve the two language problem and is proving to
be a high performance alternative to Python. It is one of the few languages that belongs to
the Petaflop club, along with C, C# and Fortran. However, its library set is still reduced,
particularly when compared to more established languages, such as Python. We plan to
address this issue by speeding up the library development in Julia.

L As of April 2022, IronPython supports version 2.7.11 (version 3.4 is still an Alpha release) and Jython
supports version 2.7.2
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Figure 1 PyJL Architecture.

5 PylL

PyJL? is part of the Py2Many [21] transpiler, which is a rule-based transpilation tool that

offers a generic framework to transpile Python to many C-like programming languages, such

as Rust, Go, and C++. PyJL builds upon that framework to translate Python source code
to Julia. Figure 1 shows the architecture of the PyJL transpiler. The changed and added
phases show up with different colours for distinction.

The transpiler first parses the input Python source code using Python’s ast module,?
which generates an Abstract Syntax Tree (AST). It then uses several intermediate transform-
ation phases to generate the equivalent Julia source code. A brief description of each phase
follows:

1. Configuration Rewriters support configuration files in JSON and YAML format that
specify AST modifications.

2. Rewriters can be both language-specific or -independent. A rewriter changes the structure
of nodes in the AST to match equivalent nodes in the target language.

3. Core Transformers are language-independent transformers that add relevant information
to nodes in the AST. An example is to add scope context to the AST’s nodes, allowing
for node searches.

4. Transformers are language-specific and add information to nodes in the form of attributes.
An example would be to add type annotations for type inference.

5. Post-Rewriters are rewriters that have dependencies on some previous phase. Their
functionality is identical to the Rewriters phase.

6. Optimization Rewriters are rewriters that optimize a small set of the generated source
code. This is similar to peephole optimization, commonly used in compilers.

7. Transpiler translates language syntax and semantics, and converts the AST to a string
representation in the target language.

Notice from figure 1 that the Core Transformers phase executes at two stages. The first
makes core information available to the Transformers, Post-Rewriters and Optimization-
Rewriters stages. The second ensures that core Py2Many transformations are not overwritten,
making them available in the Transpiler phase.

2 PyJL Development Repository: https://github.com/MiguelMarcelino/py2many Retrieved April 24th,
2022

3 Abstract Syntax Tree — Python 3.10: https://docs.python.org/3/1library/ast.html (Retrieved on
January 27th, 2022)
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functions:
repeat_str: def repeat_str(str_inst, times):
args: + return str_inst * times
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def repeat_str(str_inst:str, times:int):
return str_inst * times

Figure 2 Annotation pipeline. Figure 3 Annotation Example.

There are scenarios where the transpiler provides more than one translation method.
In these scenarios, the programmer can decide which alternative to use by using one of
three methods: (1) manually annotating the Python source code, (2) using JSON or YAML
annotation files, supported by the Configuration Rewriters phase, or (3) using flags to make
global changes to source code generation. These approaches provide the flexibility to cover
a broader range of translation scenarios, allowing the programmers to selectively apply
annotations if necessary.

To demonstrate the use of the annotation mechanism, we show the processing pipeline in
more detail in figure 2. It parses the provided YAML/JSON files and adds the information
to the AST. The current supported features are adding type hints or decorators to function
definitions. An example of code annotations can be seen in figure 3. In this example, we
can use the annotations provided from the YAML file and merge them with the repeat_str
function. This is equivalent to manually annotating the code.

We will now describe the changes to the transpiler. Section 5 describes the most notable
improvements. In section 6, we compare the performance of several translation scenarios and
provide an optimization use-case, where we analyse the steps required by the programmer to
improve the performance of the generated code. Lastly, section 7 describes some limitations
of the transpiler and translation methodology applied.

5.1 Scoping Rules

The first mismatch between Python and Julia is related to the scoping rules, which define the
behaviour of assigning names to values and solve possible conflict scenarios. Both Python
and Julia use lexical scoping, which determines, at compile-time, the section in the source
code where a name is bound to a value. This section analyses the different scoping rules and
how they affect the translation process.

In Python, scopes are defined according to the LEGB rule [16, Ch. 16], which stands for
Local, Enclosing, Global, and Built-in scopes. Local scopes define the scope of a Python

function or lambda expression. Enclosing scopes define the outer scope of a nested scope.

The Global scope is the top scope of a Python module. Lastly, the Built-in scope contains
automatically loaded special keywords, such as built-in functions, exceptions, etc. In Python,
this rule is used when searching for an unqualified name. The search for a name reference
starts on the Local scope, following the LEGB order, and stops at the first encounter of that
name.

On the other hand, in Julia, scopes can either be global or local. Furthermore, Julia’s
local scopes are divided into hard and soft scopes [14, Ch. 10]. To explain this concept, let
us consider that a variable named a is defined in the global scope: if the enclosing scope
is a hard scope and if there is an assignment to a new local variable a, then a new local
variable will be created and will shadow the global variable; if all the enclosing scopes are soft

scopes, the behaviour changes when used in non-interactive or interactive (REPL) contexts.
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Listing 1 Python Mandelbrot. Listing 2 Julia Mandelbrot.
1 def mandelbrot(limit, c¢) -> int: 1 function mandelbrot(limit, c)::Int
2 z=0+0j 2z =0+ 0im
3 for i in range(limit + 1): 3 1=0
4 if abs(z) > 2: 4 for _i = 0:1imit
5 return i 5 i=_1i
6 z=2z%2z+cC 6 if abs(z) > 2
7 return i + 1 7 return i
8 end
9 z =2z %2z +cC
10 end
11 return i + 1
12 end

In non-interactive contexts, if an assignment to a new local variable a occurs, it will shadow
the global variable similarly to the hard scope, the only difference is that it emits a warning
when shadowing occurs. In interactive contexts, the global variable is always assigned. If
there is no global variable with the same name, then a new local variable will be created
both in hard and soft scopes.

Global scopes include modules and baremodules. Local soft scopes include structs,
for, while and try, while local hard scopes include macros, functions, do blocks, let
blocks, comprehensions, and generators. Furthermore, Julia’s constructs are only allowed
in certain scopes. These scoping rules impose some limitations in the translation process.

For instance, one of Julia’s scoping restrictions is that structs can only be defined in the
global scope. As an example, the transpiler generates structs to translate Python classes.
However, classes in Python can be defined in local scopes. Automatically changing the scope
of classes could potentially result in name clashes. In addition, this might not match the
programmer’s intent of the code. Therefore, we include a remove_nested Python decorator
that the programmer can use to annotate the classes that should be moved to the global
scope.

This problem also affects the resumable macro, which is used by the transpiler to
simulate Python’s generators in Julia. This macro defines a Finite State Machine to simulate
Python’s generator functions. To save the machine’s state, it creates a struct, restricting
its use to the global scope. To account for these cases, we have added an optional argument
field remove_nested to the resumable decorator, which has a similar functionality as the
previously defined decorator.

Another mismatch occurs with control flow operators. Despite their syntactic similarities
in Python and Julia, they have considerable differences in their scoping rules. As an example,
translating Python’s loops to Julia could potentially result in errors if loop target variables
are used outside its body. To detect these cases, the transpiler analyses the enclosing scope
to find any assignments that have the same variable name as any of the loop target variables.
This enforces the concept of for-loop scopes during transpilation and can then be used in
two different ways:

1. Have the transpiler emit a warning message when loop target variables are used outside
the loop’s scope.
2. Create a new variable in the enclosing scope and update it in every iteration of the loop.

To demonstrate a use-case where this occurs, consider the mandelbrot function shown in
listing 1 that tests if a complex number ¢ belongs to the Mandelbrot set by computing the
number of iterations required (up to a given limit) to get a value greater than 2.
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Listing 3 Python Augmented Assignments. Listing 4 Augmented Assignment Expansion.
1 x = [1,2] x += [3, 4]
2y =X +
3 x += [3,4] x =x + [3, 4]
4 x[1:2] *= 2 4
5 y[1:2] += [1] x = append! (x, [3, 41)

Notice how the loop variable i is used outside the scope of the loop. This is valid in
Python, as the loop does not define its own scope, but cannot be translated directly to Julia.
By using code analysis and applying the second translation method, the transpiler generates
the code shown in listing 2, which now works in Julia with the intended result.

5.2 Augmented Assignments

Augmented assignments combine binary operations with assignment statements. These
are supported by both Python and Julia, but given Python’s use of operator overloading,
not all augmented assignments can be translated directly to Julia.

As an example, consider the code excerpt in listing 3. The first two assignments are
equivalent in both languages. However, executing the third statement in Julia does not yield
the same results, as it performs an element-wise addition instead of the concatenation that
is done in Python. To solve this problem, the transpiler expands augmented assignments
into assignments and binary operations and then transpiles the result.

The conversion of this statement can be seen in listing 4. Notice how the function append!
was used, which performs an in-place concatenation of elements to the list x, matching the
behaviour of Python’s augmented assignments [22, Ch. 7].

Another mismatch occurs when translating slices from Python to Julia. Lines 4 and 5 of
listing 3 represent that scenario. To translate these augmented assignments into Julia, one
can use the splice! function, which replaces or inserts new elements in a given list. The
translated Julia source code for the previous example is the following:

splice! (x, 2:2, repeat(x[2:2], 2))
splice! (y, 3:2, [1])

Notice that the second call to splice! uses the form n:n-1 for the second argument,
which inserts a new element in the list [14, Ch. 42].

5.3 Subscripts

In Python, a subscript is used to represent indexing and slicing on sequences and key lookups
on mapping types. Translating subscripts to Julia becomes a challenge when trying to
generate pragmatic code. Furthermore, there are several cases that require special handling,
which will be discussed in this section.

Indexing is used to look up a particular position in a sequence, i.e., tuples, lists, strings,
etc. The main difference between indexing in Python and Julia, is that Python uses 0-based
indexing while Julia uses 1-based indexing. Indexing can be performed using integer literals
or generic expressions. Integer literals can be incremented to match Julia’s 1-based indexing,
but non-literal expressions require adding the literal 1, which can reduce the readability of
the code. However, because most indexing is performed in loops, we can optimize the entire
scenario instead.

6:7
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Listing 5 Julia Combination Sort.

Listing 6 Julia Combination Sort.

1 def comb_sort( 1 function comb_sort(
2 seq: List[int]) -> List[int]: 2 seq: :Vector{Int})::Vector{Int}
3 gap = len(seq) 3 gap = length(seq)
4 swap = True 4 swap = true
5 while gap > 1 or swap: 5 while gap > 1 || swap
6 gap = max(1, floor(gap / 1.25)) 6 gap = max(1, floor(Int, gap / 1.25))
7 swap = False 7 swap = false
8 for i in range(len(seq) - gap): 8 for i = 0:length(seq) - gap - 1
9 if seqlil > seqli + gapl: 9 if seq[i + 1] > seql[i + gap + 1]
10 seq[il, seq[i + gap]l = \ 10 seq[i + 1], seqli + gap + 1] =
11 seql[i + gapl, seqlil 11 (seqli + gap + 1], seqli + 11)
12 swap = True 12 swap = true
13 return seq 13 end

14 end

15 end

16 return seq

17 end

For instance, consider the implementation of the combination sort algorithm in listing 5.
The simplest translation, as shown in listing 6, is to preserve the ranges and adjust the
indexing operation. As an alternative, we provide two additional optimization methods that
the programmer can use:

1. Determine if operations in loops are only performed on sequences, and increment loop
ranges.
2. Use the OffsetArrays package [12] to define custom index ranges for sequences.

The first approach requires analysing the source code to verify if the loop ranges can
be optimized. The transpiler validates the applicability of this optimization by analysing if
all nodes in the loop’s body using its target variables are Subscript nodes. To demonstrate
this translation method, we used the transpiler to translate the Python combination sort
implementation by changing the loop ranges instead of the indexes. The transpilation result,
shown in listing 7, respects the pragmatics of Julia, being much closer to what a Julia
programmer would write.

The second translation method, which uses OffsetArrays, allows defining arrays with the
same index ranges as Python. The code generated by the transpiler is available in listing 8.
The call to 0OffsetArray creates a wrapper around the array seq and decreases its indexing
value by 1, which is equivalent to performing 0-based indexing. In this case, the transpiler
used a let-block, to restrict the wrapping of the input vector seq to the block’s scope.

Both alternatives have tradeoffs. The first is arguably more pragmatic in this particular
example, but changes the algorithm’s implementation to use 1-based indexing, which might
not be desired for all scenarios. The second preserves the program’s original indexing, but
can be a less pragmatical solution in some cases. The programmer can select his preferred
method, as demonstrated in the beginning of section 5.

Another scenario is the use of subscripts with slices. In Julia, slices are called UnitRanges
and are very similar to those of Python. One notable exception is that in Python, slices
have an inclusive beginning and exclusive end, whereas in Julia, both are inclusive, requiring
the transpiler to adjust the ranges. Furthermore, Python allows slices that do not explicitly
define a beginning or end index, whereas Julia’s UnitRanges require all values to be specified.
An example of this can be found below, where the Python code excerpt on the left can be
translated to the corresponding Julia code on the right:
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Listing 7 Julia Optimized Indexing. Listing 8 Julia Offset Arrays.

1 function comb_sort(
2 seq: :Vector{Int})::Vector{Int} seq: :Vector{Int64})::Vector{Int64}
3 gap = length(seq) let seq = OffsetArray(seq, -1)
4

function comb_sort( 1
2
3
swap = true 4 gap = length(seq)
6
7

5 while gap > 1 || swap swap = true
6 gap = max(1l, floor(Int, gap / 1.25)) while gap > 1 || swap
7 swap = false gap = max(1,floor(Int, gap / 1.25)
8 for i = 1:length(seq) - gap )
9 if seql[il > seqli + gap] 8 swap = false
10 seqli], seql[i + gapl = 9 for i = O:length(seq) - gap - 1
11 (seql[i + gapl, seqlil) 10 if seql[i] > seqli + gap]
12 swap = true 11 seq[il, seqli + gap] =
13 end 12 (seql[i + gapl, seqlil)
14 end 13 swap = true
15 end 14 end
16 return seq 15 end
17 end 16 end
17 end
18 return seq
19 end
1= [1,2,3,4] 1= [1,2,3,4]
a=1[1:] a = 1[2:end]
b =1[:-1] b = 1l[begin:end-1]

Notice that the last line covers the translation of negative indexing. Currently, PyJL only
supports negative indexing if the index is a literal.

Lastly, subscripts can be used for key lookups, where a common scenario is a dictionary
lookup. In practice, distinguishing subscripts that use indexing from ones that use keys
depends on the container’s type. The transpiler currently relies on the type-inference
mechanism to infer the container types and transpile the corresponding subscripts to Julia.
The inference mechanism is described in section 5.5.

5.4 Functions

Both in Python and Julia, functions are first-class values. Most notably, they can be returned,
passed as arguments, and assigned to variables. Some functions defined in Python can be
mapped to equivalent functions in Julia. However, even if their behaviour is equivalent, they
may differ in terms of the argument order or even argument count. For instance, consider
the Python code excerpt on the left and its corresponding translation to Julia found on the
right:

write = sys.stdout.buffer.write write = x -> Base.write(stdout, x)
write(b"test") write(b"test")

If no argument is provided, the Python built-in function write will output the content to
stdout. However, in Julia, the equivalent function requires an explicit parameter indicating
where to write the contents to. The transpiler translates such cases using lambda expressions
to automatically input the default parameters.

Notice how in the translated code above, the assignment to variable write overwrites any
future calls to Julia’s built-in write function within the scope where it is defined. To prevent
this issue, every time an assignment name clashes with one of Julia’s built-in functions,
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we translate function references using Julia’s module.name notation. This can be seen in
the example above, where sys.stdout.buffer.write is translated to Base.write in Julia,
mitigating the name clashes.

5.5 Type Inference

Having a type-inference mechanism is crucial to transpile Python source code to Julia, as
the translation outcome might depend on the type information available. Py2Many already
offers a type-inference mechanism, which we extended with new inference rules. This section
briefly describes the current inference mechanism.

The inference mechanism in Py2Many is implemented using a define-use set. This
mechanism recursively walks the AST and aggregates type information from node assignments
for each scope. The defined scopes are more extensive than Python’s scopes, to cover the
scoping rules of all supported languages. The current scopes include modules, functions,
classes, for and while loops, if-statements, and with-statements.

We extended the current inference mechanism with a more extensive rule-set. The changes
include adding more information to binary operations, as their translation to Julia is largely
dependent on the types of their operands. This involves adding type annotations to the left
and right operands, to support more complex operations.

Similarly to MyPy, PyJL also requires programmers to annotate function definitions.
PyJL uses these definitions to mitigate type instability and to translate operations that
depend on the operand types.

Lastly, PyJL strictly enforces static typing using Python’s type hints. Therefore, any
user-annotated variables are only allowed to have one type within their scope. As an example,
consider the following assignment operations in Python:

1: LiSt[StI‘] = [nan’ "C", ngn’ "t"]
1 = "acgt"

In this case, the transpiler will reject the second assignment to variable 1, as the type
of its value does not match the previous type annotation. Alternatively, if the value of the
second assignment is another variable, the transpiler will search for the variable’s type. If the
type was provided by a type hint and does not match the previous annotation, the transpiler
will reject the assignment.

6 Performance

To evaluate the performance of the generated code, we chose three benchmarks: (1) the
binary trees benchmark, which tests the garbage collection mechanisms of each language
by allocating short-lived trees and traversing them, (2) the sieve of Eratosthenes, which
evaluates the performance of Julia’s iterators and compares the performance of the generated
code to a high performance NumPy implementation, and (3) the fasta benchmark, which
generates random DNA sequences using a Linear Congruential Generator (LCG), testing the
performance of IO operations and generator functions.

For all benchmarks, we have chosen a reference version, representing the best-case single-
threaded implementation. Julia’s reference version for the fasta benchmark was simplified by
removing the use of threads. We measured the results using the bencher benchmarking tool
[8]. The results were measured on a machine with an Intel(R) Core(TM) i7 4790K @4.4GHz



M. Marcelino and A. M. Leitao

| |
103.9 398.9

100 . 400 -
2] o2}
< . 274.9 240.4
S S
3 50 - § 200 u
n n
11.6 71
0 T T I 0 I I !
Python Julia Translated Julia Ref. Python Julia Translated Julia Ref.
Figure 4 Binary Trees Benchmark. Figure 5 Binary Trees Memory Allocation.
| T T T T TTT17 T T TTITrr T T T TTTTT]
20 | 228 I o e
" % 15 | —Ah— ; 1]“1‘13 A;xylf)tat‘c‘dl”
3 —@— Julia No Resumables
< g ——  Julia No print
9} 8 10 - Julia Vectors
3 10 1 & —&—  Julia Ref.
n P ——
10 15 16 g "
0 I I I I =1 0 104 10° 10¢ 107
Python NumPy Julia Offset Julia )
Arrays  Ref. Input size
Figure 6 Sieve Benchmark. Figure 7 Fasta Benchmark.

with 16GB of RAM under Linux. We used an input of 21 for the binary trees benchmark,
and 100,000,000 for the sieve benchmark. The fasta benchmark was tested with varying
input sizes. The results of the translation are publicly available.*

From figure 4, we observe that translating Python’s implementation of the binary trees
benchmark to Julia yields a 9x faster execution time. Both the Python reference version
and the generated Julia code use a similar amount of memory, as can be observed in figure 5,
measured at 275MB and 240MB respectively. The reference Julia version manages a 1.64 %
faster execution time compared to the translated version, although it also uses 1.66x more
memory.

Regarding the sieve benchmark, figure 6 shows the obtained results, where the generated
Julia source code is 13.5x faster than the Python implementation. We also translated this
implementation using OffsetArrays, mentioned in section 5.3, where the results only differ by
6% from the translated code. Nonetheless, Python also allows programmers to use NumPy
[19], a scientific computing library implemented in C, to speedup code execution. The NumPy
implementation is 1.46x faster than the generated code. Julia’s reference implementation
still manages a faster execution time, but it uses sophisticated techniques, such as loop
unrolling, and exploits cache allocation.

Lastly, the results of the fasta benchmark can be seen in figure 7. As the Python
implementation uses generator functions, we have chosen to translate this benchmark using

the Resumables package, which simulates the use of Python’s generator functions in Julia.

Similarly to Python, it uses a finite state machine to save the generator’s state. However,
despite its similarities, the translated version is slightly slower across all input ranges. This
is especially noticeable with smaller inputs from 10* to 105. We now describe possible steps
a programmer can follow to improve the performance of the translated code.

4 PyJL Benchmarks Repository: https://github.com/MiguelMarcelino/pyjl_benchmarks (Retrieved
June 6th, 2022)
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To discover what is causing the slowdown, the first step is to look for unannotated code.
After a closer inspection of the fasta benchmark, we determined that there was one instance
where this occurred. The translated Julia function can be found below, for which we added
the type annotations manually:

function makeCumulative (table)

1

2 P::Vector{Float64} = []

3 C::Vector{String} = []

4 prob = 0.0

5 for (char, p) in table

6 prob += p

7 P = append! (P, [probl)
8 C = append!(C, [char])
9 end

10 return (P, C)

11 end

This function calculates cumulative probabilities from the predicted probabilities of
choosing each nucleotide in a DNA sequence, represented by the table argument. A list P is
used to store the cumulative probabilities, and a list C is used to store the nucleotides. Both
lists are translated into generic arrays, which have large overheads in Julia, resulting in less
efficient code due to excessive boxing and unboxing. The annotations on lines 2 and 3 solve
this problem. As seen in figure 7, the changes are more noticeable with larger inputs of 107,
where the execution time is 1.3x faster than Python.

Next, we measured the overhead of using resumables. In this case, as it is only required
to save a seed value, we can use a memory reference holding that value, similar to what
the Julia reference version does. Removing the use of resumables resulted in much faster
execution times across all input ranges. This lead us to conclude that the slowdown observed
with the smaller inputs was likely caused by the initial operations required to setup the finite
state machine.

Another aspect that can be improved is IO performance, as the fasta benchmark outputs
large nucleotide sequences to the standard output. Python’s print function was translated
by the transpiler to Julia’s equivalent println function, which has notable overheads when
called repeatedly, as it does not buffer the data, issuing more calls to operating system
functions that require expensive context-switching operations. This can be improved by
using Julia’s write function, which, similarly to Python’s println function, buffers the data
and reduces the number of operating system calls. This improvement is more noticeable with
the larger input size of 107, resulting in a 1.06x faster execution time. Despite being a small
improvement, this becomes more noticeable with input values larger than 107.

Finally, we can use Julia’s more efficient data types and convert Python’s strings into
vectors holding UInt8 values. This not only makes the implementation more efficient, but
also reduces the amount of memory required to allocate the nucleotide sequences. These
changes are more noticeable with input sizes of 10 and 107, resulting in a further 1.36x and
1.91x improvement, respectively.

Julia’s reference implementation is still faster than our optimized fasta implementation,
as it stores and retrieves the random nucleotide sequences in a more efficient way. Instead of
the makeCumulative function used by Python, Julia builds a lookup table that holds all the
nucleotides in their respective positions, given the calculated cumulative probabilities. It then
relies on indexing to retrieve the nucleotides. In contrast, Python uses the bisect_right
function to locate the appropriate nucleotides, which has more overheads and results in
slower execution times when translated to Julia.
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7 Future Work

The changes made to PyJL bring it closer to our goal of automatically translating Python
libraries to Julia. However, there are still limitations, which we discuss in this section.

The transpiler currently analyses modules independently, without considering module-
level dependencies. Py2Many already uses a topological sort algorithm to sort all modules
according to their import dependencies, but still requires a more sophisticated mechanism to
analyse the program’s context as a whole.

Another aspect that has to be addressed is the handling of exceptions. As an example,
consider Python’s ValueError exception, which is raised when an argument has the correct
type but an incorrect value. Two Python calls that throw this exception are math.sqrt(-1)
and float("-"). In Julia, the first call throws a DomainError exception, but the second
call throws an ArgumentError exception. Therefore, an exception in Python does not have
a deterministic corresponding exception in Julia. Furthermore, some Python exceptions,
such as the ZeroDivisionError that is raised in Python when the quotient of a division
operation is zero, are not considered as exceptions in Julia. Julia instead returns Inf, which
represents infinity. Given that the transpiler performs static analysis, it will not be possible
to detect such situations in advance, and it is not pragmatic to generate code that does that
at runtime. Such cases remain a topic for future work.

Regarding Py2Many’s type-inference mechanism, it is currently rather conservative
when annotating generic containers, which largely impact the performance of the generated
Julia source code. This is due to its limitations regarding intra-procedural analysis, which
considers the whole program’s context. An external type inference mechanism supporting
intra-procedural analysis, such as pytype [7], could potentially increase the available type
information at transpilation time.

Lastly, the readability of the generated code is an aspect that requires a more extensive
evaluation. We are currently in the process of preparing user tests, but these still require a
thorough analysis and remain a topic for future studying.

8 Conclusions

This work aims to automate the translation of Python libraries to Julia to increase Ju-
lia’s library set. The generated code should conform to Julia’s pragmatics, allowing Julia
programmers to further maintain it.

In this paper, we presented recent additions to our previous work on translating Python
libraries to human-readable and modifiable Julia source code. In particular, we further
automated the translation of source code by covering a more extensive subset of Python.
The readability and pragmatics of the generated code were also improved using code analysis,
making it harder to distinguish from human-written code.

Automatically converting Python source code is challenging due to the semantic differences
between Python and Julia. Python’s dynamic typing further makes this a difficult process,
as types are not available at compile time. The improved inference mechanism now covers
a broader range of scenarios, but this is still a limitation when automatically converting
Python source code. Requiring type-hints in function definitions mitigates most of these
limitations.

As demonstrated by our performance results, the PyJL transpiler requires little pro-
grammer intervention to generate high-performance Julia source code. Furthermore, as the
generated source code is human-readable, programmers can further optimize and maintain it.
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