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Abstract. Urban Building Energy Model (UBEM) approaches help 
analyze the energy performance of urban areas and predict the impact 
of different retrofit strategies. However, UBEM approaches require a 
high level of expertise and entail time-consuming simulations. These 
limitations hinder their successful application in designing and planning 
urban areas and supporting the city policy-making sector. Hence, it is 
necessary to investigate alternatives that are easy-to-use, automated, 
and fast. Surrogate models have been recently used to address UBEM 
limitations; however, they are case-specific and only work properly 
within specific parameter boundaries. We propose a new surrogate 
modeling approach to predict the energy performance of urban areas by 
integrating Algorithmic Design, UBEM, and Machine Learning. Our 
approach can automatically model and simulate thousands of building 
archetypes and create a broad surrogate model capable of quickly 
predicting annual energy profiles of large urban areas. We evaluated 
our approach by applying it to a case study located in Lisbon, Portugal, 
where we compare its use in model-based optimization routines against 
conventional UBEM approaches. Results show that our approach 
delivers predictions with acceptable accuracy at a much faster rate. 

Keywords. Urban Building Energy Modelling; Algorithmic Design; 
Machine Learning in Architecture; Optimization of Urban Areas; SDG 
7; SDG 12; SDG 13. 

1. Introduction 

To face the challenges and threats posed by climate change, large efforts and funds are 
being deployed to reduce carbon emissions and energy consumption worldwide 
(United Nations, 2020). The operation of a large part of the building stock is still 
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energy-intensive and a cause of anthropogenic carbon emissions that actively 
contribute to climate change (United Nations, 2018). This motivates building retrofits 
in consolidated urban territories to meet the sustainable development goals set by the 
current political agenda (European Commission, 2020). Particularly, to reduce the 
energy consumption of our building stock, we need to assess its performance through 
building energy simulation. However, these typically require expertise and become 
slow when analyzing numerous buildings. These limitations hinder the analysis of 
large urban areas that is critical to support the design and planning of cities, and the city 
policy-making sector (Reinhart & Cerezo Davila, 2016).  

Current practices use Urban Building Energy Modeling (UBEM) approaches to 
address this pressing issue (Ferrando et al., 2020). However, these approaches still 
require a high level of expertise and the process is still time-consuming, error-prone, 
and tiresome (Chen et al., 2017). Thus, it is crucial to make these approaches simple-
to-use, more automated, and faster. 

Previous attempts to reduce the computational cost of large numbers of simulations 
involved surrogate models developed with machine learning techniques. A surrogate 
model is constructed using data-driven approaches and reproduces the behavior of a 
simulation model while being computationally cheaper to evaluate. Such models have 
been used to predict building simulation outputs such as building carbon emissions 
(Thrampoulidis et al., 2021), energy consumption (Bamdad et al., 2020), and 
daylighting (Wortmann et al., 2015).  They are trained with a simulated case study 
dataset and substantially improve simulation run-time, deliver faster and accurate 
results, and promote a smoother integration with current digital design workflows. 
However, such models are usually case-specific and can present errors when applied 
to cases that are outside the boundaries of the training data. Such limitation can cause 
problems while using the surrogate to analyze large urban areas with a diverse building 
stock (Thrampoulidis et al., 2021).  

To address these limitations, we propose the integration of Algorithmic Design and 
Analysis (ADA) (Aguiar et al., 2017) in the creation of more versatile surrogate models 
for urban analyses. We use algorithmically modeled building archetypes based on city-
specific building properties rather than context-specific data commonly used in UBEM 
surrogates. This approach allows a broader use of surrogate models for larger urban 
areas and mitigates the case-specific limitations in the usage of such approaches. 

Algorithmic Design (AD) allows us to generate buildings through algorithms 
(Caetano et al., 2020) and when combined with simulation analysis - ADA - we can 
automatically model and simulate thousands of design variations. Thus, our approach 
used ADA to generate and simulate many instances of parametric building archetypes. 
With the results, we compile a training set and test multiple regression models to build 
a surrogate that promptly predicts the performance of different urban settings 
depending on simpler inputs such as building geometry and constructions, and its 
accuracy and speed can be compared against conventional UBEM approaches. 
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2. Methodology 

The core tool used in our approach was Khepri (Aguiar et al., 2017), a multi-platform 
AD tool that allows us to seamlessly integrate five different steps involved in the 
development and validation of our approach (Figure 1). The five steps are as follows: 
(1) import of the GIS dataset into a CAD platform; (2) model the defined building 
archetypes for the database and simulate them using EnergyPlus; (3) using the 
generated dataset to test multiple regression models available in the machine-learning 
library Sci-Kit Learn; (4) select the best-performant surrogate model to predict energy 
consumption; (5) apply it in a Multi-Objective Optimization (MOO) routine. To test 
the surrogate model approach in the optimization of large-scale urban retrofit scenarios, 
we compare its accuracy and speed with a model-based optimization supported by 
conventional UBEM simulations. 

Figure 1. Workflow diagram illustrating the sequential stages of the research's methodology 

2.1. CASE STUDY - IMPORT GIS DATASET 
Through the analysis of a case study, we can define the domain of our surrogate model 
parameters and validate our approach. Figure 2 shows our building database, which 
contains data relative to 2193 residential buildings in Lisbon, Portugal. The city’s 
residential buildings are characterized in Table 1 by 10 periods of construction, each 
with corresponding material (Santos & Matias, 2006) and retrofit solutions.  Available 
information regarding the urban area, such as building implantation polygon, 
construction periods, floors, area, glazing ratio, and typology are all imported into our 
AD tool, and then automatically simulated in the simulation platform. This seamless 
integration allows us to automate all the subsequent steps of our approach. 
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Figure 2. Lisbon residential buildings from the dataset. 

Table 1. U-values for each construction period in Lisbon.  

Construction 
period 

Wall  

U_Value 
(kWh/m2) 

Roof 
U_Value 
(W/m2⋅ºC) 

Floor 
U_Value 
(W/m2⋅ºC) 

Window 
U_Value 
(W/m2⋅ºC) 

Wall retrofit 
U-value 
(W/m2⋅ºC) 

Roof retrofit 
U-value 
(W/m2⋅ºC) 

<1919 2.78 1.99 1.80 2.69 0.61 0.63 

1919-1945 2.78 1.99 1.80 2.69 0.61 0.63 

1946-1960 1.49 1.99 1.80 2.69 0.57 0.63 

1961-1970 1.08 1.99 3.03 2.69 0.49 0.63 

1971-1980  1.26 1.99 3.03 2.69 0.53 0.63 

1981-1990 0.50 1.99 3.03 2.69 0.32 0.63 

1991-1995 0.49 1.99 3.03 2.69 0.32 0.63 

1996-2000 0.46 1.99 2.31 2.69 0.29 0.63 

2001-2005 0.25 1.99 2.31 2.69 0.19 0.63 

>2006 0.25 1.99 2.31 2.69 0.19 0.63 

2.2. MODEL AND SIMULATION 

In this step, we generate and simulate both the surrogate model and our UBEM test 
dataset. With ADA, we set the inputs for the case study's building archetypes, which 
include multiple construction solutions and their possible retrofits. These archetypes 
represent our surrogate model's discrete parameters. In this case, we include all the 
construction periods and their possible retrofits (Table 1).  

All the building archetypes are then modeled according to uniformly divided 
parameter domains such as the number of floors (from 2 to 11, step size = 3), 
rectangular proportion (from 1 to 5, step size = 2), orientation (from 0 to 180 degrees, 
where 0 is East, step size = pi/4), glazing ratio (from 0 to 0.7, step size = 0.35), and 
floor area (from 50 to 800 m2, step size = 75 m2). Figure 3 exemplifies some values of 
different parameters of one building archetype.  
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Figure 3. Parameters of a building archetype. 

With all the parameters defined, we simulated our surrogate model, which due to 
the combination of values from different parameter domains, comprises more than 
55000 different buildings. Table 2 describes the simulation settings used. The selected 
output was the required heating and cooling annual load (kWh/m2).  

Table 2. Simulation settings. 

Timestep  ShadowCal SolarDist/Reflex Output timestep Output Context geo. 

1 Polygon Clipping Full exterior Monthly Annual loads None 

2.3. REGRESSION MODELS 

In this stage, we extract simulation results from the AD tool to generate our training 
dataset. The dataset used to train our surrogate model comprises the simulation inputs 
and outputs of all the above-mentioned parameters. 

The prediction of energy consumption in a building is a regression problem. Thus, 
we used different supervised learning models from the Sci-Kit learn package for Julia. 
From those, to find the most suitable model, we must (1) understand how the 
parameters affect energy consumption in a building (Araújo et al., 2021), and (2) test 
multiple models (Wolpert & Macready, 1997). Figure 4 shows interpolations of the 
energy needs (z-axis) according to our discrete (layers) and continuous (x- and y-axis) 
parameters step sizes. Since the interpolation graphs in Figure 4 show a polynomial 
behavior, we selected two linear models with polynomial features (Fan et al., 1995) of 
degree 3: Linear Regression, and Ridge. Additionally, we tested two ensemble 
regressors: RandomForest and ExtraTrees (Mendes-Moreira et al., 2012), which are 
also adequate for such regression problems. 
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Figure 4. Heating and cooling needs (z-axis) of all the discrete parameters (represented as layers) 
for different continuous parameters in our dataset (x- and y-axis). 

2.4. PREDICTION 

After selecting our regression models, we fit them with the simulated dataset and 
compare our case study's UBEM with the predictions of the surrogate model. Figure 5 
shows a histogram of the error, which measures the relative deviation of the surrogate's 
prediction from the simulated result for each building.  From the figure, the best 
performing model appears to be the Extra Trees regressor, which presented the smaller 
error distribution of ±10 kWh/m2. However, the Linear Regression and Ridge models 
also show errors within the same interval. Thus to complement the error analysis, we 
used the statistical indexes presented in Table 3. They show that the Extra Trees 
regressor model is the most accurate, showing the best error results.  

Figure 5. Histogram of the predictions error for each model. 
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Table 3.  Regression model evaluation metrics 

 Linear Regression Ridge Random Forest Extra Trees 

Mean Error  

(kWh/m2) 

15.85 15.79 -6.06 -2.21 

Root Mean Squared Error 
(kWh/m2) 

15.40 15.40 9.88 5.44 

R2 score 0.64 0.64 0.85 0.95 

2.5. OPTIMIZATION 

After selecting the Extra Trees regression model with the best score, we tested our 
surrogate approach in a MOO process on a subset of the case study; a block of 21 
buildings illustrated in Figure 6. For the MOO we use the Pareto Genetic Algorithm 
NSGA-II, which analyzed 800 solutions spread out through 40 generations.  

The goals were to find (1) the cheapest and (2) fairest retrofit solution for all 
buildings that (3) minimized annual heating and cooling loads, i.e., 

 
(𝟏𝟏) 𝒎𝒎𝒎𝒎𝒎𝒎�𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊,

𝒏𝒏

𝒊𝒊=𝟏𝟏

(𝟐𝟐) 𝐦𝐦𝐦𝐦𝐦𝐦  𝝈𝝈(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊), (𝟑𝟑) 𝒎𝒎𝒎𝒎𝒎𝒎�𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

,  
 
 Each building is represented as a variable with 4 options for its corresponding 

construction period: (1) no retrofit, (2) wall retrofit, (3) roof retrofit, and (4) wall and 
roof retrofit (Table 1). The defined objective functions for the optimization are intended 
to minimize annual loads (kWh/m2), cost (€), and standard deviation (σ) to ensure some 
homogeneity of performance among all buildings (Araújo et al., 2021).  

Figure 6. Building subset for optimization (left). Scatter plots of the solutions found in the 
optimization process (right), blue - conventional, orange - surrogate model optimization.  

This MOO experiment used two methods: (1) a simulation-based approach that 
fully simulates each building block in each MOO evaluation, and (2) using our 
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surrogate model. The goal was to test the effectiveness of using our surrogate approach. 
The scatter plot in Figure 6 shows the existing trade-offs between the different 
objectives. One easily seen is that solutions that are more homogenous and have 
smaller energy consumptions entail more expensive renovations. Additionally, to 
validate the surrogate model in a MOO process, we computed the cosine similarity 
between each objective’s results for both approaches. This is illustrated in table 4, 
showing high values of similarity, with the least similar being the cost objective with 
0.96. 

Table 4: Cosine similarity for each approach’s objective. 

 Energy Consumption Standard deviation Cost per building 

Cosine similarity (-1 to 1) 0.99 0.98 0.96 

3. Discussion 

Table 3 and Figure 5 show high levels of accuracy for the simulation of the original 
case study in Lisbon of 2193 residential buildings (Figure 2). The model has shown a 
root mean squared error (RMSE) of 5.44 kWh/m2, and a coefficient of determination 
(R2) score of 0.95, which explains the target results variance. Additionally, the larger 
error values come from extrapolations that the prediction model made outside the 
parameters' domain (e.g., areas of 2000 m2 caused most of the outliers since the 
maximum simulated area for all archetypes was 800 m2). We can assert that the 
prediction is very accurate for buildings within the domain of the continuous 
parameters of our trained surrogate model. 

Besides evaluating our model's accuracy, we performed a MOO process with both 
the surrogate and model-based approaches. Table 4 shows high levels of spatial 
similarity among the objectives of both approaches MOO process, while Table 5 
compares both processes by showing the elapsed time for the simulation of our original 
case study in Lisbon, and for the MOO process with the 21 building subset from the 
case study. 

Table 5: Elapsed time and obtained results for the full case study simulation and 21 building 
optimization processes. Simulations were performed using a CPU Intel I7-10700K. 

 elapsed time (seconds) 

 Dataset simulation  Optimization 

Surrogate model 0.08 791.99 

Simulation 5820.00 67516.70 

 
Table 5 shows that the surrogate model largely outperforms the simulation 

approach and the benefits obtained from model deployment with increased speed and 
low error rates among simulations. However, the time comparisons made in table 5, 
comprise only the end-user time to perform the simulation. Thus, it does not consider 
the time it took to prepare the dataset and train the model, nor the time to set up both 
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approaches. Admittedly, it takes more time to build the surrogate model than 
performing a simulation, but this time is quickly recovered when the surrogate is used 
to support numerous analyses.  

Nevertheless, our approach bears some limitations. The simulation of the building 
archetypes does not account for shading and context geometry, which can hinder 
simulated and predicted results. Additionally, a low number of retrofits were added as 
discrete parameters, with only one retrofit for each wall and roof. In a situation where 
one must test multiple construction solutions, the surrogate model would take many 
discrete parameters, resulting in hundreds of thousands of buildings that need to be 
modeled and simulated, which would be highly time-consuming.  

4. Conclusion 

This paper presents a new surrogate model approach to quickly predict the annual 
heating and cooling loads of large numbers of buildings. The development and 
validation of our approach imparted five stages. First, we created parametric archetypal 
building energy models for a case study in Lisbon, Portugal. Then, we automatically 
modeled and simulated thousands of building archetypes. Subsequently, we utilized 
the simulation results to create a dataset used to fit regression models to predict 
simulation outputs according to the discrete and continuous parameters that defined the 
parametric archetypes. We select the best-performant regression model by testing its 
accuracy against the simulation results of our original case study in Lisbon with 2193 
residential buildings. Finally, we test the effectiveness of our surrogate in a MOO that 
aimed to find the best retrofit solutions for a residential building block within the 
dataset. To that end, we compared optimization run-time of the same MOO process 
using our surrogate and simulation approaches. Results showed a significant decrease 
in optimization time for the developed surrogate. Thus, we conclude that developing 
surrogate models based on parametric archetypal buildings avoids the need of running 
expensive energy simulations and allows the surrogate model to easily adapt to other 
urban scenarios, opposed to those developed for specific urban areas.  

Future improvements to the proposed approach will focus on outputs, accuracy, 
and user experience. Regarding outputs, we plan to test new metrics such as daylighting 
and thermal comfort. In terms of accuracy, we aim to extend the capabilities of our 
parametric building archetypes by including context shading, retrofit solution suites, 
building typologies (including commercial and office buildings), and different window 
types. Finally, to improve user experience, we plan to implement an easy-to-use 
Graphical User Interfaces (GUI) for practitioners, policy-makers, and homeowners to 
facilitate different urban energy analyzes.  
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