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Abstract Architecture has always explored the latest technological advances both 

in terms of building design and fabrication. Among the recently adopted computa-

tional design approaches, Algorithmic Design (AD) shows great potential for the 

conception, analysis, and production of architecture, due to automating repetitive 

and time-consuming design tasks, facilitating design changes, increasing design 

freedom, and facilitating the search for better-performing solutions. These ad-

vantages are particularly important for the design of building facades, providing the 

flexibility needed to deal with the design complexity of this architectural element. 

However, AD is an abstract formal method that requires programming skills, which 

explains its still shy adoption in the field. Despite the AD tools released to smooth 

its learning curve, few successfully combine creative tasks with the need to respond 

to multiple requirements and almost none simplify the algorithmic task, forcing ar-

chitects to build the necessary functionalities from scratch. This research addresses 

these problems by structuring an architectural-oriented theory considering the vari-

ability and context-specificity of architectural design practice and responding to its 

different aesthetic, performance, and construction requirements. To make it useful 

for architects, the theory is implemented in an AD framework, whose application 

promises to decrease the time and effort needed to geometrically explore, analyze, 

and materialize new facade designs, while smoothing the transition between design 

stages and their different tools. In this paper, we focus on the mathematical imple-

mentation of three-dimensional unconventional facade elements, assessing the abil-

ity of the resulting formalisms to generate, transform, and materialize the produced 

solutions.  

Keywords. Algorithmic Design; Facade Design; Geometric Patterns; Mathematical 

Framework. 
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1. Introduction 

Architecture has always explored the latest technological advances both in terms of 

building design and fabrication. Nowadays, digital tools and computation-based de-

sign approaches play a relevant role in the conception, analysis, and production of 

architecture. These include Algorithmic Design (AD), a formal method that creates 

designs through algorithms [1] and whose flexibility brings several advantages to 

the design practice, such as automating repetitive, time-consuming design tasks; 

facilitating design changes; increasing design freedom; and facilitating the search 

for better-performing solutions.  

Among AD’s potential applications, the design of building facades stands out due 

to (1) the aesthetic and environmental relevance of this architectural element [2,3]; 

(2) the complexity of its design [4], which involves dealing with multiple context-

specific design constraints [5]; (3) the growing need to reduce the buildings’ envi-

ronmental impact [6,7]; and (4) its tectonic potential in providing comfortable and 

better-performing interior spaces. Nevertheless, and despite its advantages, AD is 

not yet widespread in the field, mainly due to its high level of abstraction and its 

need for programming skills [8]. To smooth its learning curve, several AD tools 

have been released in the last decades, but few successfully combine the architects’ 

creative practice with the need to simultaneously respond to multiple requirements. 

Moreover, most do not sufficiently simplify the algorithmic task, forcing architects 

to build the necessary functionalities from scratch.  

To make AD more accessible to architects it is therefore important to systematize 

the algorithmic generation of design solutions in an architectural-oriented theory 

considering the wide variety of possible design scenarios, while responding to dif-

ferent aesthetic, performance, and construction requirements. We address this prob-

lem by extending our previous research on mathematics-based strategies encom-

passing the variability, diversity of requirements, and context-specificity of facade 

design problems [9–11]. More precisely, we add a set of strategies addressing a 

wider range of geometry-related principles, as well as their fabrication through dif-

ferent manufacturing means and materials. The aim is to support architects with 

some programming experience in the algorithmic development and realization of 

facade design solutions, decreasing the implementation time of new designs, while 

providing the flexibility needed to handle each design stage in a continuous work-

flow. 

As in previous research [9–11], the mathematics-based strategies addressing the 

geometric exploration and fabrication of a wider range of facade elements are im-

plemented in a framework of predefined algorithms that can be easily combined in 

the development of new facade design solutions. In this paper, we elaborate not only 

on their implementation in the AD framework but also on their application to gen-

erate, transform, and materialize nonstandard three-dimensional facade elements. 

To evaluate the flexibility and versatility of the extended AD framework, we apply 

it in the step-by-step development of a set of case studies of different volumetric 

compositions, while addressing their subsequent materialization using different 

manufacturing strategies. 
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2. Methods 

Inspired by modular programming and design patterns strategies [12–16], this in-

vestigation aims at systematizing facade design processes based on AD by: 

1. reducing the time and effort spent on AD tasks, freeing the architect from 

having to write all algorithms from scratch and avoiding potential program-

ming errors. 

2. guiding the selection and combination of the best algorithms for a given sce-

nario, making it easier to deal with the diversity and context-specificity of 

most design requirements. 

3. smoothing the transition between design stages, solving the interoperability 

issues between their different specialized tools and thus minimizing the accu-

mulation of errors. 

4. facilitating the conversion of the resulting AD models into physical ones by 

automatically adapting their structure according to the fabrication means. 

To that end, we adopt a mathematics-based perspective to structure a theory han-

dling the complexity, variability, and diversity of facade design problems, imple-

menting it in an AD framework containing different categories of algorithms. The 

preference for a text-based algorithmic implementation over a visual-based one lies 

on its greater expressiveness and scalability, which is critical to deal with the com-

plexity and scale of architectural design problems. In this research, we extend pre-

vious theories [9–11] by placing particular emphasis on the geometric exploration 

and concretization of three-dimensional unconventional shapes, resulting in a six-

stage methodology encompassing the following tasks: 

1. identification of the most relevant facade design problems. 

2. solution of the collected problems using the mathematical formalism. 

3. integration of the latter into the overall theory. 

4. elaboration of algorithmic strategies addressing their materialization. 

5. implementation of both (3) and (4) into the AD framework. 

6. practical application.  

The results of tasks 1 to 3 are briefly described in section 3, and those of tasks 4 to 

6 are presented in section 4. Section 5 discusses the previous findings, concluding 

the proposal has enough flexibility to adapt to the ever-changing nature of architec-

tural practice and its diversity of design scenarios and requirements. 

3. Mastering unpredictability  

Architectural design problems are unique by nature as they are the natural product 

of multiple design requirements and constraints that can be global or context-spe-

cific, straightforward or abstract, and fixed or evolving. When combined with the 

variability of the design brief and the architects’ creative nature, their complexity 

becomes further accentuated, making it difficult to use the same strategy in different 
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scenarios. Moreover, given the projects’ tight deadlines and the lack of flexibility 

of most design tools, the need to quickly explore a wide range of possible solutions 

is often unfeasible, hindering the creative potential of the architect. As a result, only 

a limited set of solutions is often considered, leaving many design scenarios unex-

plored. 

This becomes especially evident in the design of building facades, due to the need 

to consider their multiple functions and requirements [2,3]. Given the potential of 

AD approaches to improve design processes, we propose their use in current prac-

tices. To address their technical complexity and abstractness, we propose a mathe-

matics-based theory and framework to support the algorithmic development of 

building facades, containing several AD strategies organized into a multidimen-

sional classification.  

We expect to overcome some of the limitations found in facade design processes 

by guiding architects towards the most suitable algorithms for (1) generating the 

idealized solution; (2) analyzing and optimizing it regarding one or more perfor-

mance criteria; (3) making it feasible in terms of cost and resources; and (4) facili-

tating its manufacturing. Nevertheless, given the diversity and context-specificity 

of most design problems, we do not expect this matching process to yield a complete 

algorithmic solution and, thus, we assume that architects are still responsible for (1) 

dividing the design into smaller parts, (2) identifying and establishing dependencies 

between them, (3) combining the different algorithms dealing with each part, (4) 

implementing additional algorithms that might be needed to handle the specific cir-

cumstances of the design brief, and (5) executing the algorithms and evaluating the 

results. 

In the next section we elaborate on the proposed formal methods together with 

their implementation and application in a set of case studies. 

4. Mathematics-based implementation 

As a starting point, consider the framework presented in [9], whose mathematical 

principles are organized by type and role in facade design processes in the following 

categories: Geometry, Distribution, Pattern, Optimization, and Rationalization. 

The proposed formalism regards building facades as two-dimensional parametric 

surfaces described as 𝑆(𝑢, 𝑣), whose shape can be defined through algorithms from 

the Geometry category, such as 𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝐶𝑦𝑙𝑖𝑛𝑑𝑟𝑖𝑐𝑎𝑙, which create planar and 

cylindrical parametric surfaces, respectively. Along this surface we can distribute 

one or more geometric elements according to different configurations available in 

the Distribution category, such as the squared and hexagonal grids produced by the 

algorithms 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 and 𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠. Combining these two types of algorithms 

with those of the Pattern category originates several geometric patterns, whose lev-

els of complexity and variability depend on the algorithms selected: these can either 

target the creation of different shapes (the Shape subcategory), e.g., the algorithms 

𝑠ℎ𝑎𝑝𝑒𝑠𝑡𝑎𝑟 and 𝑠ℎ𝑎𝑝𝑒𝑝𝑦𝑟𝑎𝑚𝑖𝑑, or their geometric manipulation (the Transformation 
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subcategory), e.g., the algorithms 𝑇𝑠𝑐𝑎𝑙𝑒  and 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 . This means that the more al-

gorithms are selected from the first subcategory, the more variety of shapes the de-

sign will have, whereas the more are selected from the second subcategory, the more 

diverse their geometric variation will be. To control the shapes’ geometric charac-

teristics to meet one or more performance requirements, we can use the algorithms 

available in the Optimization category, such as the algorithms 𝑜𝑝𝑡𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 and 

𝑜𝑝𝑡𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 , and to make the shapes feasible for fabrication, we resort to the Ration-

alization category, which provides algorithms like 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔 and 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒 to ei-

ther count or reduce the number of different elements composing the final solution. 

This research extends this classification by (1) adding more algorithms to both 

Shape and Transformation subcategories addressing the generation and manipula-

tion of three-dimensional façade elements, accordingly; (2) adapting some of the 

existing ones in the Transformation subcategory to be able to deal with the manip-

ulation of three-dimensional shapes; and (3) including an additional category, Fab-

rication, addressing the materialization of the resulting solutions. 

4.1. Pattern 

This category contains algorithms to create different facade patterns resulting from 

the repetition of one or more geometric elements that can be kept unchanged or 

change according to one or more geometric transformations. In previous research 

[9,17,18], we focused on the mathematical representation of one- and two-dimen-

sional patterns, addressing their potential to generate a wide range of geometric pat-

terns responding to different aesthetic and performance requirements. In the current 

research, we focus on the formal methods driving the creation, manipulation, and 

materialization of three-dimensional patterns. 

As described in [9], all Shape algorithms receive a set of points (𝑝𝑡𝑠) and a set of 

additional parameters depending on the geometric characteristics of the shape to 

create: while a rectangular element receives the length and width of its edges (𝑒𝑢 , 𝑒𝑣) 

and an horizontal placement angle (𝛼𝑢) (see Equation 1), a cuboid element receives 

the previous parameters plus a height (𝑒𝑧) and a vertical placement angle (𝑒𝑣) (see 

Equation 2). When combined with both Geometry and Distribution algorithms, 

these algorithms will extract different amounts of information depending on the re-

ceived parameters: while the former requires the surface points and their normal 

vector to place each rectangular shape, the latter requires these points to center the 

cuboid element and both their normal and tangent vectors to correctly orientate it 

(Fig. 1). 

𝑠ℎ𝑎𝑝𝑒𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑝𝑡𝑠, 𝑒𝑢, 𝑒𝑣 , 𝛼𝑢) (1) 
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𝑠ℎ𝑎𝑝𝑒𝑐𝑢𝑏𝑜𝑖𝑑(𝑝𝑡𝑠, 𝑒𝑥 , 𝑒𝑦, 𝑒𝑧 , 𝛼𝑢, 𝛼𝑣) (2) 

 
Fig 1. Cuboid algorithm parameters: set of points centering its axis (A); its length, width, and 

height values (B) and its placement angles regarding the points’ tangent and normal vectors (C). 

 

Regarding more complex shapes resulting from constructive solid geometry opera-

tions, such as union, subtraction, intersection, or more complex modeling operations 

such as morphing, lofting, bending, among others, the framework provides algo-

rithms to create, for instance, irregular 3D tile shapes and panels [19], complex 

truss-like structures [20], and nonstandard brick elements [21].  

One such example is the algorithm producing a type of cobogó bricks (Equation 

3), which receives, in addition to the set of points (𝑝𝑡𝑠) defining its outer frame 

shape (Fig. 2A) and two placement angles (𝛼𝑢 and 𝛼𝑣) dictating its spatial orienta-

tion (Fig. 2B-C), a thickness and a width (𝑡ℎ𝑖𝑐𝑘 and 𝑤𝑖𝑑𝑡ℎ) controlling the corre-

sponding frame dimensions (Fig. 2D). In this case, the resulting shape is achieved 

either through the union of several parallelepiped elements or the subtraction of a 

smaller three-dimensional element from a larger one of the same shape. Then, to 

create its inner elements, the algorithm receives their radius size (𝑟𝑏𝑎𝑟𝑠) and a rule 

guiding their spatial orientation (𝑟𝑢𝑙𝑒). The result is a geometric composition made 

of smaller regular elements whose spatial distribution can follow different rules 

(Fig. 3): 

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜(𝑝𝑡𝑠, 𝛼𝑢 , 𝛼𝑣, 𝑡ℎ𝑖𝑐𝑘, 𝑤𝑖𝑑𝑡ℎ, 𝑟𝑏𝑎𝑟𝑠 , 𝑟𝑢𝑙𝑒) (3) 
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Fig 2. Cobogó algorithm parameters: set of points shaping the brick’s frame (A); placement angles 

regarding the 𝑢 (B) and 𝑣 directions (C); and frame’s width and thickness values (D). 

 

Fig 3. Cobogó algorithm geometric evolution: creation of the outer frame and its inner elements 

according to different rules. 

 

Given the framework’s flexible nature, we can now manipulate the latter’s param-

eters in different and independent ways and apply, for instance, multiple geometric 

rules that result in different cobogó elements. To that end, we provide it with: 

1. the set of positions where to create each cobogó shape (𝑝𝑡𝑠𝑠), which we ob-

tain by combining the algorithms 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 and 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 from the Geome-

try and Distribution categories. 

2. the dimensions characterizing those shapes (𝑡ℎ𝑖𝑐𝑘, 𝑤𝑖𝑑𝑡ℎ, 𝑟𝑏𝑎𝑟𝑠), to which we 

assigned a set of fixed values. 

3. the geometric rules to apply (𝑟𝑢𝑙𝑒𝑠), which correspond to a set of functions. 

To deal with the different number of dimensions of the received arguments, we 

benefit from broadcasting [9], i.e., the mapping of a function across multidimen-

sional data structures, allowing us to apply the Shape algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜 to an 

array of elements with a higher number of dimensions than expected, as it happens 

with its parameter 𝑝𝑡𝑠, which is expecting a one-dimensional array but receives a 
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two-dimensional one (𝑝𝑡𝑠𝑠) resulting from the combination 

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)); or with a higher number of dimensions than the other 

received arguments, e.g., while 𝑝𝑡𝑠𝑠 is a two-dimensional array, 𝑟𝑢𝑙𝑒𝑠 is a one-di-

mensional one, and the remaining arguments are independent numeric values. Using 

broadcasting, each one-dimensional array (𝑝𝑡𝑠) of the two-dimensional one (𝑝𝑡𝑠𝑠) 

is independently assigned to the algorithm 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜, as also is each independent 

function of the one-dimensional array 𝑟𝑢𝑙𝑒𝑠. This allows us, for instance, to make 

the latter selection random by simply combining it with the Transformation algo-

rithm 𝑇𝑟𝑎𝑛𝑑𝑜𝑚, which returns randomly chosen values (Equation 4). Fig. 4 illustrates 

the results with two examples resulting from randomly alternating between two and 

five possible rules. 

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜 . (

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),

𝛼𝑢, 𝛼𝑣 , 𝑡ℎ𝑖𝑐𝑘, 𝑤𝑖𝑑𝑡ℎ, 𝑟𝑏𝑎𝑟𝑠 ,

𝑇𝑟𝑎𝑛𝑑𝑜𝑚(𝑟𝑢𝑙𝑒𝑠)

) (4) 

 

Fig 4. Two patterns resulting from the same algorithmic composition but different sets of rules: on 

the left, the random selection is between 2 rules and, on the right, it is between 5 rules. 

 

As another example, we can make the equally sized cobogó elements irregular by 

simply transforming the set of surface positions shaping them, making their uniform 

distribution randomly vary in both 𝑢 and 𝑣 directions. To that end, we select the 

Transformation algorithm  𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒, which translates a set of surface points (𝑝𝑡𝑠𝑠) 

according to a given translation factor (𝑘), combining it with the 𝑇𝑟𝑎𝑛𝑑𝑜𝑚 in the fol-

lowing composition: 

𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 . (𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑇𝑟𝑎𝑛𝑑𝑜𝑚) (5) 
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By adding the cobogó algorithm to the previous composition (Equation 5), we ob-

tain bricks of varying shapes and sizes as those illustrated in Fig. 5, which result 

from randomly selecting between four possible rules (𝑟𝑢𝑙𝑒𝑠) with either fixed (left) 

or random (right) opacity levels (see Equation 6). 

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜 . (

𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 . (𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑇𝑟𝑎𝑛𝑑𝑜𝑚),

𝛼𝑢, 𝛼𝑣 , 𝑡ℎ𝑖𝑐𝑘, 𝑤𝑖𝑑𝑡ℎ, 𝑟𝑏𝑎𝑟𝑠,

𝑇𝑟𝑎𝑛𝑑𝑜𝑚(𝑟𝑢𝑙𝑒𝑠)

) (6) 

 
Fig 5. Two patterns resulting from the same algorithm but different opacity levels: the algorithm 

randomly selects between four rules with no opacity level, on the left, and five possible opacity 

levels, on the right. 

 

As another example, to create a pictorial visual effect resulting from horizontally 

rotating standard bricks in different ways, we combine the previous algorithm 

𝑠ℎ𝑎𝑝𝑒𝑐𝑢𝑏𝑜𝑖𝑑 with the Transformation one 𝑇𝑟𝑜𝑡𝑎𝑡𝑒, making the latter control the for-

mer’s horizontal placement angle in the following composition: 

𝑠ℎ𝑎𝑝𝑒𝑏𝑟𝑖𝑐𝑘(𝑝𝑡𝑠, 𝑙𝑒𝑛𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝛼𝑢 × 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 , 𝛼𝑣) (7) 

To control the rotation angle so as to create the desired visual effect, we select the 

Transformation algorithm 𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙, which receives (1) the surface points where to 

create the pattern (𝑝𝑡𝑠𝑠); (2) a matrix containing the transformation algorithm(s) to 

apply (𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑠,); and (3) another matrix with the intended pictorial effect (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛). 

Based on the latter information (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛), it then maps the algorithms of 𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑠 

along the positions (𝑝𝑡𝑠𝑠), affecting the shapes assigned to them. As, in this case, 
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𝑀𝑡𝑟𝑎𝑛𝑠𝑓𝑠 = [𝑇𝑟𝑜𝑡𝑎𝑡𝑒], only this algorithm is applied to the bricks, while using the ro-

tation angles set in 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

To translate the desired pictorial effect into rotation angles, we select the algo-

rithm 𝑝𝑖𝑥𝑒𝑙𝑚𝑎𝑝𝑖𝑚𝑎𝑔𝑒, which, based on an image (𝑖𝑚𝑎𝑔𝑒) and its domain of applica-

tion (𝑝𝑡𝑠𝑠), collects the RGB values of the former’s pixels, while storing them in a 

matrix with the size of the given domain. When provided to the algorithm 𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙, 

the collected RGB values are automatically converted into factors that consider, for 

instance, the type of transformation(s) to perform and the intensity of the pictorial 

effect to create. Fig. 6A illustrates the result of the following composition: 

𝑇𝑝𝑖𝑐𝑡𝑜𝑟𝑖𝑎𝑙

(

  
 

𝑖𝑡𝑒𝑟𝑎𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),

[𝑇𝑟𝑜𝑡𝑎𝑡𝑒],

𝑝𝑖𝑥𝑒𝑙𝑚𝑎𝑝𝑖𝑚𝑎𝑔𝑒 ( , 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ))

)

  
 

 (8) 

Having this composition, we can simply replace 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 with other transformation 

algorithms, such as 𝑇𝑐𝑜𝑙𝑜𝑢𝑟𝑠 or 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒, and obtain the same visual effect through 

differently colored or protruded bricks, accordingly (Fig. 6B-C). 

 
Fig 6. Three examples resulting from the pictorial algorithm: creating a spheres-inspired pattern 

by strategically rotating (A), coloring (B), and protruding (C) the bricks. 
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4.2. Fabrication 

This category contains algorithms to materialize the developed solutions through 

different manufacturing techniques and materials. When combined with the previ-

ous algorithms, they (1) suggest different fabrication strategies by considering the 

designs’ geometric and material characteristics, while (2) automating the production 

of the technical documentation needed for each one (see Fig. 7), e.g., two-dimen-

sional drawings with different line types delimiting the areas to cut, engrave or fold 

by laser-cutting, or 3D models containing the printer-head paths for 3D printing. 

They also provide (3) a high-level control over the solutions’ manufacturing, con-

tributing to the latter’s increased efficiency, accuracy, and viability: e.g., adjusting 

the printing path planning, i.e., the trajectory of the 3D printer head, to obtain either 

the desired structural integrity or surface quality, or manipulating the profiles’ thick-

ness of sectioning strategies to meet the desired visual effect, among others. 

 
Fig 7. Automatic production of technical documentation for the same shape according to the se-

lected manufacturing technique: 3D printing, sectioning, casting, and laser cutting. 

  

In the former case, by receiving the set of shapes to produce, the available function-

alities analyze their geometric characteristics to understand the suitability of differ-

ent manufacturing scenarios to fabricate them, which in turn require different rep-

resentation schemes and methods. As an example, while the sectioning strategy is 

based on the use of a series of profiles to create either a surface or a structure, cutting 

involves the extraction of two-dimensional planar elements from surfaces or solids, 

and forming uses molds to mass-produce elements. Therefore, when the elements 

to produce are, for instance, differently patterned panels, the first two strategies will 

probably be suggested, whereas when they are customized, three-dimensional tiles 

with, for instance, a round shape, it is the last one that will eventually be proposed. 

In the latter cases, they allow controlling the manufacturing process by adjusting 

its related parameters, while evaluating the impact each strategy has on the solu-

tion’s mathematical description, changing its structure accordingly. The result is a 

new algorithm representing the solution according to the specifications of the se-

lected manufacturing strategy, from where all the information and technical docu-

mentation needed for the actual fabrication can be automatically extracted.  

As an example, consider a pattern similar to that of Fig. 5 (left) and suppose that 

we intend to manufacture it using 3D printing. We therefore combine the 3D print-

ing algorithm (𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡) with those producing the cobogó elements, automatically 

converting the latter’s three-dimensional shapes into paths for the printer head. 

When planning these paths, the algorithm considers different printing specificities, 

such as the printer resolution (ℎ𝑒𝑎𝑑𝑚𝑚), the material layer thickness (𝑙𝑎𝑦𝑒𝑟𝑚𝑚), and 
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the printing strategy (𝑝𝑎𝑡ℎ𝑝𝑙𝑎𝑛), which in turn result in different numbers of printing 

paths and distances between them, and different trajectories. Accordingly, the re-

sulting machining time, surface finishing, geometric accuracy, and material use also 

change [22]. Fig. 8 illustrates the result of this combination with the conversion of 

a set of cobogó bricks into their corresponding printing paths, where ℎ𝑒𝑎𝑑𝑚𝑚 = 3, 

𝑙𝑎𝑦𝑒𝑟𝑚𝑚 = 1.5 , and the planning type is based on alternated paths by level. 

To convert the cobogó elements’ volumetric model into one prescribing the printer 

head paths, its algorithmic representation has also to change, the originally used 

geometric solid primitives being replaced by path operations (Equation 9), whose 

distribution along the generated volume is controlled by the previous parameters. 

𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡(𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → 𝑠ℎ𝑎𝑝𝑒3𝐷𝑝𝑎𝑡ℎ𝑠 (9) 

 
Fig 8. A perspective view of the design’s 3D model on the left, and the resulting printing paths 

(black lines) and support structures (red lines) on the right.  

 

On the other hand, if we want to produce the previous elements through casting 

strategies, we select the forming algorithm (𝑓𝑎𝑏𝑓𝑜𝑟𝑚𝑖𝑛𝑔), automatically obtaining the 

3D models of their negative shapes (Equation 10), together with cost-related infor-

mation, such as number of different molds and material quantities (see Fig. 9). As, 

in this case, both the original and translated models correspond to three-dimen-

sional, albeit inverse, shapes, the converted algorithm will apply the same primitives 

as the original one with only slight differences. 

𝑓𝑎𝑏𝑓𝑜𝑟𝑚𝑖𝑛𝑔(𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → 𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  (10) 
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Fig 9. A perspective view of the design’s 3D model (left) and the resulting molds with each ele-

ment negative shape (right). 

 

Having the molds’ 3D models, the possibilities for their production are the same as 

for the cobogó bricks, making it possible to proceed with the combination of the 

resulting algorithm with those available in the Fabrication category and, for in-

stance, planning the paths for their 3D printing, if we select 𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡 (Equation 

11), or setting the instructions for their CNC milling, if we opt for the 𝑓𝑎𝑏𝑚𝑖𝑙𝑙𝑖𝑛𝑔 

(Equation 12). 

𝑓𝑎𝑏3𝐷𝑝𝑟𝑖𝑛𝑡(𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) → 𝑠ℎ𝑎𝑝𝑒3𝐷𝑝𝑎𝑡ℎ𝑠 (11) 

𝑓𝑎𝑏𝑚𝑖𝑙𝑙𝑖𝑛𝑔(𝑠ℎ𝑎𝑝𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) → 𝑠ℎ𝑎𝑝𝑒𝑚𝑖𝑙𝑙𝑖𝑛𝑔𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  (12) 

As a last example, if we adopt a sectioning strategy, we combine the algorithm 

𝑓𝑎𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛 with those producing the cobogó elements, automatically obtaining a set 

of profiles, whose number is controlled by the 𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 parameter and whose super-

position creates the intended shapes (Fig. 10 middle). When setting the previous 

parameter (𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠), it must be considered that, first, it depends on the thickness of 

the selected material and, second, its division by the element’s total thickness does 

not always result in a whole number of sections. As, in this case, the latter thick-

nesses are 10 mm and 90 mm, correspondingly, we set 𝑛𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = 9. Given the pro-

files’ relatively small thickness (i.e., 10 mm), the use of laser cutting techniques is 

therefore suggested, requiring the production of two-dimensional drawings with 

paths representing the areas to cut. Finally, to obtain this technical documentation, 

we add the algorithm 𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡  to the previous combination, the results being il-

lustrated in Fig. 10 (right). 
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Regarding the resulting mathematical structures, while the combination of 

𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜 with 𝑓𝑎𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛 originates a new algorithm using the same geometric 

solid primitives but in different ways (Equation 13), its combination with 𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡  

causes more radical changes as the latter are replaced with line primitives defining 

their contour shape (Equation 14). 

𝑓𝑎𝑏𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → {𝑠ℎ𝑎𝑝𝑒𝑙𝑎𝑦𝑒𝑟01, ⋯ , 𝑠ℎ𝑎𝑝𝑒𝑙𝑎𝑦𝑒𝑟𝑛} (13) 

𝑓𝑎𝑏𝑙𝑎𝑠𝑒𝑟𝑐𝑢𝑡 . (𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑏𝑜𝑔𝑜) → 𝑠ℎ𝑎𝑝𝑒𝑐𝑜𝑛𝑡𝑜𝑢𝑟  (14) 

 
Fig 10. A perspective view of both the design’s 3D model (left) and sectioned model (middle) 

together with some of the profiles’ two-dimensional drawings for laser cutting (right). 

 

Having the ability to test and visualize multiple manufacturing possibilities allows 

us to assess their different advantages and disadvantages, not only in terms of their 

production times, material waste, and overall costs, but also regarding the aesthetic 

quality, geometric precision, and physical properties of the resulting solutions. 

5. Evaluation 

The mathematical nature of our proposal makes its principles easy to implement in 

any AD tool for architectural design, either using the visual or the textual program-

ming paradigm. In this research, we focused on the latter due to having the scala-

bility and expressiveness needed to solve large-scale, complex design problems. To 

evaluate the proposal, we implemented it in the AD tool Khepri [23], the result be-

ing a text-based AD framework supporting the algorithmic development and man-

ufacturing of facade design solutions. In the next sections, we compare the results 

of its application with other state-of-the-art AD tools in terms of (1) geometric ex-

ploration and (2) fabrication. 
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5.1. Algorithmic-based exploration 

Within the scope of building facades, there are already some AD tools supporting 

the algorithmic development of facade design solutions, which include (1) Para-

Cloud Gem, which provides features to map 3D elements on a mesh, subdivide and 

edit surfaces, integrate fitness requirements, and 3D print the resulting solutions; 

(2) Dynamo’s addon’s Quads from Rectangular Grid, Ampersand, Clockwork, 

LunchBox, MapToSurface, Pattern Toolkit, and LynnPkg, which contain features 

for surface paneling, mapping elements on a surface, and creating and manipulating 

geometric patterns; and (3) Grasshopper’s plugins PanelingTools, LunchBox, 

Weaverbird, Parakeet, and SkinDesigner, which integrate surface paneling and pat-

tern generation functionalities, rationalization and mesh subdivision techniques for 

analysis and fabrication, mechanisms to produce facade geometries from buildings 

massing surfaces repeating panels, among others. 

 Despite facilitating the typical modeling procedures of facade design processes, 

these tools present several limitations, such as (1) requiring frequent manual-based 

interactions and thus favoring iterative user-driven processes that are potentially 

tiresome and error-prone; (2) suffering from the scalability and performance limi-

tations of visual programming languages, particularly, when dealing with larger AD 

solutions [24–30]; (3) having limited ability to directly address relevant concepts 

like materiality and tectonic relation between facade elements, being often restricted 

to generic panelization, subdivision, and population of surfaces problems; and (4) 

providing a limited set of predefined operators that are difficult to adapt to respond 

to more specific problems [28]. 

Our proposal addresses most of these limitations, providing users with higher lev-

els of design freedom by (1) automating repetitive and error prone design tasks, 

minimizing manual intervention; (2) facilitating programming tasks, reducing the 

time and effort spent in them; (3) smoothing the transition between designs stages, 

facilitating the coordination between their specific requirements; and (4) addressing 

the solutions’ materiality and concretization, making it easier to consider different 

manufacturing scenarios. 

By reducing the time and effort spent in each of the previous tasks, the user is left 

with more time available for creative exploration, potentially increasing the ex-

plored design space and the probability of finding better solutions, whether in terms 

of aesthetic, performance, or feasibility. Moreover, as our proposal supports flexible 

design workflows merging the different design stages’ information, it also elimi-

nates most interoperability issues resulting from their transition process, while solv-

ing the latter’s tendency to accumulate errors. 

These advantages are visible in the examples of the previous sections, where we 

used the framework to facilitate, first, the exploration of multiple geometric com-

positions responding to different aesthetic requirements and then, the transition be-

tween design exploration and materialization stages, not only increasing the variety 

of construction scenarios considered, but also improving our perception of their im-

pact on the solutions’ aesthetic quality.  
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5.2. Algorithmic-based manufacturing 

Regarding AD tools for manufacturing, relevant examples include the plugins (1) 

FabTools, Bowerbird, Xylinus, Droid, Kuka Prc, RoboDK, OpenNest, and Ivy for 

Grasshopper; (2) DynaFabrication, Fabrication API, 3BMLabs.DigiFab, and Para-

metricMonkey for Dynamo; and (3) Laser Slicer Addon for Blender. However, 

these are mostly (1) based on visual programming languages, whose limitations hin-

der the manufacturing of more complex solutions [24–30]; (2) tool specific, forcing 

architects to use multiple AD tools to assess different construction schemes; (3) 

limited in terms of modeling freedom; and (4) dependent on laborious, time-con-

suming, and error prone manual- or script-based interventions, not fully automating 

the design-to-fabrication conversion and the extraction of technical documentation. 

Given the uniqueness of architectural design problems, these interventions are, 

however, hardly reused in different projects without major modifications, thus hin-

dering the testing of different manufacturing scenarios and construction schemes. 

In the case of our framework, besides smoothing the design-to-manufacturing 

transition process by automating most of its related tasks, it provides control over 

the manufacturing process and its different parameters, allowing higher levels of 

production quality, accuracy, and viability [22,31]. Moreover, by adapting the de-

signs’ algorithmic descriptions according to the specificities of the selected fabrica-

tion technology, the framework ensures that the available functionalities are porta-

ble between design and manufacturing tools, overcoming the latter’s typical 

interoperability issues and allowing the use of the same algorithm to obtain both the 

design’s geometric and construction models containing the required information. 

This is illustrated in Figs. 8-10, where we experimented different construction 

schemes and manufacturing strategies for the same solution, making it easier to as-

sess their different advantages and disadvantages. 

There are, nevertheless, several aspects that need to be further developed and in-

tegrated in the proposed framework, particularly in what regards the specificity of 

each manufacturing technique and its sensibility to different requirements and pa-

rameters. As an example, while in 3D printing and CNC cutting the printing path 

planning, i.e., the specification of the tool movement, is critical for achieving higher 

levels of surface quality [32,33] and shape accuracy [34,35] and reducing time and 

material expenditure [36–38], in cutting strategies it is important to optimize the 

machines’ cutting paths by considering parameters such as cutting speed, material 

thickness, laser cutting type, and material used, among others [31,39–43]. In con-

trast, casting strategies need to address the molds’ production cost and material and 

geometric properties, as well as their impact on the geometric complexity, surface 

quality, and molding speed of the produced elements [44-56]. 

We are currently extending our proposal with guiding strategies supporting the 

iterative refinement of the solutions’ manufacturing process by also considering the 

elements’ geometric properties, materiality, and desired finished quality and preci-

sion. We also intend to integrate functionalities for cost and machining time control, 

as well as for comparing the trade-offs resulting from the previous requirements in 

different manufacturing scenarios. 
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6. Conclusion 

The field of architecture is always evolving to accommodate the latest technological 

advances in terms of design exploration and fabrication. One such advance is Algo-

rithmic Design (AD), a design approach based on algorithms that has the potential 

to flexibly coordinate conceptual, performance, and construction requirements. Be-

sides automating repetitive and time-consuming design tasks, AD facilitates design 

changes and increases design freedom. By reducing the time and effort needed to 

explore new designs, it allows architects to explore wider design spaces, promoting 

the search for improved solutions. AD is particularly apt to solve intricate design 

problems involving multiple aesthetic, performance, and construction requirements.  

Nevertheless, AD is a complex and abstract approach that requires programming 

skills, which most architects do not have. Despite the release of several AD tools in 

the last decades aiming at smoothing its learning curve, few successfully combine 

the architect’s creative process with the need to meet multiple design requirements. 

This paper addressed this problem by systematizing the formal methods behind the 

algorithmic generation of facade design solutions in a mathematics-based theory 

considering the wide variety of existing design scenarios and strategies, as well as 

the variability and context-specificity of architectural problems. The aim is to make 

AD more accessible to architects by not only reducing the time and effort spent on 

algorithmic-related tasks, but also guiding the search for improved solutions in 

terms of aesthetics, performance, and constructability. 

To evaluate the proposal, we implemented it in an AD framework specialized in 

facade design processes, placing particular emphasis on the geometric exploration 

and materialization of three-dimensional unconventional elements. Based on the re-

sults, the proposed formal approach has enough flexibility to coordinate the geo-

metric exploration of facade design solutions of different volumetric compositions 

and their concretization using different manufacturing means and strategies.  

As a still ongoing investigation, current efforts have been placed on the improve-

ment of the available functionalities and their extension with more advanced fea-

tures, such as providing higher levels of control over the different manufacturing 

strategies; extending the range of shapes supported; adding cost and machining time 

control strategies; and including a recommender system comparing the trade-offs 

resulting from different requirements and manufacturing scenarios. 
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