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Algorithmic Design (AD) is an approach that uses algorithms to represent 
designs. AD allows for a flexible exploration of complex designs, which 
helps not only the designer but also optimization methods that autono-
mously search for better-performing solutions. Despite its advantages, AD 
is still not widely used. This is owed in part to the large amount of time, 
effort, and expertise required for the development of an AD program, a 
problem that grows with the complexity of the design. To overcome this 
issue, this paper proposes Reverse Algorithmic Design (RAD), which in-
fers AD programs from existing CAD or BIM models. RAD comprises 
two main steps: the automatic generation of an initial low-level AD pro-
gram from a CAD/BIM model, followed by a semi-autonomous refactor-
ing step that improves the generated program. The benefits of the RAD 
approach are demonstrated with its application in two use-case scenarios. 

Introduction  

Nowadays, several digital modeling strategies are available in the design 
domain, comprising different complexity levels: (1) geometry-based mod-
eling allows the manual production of static models in Computer-Aided 
Design (CAD) tools; (2) semantic-based modeling allows the generation of 
geometric models with added meaning in Building Information Modeling 
(BIM) tools; (3) parametric modeling supports a dynamic representation of 
designs using parameters, obtaining different static models by assigning 
different values to the parameters; and (4) Procedural Modeling (PM) 
comprises the generation of models from a procedure or a program. In 
general, PM has more flexibility to generate design variations than geome-
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try- or semantic-based modeling, making it much easier to optimize de-
signs or simply adjust them to changing requirements. Moreover, besides 
supporting parametric changes as happens with parametric modeling, PM 
also allows the application of topological changes. 

Despite its advantages, PM is hard to learn and use and, thus, the devel-
opment of a program from scratch is time- and cost-consuming [1]. To 
mitigate this problem, one possible approach is to use Inverse Procedural 
Modeling (IPM), which is the automatic inference of a reusable procedural 
model from an existing model or set of models [2]. 

Most research on IPM addresses the inference of grammar-based gener-
ative systems, such as parametric L-systems [1], probabilistic grammars 
[3], shape grammars [4–6] and set grammars [2]. When compared to hu-
man-generated grammars, automatic-generated grammars require less time 
and programming skills to develop, are not influenced by the developers’ 
biases, and can be more efficient [2, 4]. However, although grammar infer-
ence has been pointed out as one of the main challenges in the field [7], lit-
tle progress has been made so far [3]. This may be explained by the fact 
that (a) it is a computationally expensive process, and (b) there is no pre-
cise way to measure a grammar’s quality [5]. Stochastic methods were 
used to solve the first problem [3, 4], and the search for the smallest 
grammar (which could then be generalized) was used to address the second 
problem [2, 3, 5]. Despite the scientific usefulness of these approaches, 
their applicability to real-world problems is limited, as they were only test-
ed with simple designs composed of repeating elements [2, 3, 5, 6]. 

In this paper, we explore the inference of a different PM approach, 
namely Algorithmic Design (AD). In an AD approach, digital models are 
created from algorithmic descriptions [8], allowing the automation of re-
petitive tasks, facilitating the exploration of design variations, and, most 
importantly, promoting design optimization. This, therefore, results in sig-
nificant savings in costs and resources. 

However, AD suffers from the same problems that affect PM: the pro-
cess of manually creating an AD program from scratch not only is often 
time-consuming and hardworking, but also requires a high level of pro-
gramming expertise. This problem occurs when using AD for both creating 
original designs or exploring existing designs that were originally generat-
ed with AD (e.g., MVRDV’s Market Hall [9]) or not (e.g., Gaudi’s Sagra-
da Família [10]). In either case, the development of the AD program re-
quired a large amount of work by seasoned AD practitioners, which may 
explain why, despite its advantages, AD is still sparsely used. 

To overcome this problem, we propose an approach called Reverse Al-
gorithmic Design (RAD), which automatically translates a design manual-
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ly produced in a CAD/BIM tool into a parametric AD representation of it-
self. RAD borrowed its name from reverse engineering [11], as both intend 
to infer a process that replicates an existing design. Note that the inferred 
process may or may not match the original one, as is often the case of 
RAD, which starts from a design that, in almost all cases, was not the re-
sult of an AD process. RAD can be applied at any stage of the design de-
velopment to examine, recreate, or improve existing solutions. 

 RAD is composed of two main steps: (1) extraction, to generate a first 
approximation of the corresponding AD program; and (2) refactoring, to 
improve and parametrize the generated AD program. To be time- and cost-
effective, RAD needs to be automated to the largest possible extent. Some 
AD tools can extract geometry into an AD program (e.g. GenerativeCom-
ponents), although with a low degree of automation, but are unable to infer 
parameters from patterns in the code. Since AD is a deterministic ap-
proach, its inference will be less ambiguous and thus able to deal with 
more complex designs, when compared to grammar inference processes. 

RAD can bring several benefits, including: (1) the less error-prone and 
time-consuming generation of AD programs (when compared to manual 
AD processes) and, consequently, the faster exploration and optimization 
of complex designs; (2) the correction of mistakes/inconsistencies in a 
CAD/BIM model that are harder to detect manually; (3) the semi-
automatic translation of designs from CAD to BIM [12]; and (4) the explo-
ration of different parametric interpretations of a static model. 

In the next sections, we detail the RAD methodology and illustrate its 
benefits by demonstrating its applicability in two case studies. 

Methodology 

RAD is the process of creating a reusable parametric AD description from 
an existing design created in CAD/BIM applications. The RAD approach 
entails two main steps: 

1. Extraction: the automatic generation of an AD program from relevant 
information extracted from a digital design represented in a CAD or BIM 
tool, namely, geometric information (e.g., positions and dimensions) in 
both cases and semantic information (e.g., functions and materials) in the 
BIM case. Essentially, the information is retrieved from the CAD/BIM 
Application Programming Interface (API). Firstly, it is necessary to identi-
fy the type of entity we are dealing with (e.g., circles and walls), and then 
the associated information that defines that entity (e.g. dimensions and po-
sitions). Obviously, this information depends on what is stored in the API, 
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which may be a problem for more complex shapes, for instance the ones 
resulting from Boolean operations. The identified information is then re-
cursively transformed to an executable program through metaprogram-
ming, which is the use of programs to create other programs [13]. The re-
sulting extracted AD program has a low abstraction level, as it can only 
generate the input design, and is hard to read and modify, as it is made of 
an arbitrarily ordered sequence of expressions (one per geometric/design 
element). 

2. Refactoring: the semi-automatic improvement of the extracted AD 
program of the previous step, by increasing its abstraction level and legi-
bility, while ensuring it still matches the design from which it was created. 
This task is performed by refactoring, which is the modification of the 
structure of a program without changing its semantics or external behavior 
[14]. To this end, well-known refactoring operations are used, which re-
place expressions by semantically equivalent ones. However, there are 
some situations where changing the semantics is desired, either to fix prob-
lems in the original design or to simply create a different design. Although 
refactoring is typically manually applied by the programmer, there are re-
factoring tools that verify the applicability of a given refactoring operation 
and make the corresponding changes automatically. Still, these tools re-
quire human guidance to better express the designer’s intent, as it is hard 
to automatically guess the best way to improve a given program. To help 
the user to identify the parts of the program that need to be refactored and 
to facilitate the application of the refactoring operations, we rely on trace-
ability, which is the ability to establish a relationship between a part of the 
program and the corresponding part of the generated design [15]. The re-
sulting refactored AD program has a higher abstraction level and is easier 
to comprehend and modify than the extracted AD program, being able to 
generate not only the original design but also variations of it. 

For testing purposes, this methodology was implemented in the Khepri 
AD tool [16]. By using the same algorithm, Khepri allows the visualization 
of designs in different CAD tools (e.g., AutoCAD and Rhinoceros), BIM 
tools (e.g., Revit and ArchiCAD), and game engines (e.g., Unity and Un-
real). Moreover, it also supports the evaluation of designs, using different 
analysis tools (e.g., Robot and Radiance), and their optimization. Khepri’s 
programing environment provides extraction, refactoring and traceability 
mechanisms. 
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Case Studies 

The RAD methodology was applied to an automotive design project and a 
building renovation project. In the first case, the input was a 2D CAD 
model and the output was an algorithmic 2D CAD design. In the second 
case, the input was a 2D CAD building plan and the output was an algo-
rithmic 3D BIM design. While the first case was selected to illustrate the 
RAD steps in detail, the second case was chosen as an example of the use-
fulness of the RAD approach in more complex designs. Both examples are 
described in the next sections. 

Car Wheel 

The first case study is the car wheel design presented in Fig. 1, which was 
manually produced in a CAD tool. The design is composed of circles, arcs, 
and lines. We applied the RAD methodology to add the following parame-
ters to the design: center point (p), outer radius (or), inner radius (ir), hub 
radius (hr), starting angle (sa), outer arcs amplitude (oaa), inner arcs radius 
(iar), and spokes number (n). 
 

 
Fig. 1 Car wheel design manually produced in a CAD tool 

 
In the RAD extraction step, the geometric entities presented in Fig. 2 

(on the left) were converted into the AD program represented in Fig. 2 (on 
the right). Despite being a faithful representation of the original design, the 
extracted program is unquestionably hard to understand by humans. There-
fore, for the RAD refactoring step, it is critical to visually relate the pro-
gram with the design to help the designer understand the extracted pro-
gram and decide the best refactoring operation to apply. This endeavor was 
facilitated by the traceability mechanism visible in Fig. 2, which shows the 
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relation between the selected shapes in the CAD tool and the correspond-
ing program fragment highlighted in the AD tool (and vice versa). 

 
 
Fig. 2 Traceability between the shapes selected in a CAD tool (on the left) and the 
corresponding expressions highlighted in the AD program (on the right) 

  
Several refactoring operations were applied to the extracted program, 

according to the terminology described in [14]. In this paper, we exemplify 
some of them by using the highlighted extracted code of Fig. 2: 

 
circle(xy(0, 0), 200) 

arc(xy(0, 0), 180, 7pi/18, 2pi/18) 

line(xy(74.92, 67.26), xy(115.70, 137.89)) 

line(xy(95.71, 31.26), xy(177.27, 31.26)) 

arc(xy(0, 0), 180, 3pi/18, 2pi/18) 

arc(xy(0, 0), 180, pi/18, 2pi/18) 

arc(xy(-5.15e-5, 5.59e-6), 180, 9pi/18, 2pi/18) 

 
As observable, the generated program presents geometric primitives 

(circles, arcs, and lines) in sequences of expressions with an arbitrary or-
der. The following syntax was used: a circle centered at (0, 0) with a radius 
of 200 is represented as circle(xy(0, 0), 200); an arc centered at (0, 0), 
with a radius of 180, a starting angle of π/18, and an arc amplitude of 
2π/18, is represented as arc(xy(0, 0), 180, pi/18, 2pi/18); and a line 
starting at (1, 2) and ending at (3, 4) is represented as line(xy(1, 2), 
xy(3, 4)). 

Given the obvious radial symmetry of the design, we started by using 
the refactoring operation Substitute Algorithm to convert the Cartesian co-



 

 

Reverse Algorithmic Design 329 

ordinate system (represented by the operation xy) into the polar coordinate 
system (represented by the operation pol), obtaining the following result: 
 
circle(pol(0, 0), 200) 

arc(pol(0, 0), 180, 7pi/18, 2pi/18) 

line(pol(100.68, 0.73), pol(180, 5pi/18)) 

line(pol(100.68, 0.32), pol(180, pi/18)) 

arc(pol(0, 0), 180, 3pi/18, 2pi/18) 

arc(pol(0, 0), 180, pi/18, 2pi/18) 

arc(pol(0, 0), 180, 9pi/18, 2pi/18) 

 
After this refactoring, we can see that some patterns emerge, namely the 

start and endpoints of the lines having the same radius. Moreover, preci-
sion errors were corrected, as it happened with the center of the last arc. 

The next operation applied was the Slide Statements refactoring to sort 
the expressions in ascending order, as shown below: 
 
arc(pol(0, 0), 180, pi/18, 2pi/18) 

arc(pol(0, 0), 180, 3pi/18, 2pi/18) 

arc(pol(0, 0), 180, 7pi/18, 2pi/18) 

arc(pol(0, 0), 180, 9pi/18, 2pi/18) 

circle(pol(0, 0), 200) 

line(pol(100.68, 0.32), pol(180, pi/18)) 

line(pol(100.68, 0.73), pol(180, 5pi/18)) 

 
Note that the unordered nature of the original design allows us to freely 

reorder the program expressions without side-effects. From this arrange-
ment, we can see that the code can be simplified: as the first two arcs are 
contiguous, the second arc can be removed if we double the angle ampli-
tude of the first. The same reasoning was applied to the third and fourth 
arcs: 

  
arc(pol(0, 0), 180, pi/18, 2pi/9) 

arc(pol(0, 0), 180, 7pi/18, 2pi/9) 

circle(pol(0, 0), 200) 

line(pol(100.68, 0.32), pol(180, pi/18)) 

line(pol(100.68, 0.73), pol(180, 5pi/18)) 

 
To parametrize the program, we used the refactoring operation Extract 

Variable, which extracts parameters from identical expressions. In this 
case, we added the center point (p), the inner radius (ir), and the outer arcs 
amplitude (oaa) parameters, which are then automatically replaced in the 
expressions. This refactoring operation formalizes what could be inferred 
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by looking at the original design: the circle and the outer arcs have the 
same center. The resulting expressions are shown below: 
 
p = pol(0, 0) 

ir = 180 

oaa = 2pi/9 

arc(p, ir, pi/18, oaa) 

arc(p, ir, 7pi/18, oaa) 

circle(p, 200) 

line(pol(100.68, 0.32), pol(ir, pi/18)) 

line(pol(100.68, 0.73), pol(ir, 5pi/18)) 

 
The arcs described above belong to the group of six outer arcs that form 

the dashed circle. If we compute the angular separation between the arcs, 
we find a constant value that is equal to 2π divided by six. This means that 
we can apply a Loop Re-rolling refactoring to simplify the six arc expres-
sions in a for loop. Also, we added two new parameters: the starting angle 
(sa) of the first arc and the number of arcs (n): 
 
sa = pi/18 

n = 6 

for i in division(0, 2pi, n) arc(p, ir, sa+i, oaa) end 

circle(p, 200) 

line(pol(100.68, 0.32), pol(ir, pi/18)) 

line(pol(100.68, 0.73), pol(ir, 5pi/18)) 

 
The same reasoning was applied to the inner arcs and lines, and then the 

loops were combined with the Loop Fusion refactoring. We also added the 
remaining variables described in Fig. 1 (or, hr, oaa, iar). To complete the 
program transformation, we applied Extract Function, which groups the 
selected expressions in a function, and Parameterize Function, which 
transforms the variables into function parameters. The resulting algorithm 
is shown below (the internal variables are omitted for clarity): 

 
car_wheel(p, ir, oaa, sa, n) = 

  ... 

  circle(p, or), circle(p, hr) 

  for i in division(0, 2pi, n)  

    arc(p, ir, sa+i, oaa) 

    arc(p+vpol(iad, sa+oaa/2+i), iar, sa+oaa/2+pi-iaa/2+i, iaa) 

    line(p+vpol(ld, sa+oaa/2-la+i), p+vpol(ir, sa+i)) 

    line(p+vpol(ld, sa+oaa/2+la+i), p+vpol(ir, sa+oaa+i)) 

  end 
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car_wheel(pol(0, 0), 200, 180, 70, pi/18, 2pi/9, 24, 6) 

 
The result of the refactoring process is a parametric algorithmic version 

of the design presented in Fig. 1 that is almost three times smaller than the 
first extracted version. The refactored program is much easier to under-
stand and more abstract than the extracted one. When executed, the pro-
gram can generate not only the original design but also parametric varia-
tions of it, as shown in Fig. 3. The resulting AD program can now be used, 
for example, to explore variations within a brand’s language, or for opti-
mization of cost or performance. 

 

 
Fig. 3 Original design (first on the left) and parametric variations (remaining) 

Bauhaus Building 

The second case study is a part of the Bauhaus building in Dessau. The 
starting point was a CAD floor plan of the school (visible in Fig. 4). This 
time, the RAD methodology was applied to parameterize the door’s width, 
in order to then optimize the building regarding its evacuation perfor-
mance. For this problem, the model was reduced to walls and doors. 

In this case, the extraction produced a series of lines, such as the ones 
presented below: 
 
line(xy(0, 0), xy(4, 0), xy(4, 0.3), xy(0, 0.3), xy(0, 0)) 
line(xy(5, 0), xy(8, 0), xy(8, 0.3), xy(5, 0.3), xy(5, 0)) 

 
To make the program easier to understand, intermediate abstractions 

were introduced to clarify what the program was doing. In the expressions 
above, the shape of the polygonal line is not entirely obvious. However, 
equivalent expressions can represent the same shapes in a much more un-
derstandable way: 
 
rectangle(xy(0, 0), xy(4, 0.3)) 
rectangle(xy(5, 0), xy(8, 0.3)) 

 
In this case, we explored traceability not only to help refactor the pro-

gram but also to help establish a correspondence between geometric ele-
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ments (such as lines and rectangles) and building elements (such as walls 
and doors). The conversion of the aforementioned rectangles to walls with 
default height and represented by their axis is straightforward: 
 
wall(line(xy(0, 0), xy(4, 0))) 
wall(line(xy(5, 0), xy(8, 0))) 

 

To generate doors, the program identifies empty spaces between contig-
uous walls (such as the ones presented above) and, with the user’s consent, 
joins the walls and adds a door in the empty space: 

 
door(wall(line(xy(0, 0), xy(8, 0))), xy(4, 0)) 

 
The same reasoning was applied throughout the program, obtaining a re-

factored program that is more than three times smaller than the extracted 
one. The final refactored AD program can be executed to generate 3D de-
signs in a CAD tool or a BIM tool, as illustrated in Fig 5. 

 

 
 
Fig. 4 2D CAD model used to generate the AD program 
 

 
 
Fig. 5 3D BIM model generated by the refactored AD program 

 
The resulting parametric AD program was used to optimize the evacua-

tion performance of the building, showing that it is possible to have a 20% 
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reduction in the evacuation times just by enlarging the doors’ width by 5% 
[17]. With this case study, the RAD approach proved to be efficient in the 
semi-automatic conversion from CAD models to BIM models, with the 
bonus of making the model parametric. Further studies will have to be 
conducted to demonstrate what we can perceive from this case: that RAD 
can significantly reduce the time and effort in producing an AD program. 

Conclusion 

Algorithmic Design (AD) is an approach where multiple design variations 
are represented by a parametric algorithm. AD automates repetitive tasks, 
facilitates the exploration of complex designs, and supports design optimi-
zation. Despite its advantages, most designs are not created using AD, 
since their development takes a considerable amount of time, effort, and 
expertise. Instead, they are manually produced in CAD/BIM tools. 

In this paper, we presented Reverse Algorithmic Design (RAD), an ap-
proach to semi-autonomously translate a design produced in a CAD/BIM 
tool into an equivalent AD program. The RAD approach comprises two 
main steps: (1) the automatic extraction of a low-level AD program from 
relevant information described in a CAD/BIM model; and (2) the human-
guided semi-autonomous refactoring of the previous program, resulting in 
a parametric AD program that has a higher abstraction level and is more 
comprehensible than the former one. Traceability, a visual relation be-
tween model and program, is used in the second step to help the designer 
choose which parts of the program to refactor and which refactoring opera-
tions to apply. These operations then autonomously transform the program 
while ensuring that no errors are introduced. 

The RAD methodology was successfully applied in the generation of 
AD programs from a 2D car wheel and a 2D building plan. The experi-
ments showed that the RAD approach can efficiently convert CAD/BIM 
models into AD programs, while suggesting parametric interpretations of 
static models. Moreover, RAD promotes the detection of errors in existing 
models and speeds up the conversion of CAD to BIM models. 

For future work, we plan to apply the RAD methodology to a 3D model 
input. Moreover, we intend to automatize even further the conversion from 
CAD to BIM, including the use of machine learning techniques to auto-
matically infer semantic information from geometric information. 
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