
Mathematically Developing Building Facades

An Algorithmic Framework

Inês Caetano1[0000-0003-3178-7785] and António Leitão2[0000-0001-7216-4934]

1 INESC-ID/Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
ines.caetano@tecnico.ulisboa.pt

2 INESC-ID/Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal

antonio.menezes.leitao@tecnico.ulisboa.pt

Abstract. The importance of Algorithmic Design (AD) is growing due to its

advantages for the design practice: it empowers the creative process, facilitating

design changes and the exploration of larger design spaces in viable time, and

supports the search for better-performing solutions that satisfy environmental

demands. Still, AD is a complex approach and requires specialized knowledge.

To promote its use in architecture, we present a mathematics-based framework

to support architects with the algorithmic development of designs by following

a continuous workflow embracing the three main design stages: exploration,

evaluation, and manufacturing.

The proposed framework targets the design of buildings’ facades due to their

aesthetical and environmental relevance. In this paper, we explain the frame-

work’s structure and its mathematical implementation, and we describe the pre-

defined algorithms, as well as their combination strategies. We focus on the

framework’s algorithms that generate different geometric patterns, exploring

their potentialities to create and modify different facade designs. In the end, we

evaluate the flexibility of the framework for generating, modifying, and opti-

mizing different geometrical patterns in an architectural design context.

Keywords: Algorithmic Design; Mathematical Framework; Higher-order Func-

tions; Facade Design.

1 Introduction

Algorithmic Design (AD) is a design approach based on algorithms [1]. Compared to

manual approaches, AD provides greater flexibility, supports more complex geome-

tries, and handles larger amounts of information. AD also facilitates design changes

and automates repetitive tasks, therefore enabling design optimization by automating

the search for better-performing design solutions [2]. Still, AD requires specialized

knowledge that most architects do not have, namely, programming experience. To

make AD more attractive to the architectural community, we need to make it more

accessible by providing ready-to-use algorithms that can be combined in arbitrary

ways. We focus on building facades and we present a mathematics-based framework

for the design of facades.

mailto:ines.caetano@tecnico.ulisboa.pt

2

Building facades are the outer layer of buildings, separating the indoor spaces from

the outside ones and, therefore, having many associated functions, namely environ-

mental performance [3, 4], structural behavior [5], cultural identity [6, 7], and urban

communication [8, 9]. Lately, facade design has become an increasing complex task

due to the current design trend to create intricate geometries/patterns and the growing

design constraints, namely environmental requirements, economic limitations, and

tight deadlines. AD helps dealing with these constraints, reducing the time and effort

needed to explore different design solutions. To facilitate the adoption of AD in archi-

tecture, we propose a flexible mathematics-based framework that tames the complexi-

ty of AD techniques in the design exploration, analysis, and optimization of facade

solutions. The framework is structured in a fivefold classification inspired by previous

research [10–13], containing several algorithms addressing the facade design process.

2 Methodology

The idea of an algorithmic framework had as inspiration previous works [14–16]

proving that sets of algorithms can be generalized and reused in the exploration of

new designs. These strategies, known as modular programming and design patterns

[14, 15], promise to mitigate the limitations architects still face when using AD, espe-

cially to reduce the time and effort spent with the algorithmic task: they avoid writing

algorithms from scratch for each new design, while preventing extensive and poten-

tially error-prone programming efforts. However, when the pre-defined algorithms are

not well-structured, it becomes difficult to combine them. To solve this problem, we

propose a mathematics-based algorithmic framework for facade design that provides,

for each scenario, a set of algorithms and combination strategies suiting the different

design stages. Despite not considering all possible scenarios, which would be an un-

viable task, the framework addresses the most common ones and can be adapted to

more specific ones.

The framework development was twofold: (1) defining a mathematical theory for

facade design and (2) implementing the theory in a framework containing predefined

algorithms targeting building facades, that can be combined in arbitrary ways. The

resulting framework promises to (1) promote the use of AD in facade design, (2)

solve interoperability issues between design and analysis tools, and (3) guide the se-

lection of the algorithms/strategies that best suit a design scenario.

3 Mathematics-based Framework

The architectural practice depends on several external factors like the design brief’s

specificities and both environmental and economical requirements. This means differ-

ent projects require different approaches either using an AD or a non-AD approach.

As we address the AD one, we must handle design in a way that a computer under-

stands. Given that computational tools are based on instructions transmitted through

Programming Languages (PLs) and that most PLs are inspired by the universal lan-

guage of mathematics, we consider the latter’s formalism to:

3

1. structure the AD theory;

2. implement the different algorithms;

3. organize both 1. and 2. in an algorithmic framework specialized in facade design.

The mathematics-based framework must be able to handle the design (1) variability,

adapting to the ever-changing design requirements, (2) diversity, embracing and

evaluating diverse design problems and scenarios, and (3) coherency, correctly inte-

grating the design information in a single workflow. Regarding its structure, the

framework organizes the predefined algorithms in a fivefold classification, which we

describe in the next sections.

4 Framework Implementation

The framework organizes the algorithms based on their type and role in the facade

design process in the following categories: Geometry, Pattern, Distribution, Optimi-

zation, and Rationalization. For each one, it provides ℝ → ℝ, ℝ → ℝ2, ℝ2 → ℝ2,

and ℝ2 → ℝ3 algorithms that can be then combined with one another through func-

tion composition.

In general, the framework handles all surface-related functions 𝑆(𝑢, 𝑣) within the

domain 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1 and provides operators that can be arbitrarily com-

bined, namely the one-dimensional linear variation function 𝑙𝑖𝑛𝑒𝑎𝑟(𝑎, 𝑏) = 𝜆(𝑡). 𝑎 +
(𝑏 − 𝑎)𝑡 and the (paradoxical) constant “variation” function 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑐) =
𝜆(𝑡 …). 𝑐. Here, we employ the λ-calculus notation for an anonymous function with

parameter t [17]: the result of the function 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is therefore an anonymous func-

tion that can be combined with functions of any number of arguments, adapting its

number of arguments according to those of the combined function.

The next sections explain the implementation of the framework’s categories.

4.1 Geometry

This category contains algorithms to define the facade geometry. As the latter’s do-

main is often two-dimensional, we need to extend the one-dimensional variations’

domain into ℝ2. We use higher-order functions (HOFs) [17] to define two functions,

𝑑𝑖𝑚𝑢(𝑓) = 𝜆(𝑢, 𝑣). 𝑓(𝑢) and 𝑑𝑖𝑚𝑣(𝑓) = 𝜆(𝑢, 𝑣). 𝑓(𝑣), that make a function 𝑓 vary

only in one dimension, i.e., 𝑢 or 𝑣 accordingly. To generalize function composition

operations, we provide the operator

∘ (𝑓, 𝑔1, ⋯ , 𝑔𝑛) = 𝜆(𝑥1,⋯ , 𝑥𝑚). 𝑓(𝑔1(𝑥1, ⋯ , 𝑥𝑚),⋯ , 𝑔𝑛(𝑥1, ⋯ , 𝑥𝑚)) (1)

and, to simplify the notation used, we define 𝑢 ⊗ 𝑙𝑖𝑚 = 𝑑𝑖𝑚𝑢(𝑙𝑖𝑛𝑒𝑎𝑟(0, 𝑙𝑖𝑚)) and

𝑣 ⊗ 𝑙𝑖𝑚 = 𝑑𝑖𝑚𝑣(𝑙𝑖𝑛𝑒𝑎𝑟(0, 𝑙𝑖𝑚)), wherein 𝑙𝑖𝑚 is the domain’s upper limit. We also

treat all numbers 𝑛 in a function context as 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑛) and we represent any first-

order function 𝑓 that receives functional arguments 𝑔1, ⋯ , 𝑔𝑛 as ∘ (𝑓, 𝑔1, ⋯ , 𝑔𝑛), thus

being 𝑓 × 𝑔 the same as ∘ (×, 𝑓, 𝑔).

4

With HOFs we can move from the numeric space into the functional space and

combine functions using functional operators rather than simply combining numbers

using numeric operators. In a functional space, the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ) =
𝜆(𝑢, 𝑣). 𝑋𝑌𝑍(𝑢 × 𝑤, 0, 𝑣 × ℎ), which represents a 𝑤 × ℎ planar parametric surface,

has the equivalent representation 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ) = 𝑋𝑌𝑍(𝑢 ⊗𝑤, 0, 𝑣 ⊗ ℎ). The

other predefined surface geometries follow the same logic, which is further detailed in

[13].

Having the surface’s algorithmic description, we can now explore its geometric

pattern by using the algorithms of both Pattern and Distribution categories, which we

explain in the next sections: the former create the shape(s) composing the pattern and

the latter distribute those shapes on the surface domain.

4.2 Distribution

This category contains algorithms to distribute elements on a surface. These algo-

rithms receive a matrix of the surface points on which the distribution will be made,

as provided by the Geometry algorithms, returning another matrix with the same

points rearranged in different distribution configurations. As an example, the algo-

rithm 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 rearranges the points in sets of four points describing a squared

area on the surface. Regarding the algorithm 𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠, it reorganizes the points in

sets of six points representing hexagonal areas. Fig. 1 illustrates some of the prede-

fined distributions.

4.3 Pattern

This category contains algorithms to create different geometric patterns. Generally, a

geometric pattern results from repeating an element either along one or both dimen-

sions of a two-dimensional domain. In the first case, the result is a pattern continuous

in one of the domain’s directions but discrete in the other, whereas in the second, the

pattern is discrete in both directions. We name the former as Continuous and the latter

as Discrete pattern. In both cases, the repeated element can be kept unchanged along

the facade domain or can suffer some transformations regarding its shape, size, etc.

Therefore, this category provides algorithms to generate different geometric shapes,

as well as to apply different geometric transformations to them, which are organized

in two groups: Shape and Transformation. Each group contains algorithms handling

both Discrete and Continuous patterns but, for the scope of this paper, we focus on

the former ones. The latter ones are further detailed in [18].

5

Fig. 1. Some Distribution algorithms: A. gridsquare; B. gridtriangles; C. gridtriangles2; D. gridrhombus;

E. gridtriangles3; F. gridhexagons.

Shape. This group contains algorithms to create different 2D and 3D geometric

shapes, including polygonal, ellipsoidal, and spherical ones, among others. The avail-

able algorithms all receive the set of points where to centre the geometric shape; an

information provided by the Distribution algorithms. The remaining parameters, in

turn, depend on the characteristics of each geometric shape. Fig. 2 illustrates some

Shape algorithms and their corresponding parameters.

As an example, consider the function that creates star-polygons: besides the set of

points (pts), it receives the number of vertices (nvertices), the inner and outer radii

(rinner and 𝑟𝑜𝑢𝑡𝑒𝑟), and an angle (𝛼):

𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟(𝑝𝑡𝑠, 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 , 𝑟𝑖𝑛𝑛𝑒𝑟 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼) (2)

To create a geometric pattern based on star-polygons, we need to define (1) the sur-

face on which to apply the pattern and (2) the type of elements’ distribution. We

choose a straight facade and a rhombus distribution, which requires combining three

algorithms:

1. one shaping the straight surface where to create the pattern – 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡;
2. another creating a rhombus grid of points – 𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠;
3. a last one producing the star-polygons – 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟.

6

Fig. 2. Some Shape algorithms and their inputs: in addition to the set of points represented by

the black dots, the circle algorithm (A) receives a radius; the regular-polygon algorithm (B)

receives a radius, an angle, and a number of sides; the rectangle algorithm (C) receives a length,

a width, and an angle; the rosette algorithm (D) receives three radii, an angle, and a number of

vertices; the rhombus algorithm (E) receives two diagonals and an angle; and the star-polygon

algorithm (F) receives two radii, an angle, and a number of vertices.

Fig. 3.A-C illustrate the result of this composition using different inputs.

We can simplify the composition of the first two algorithms by writing

𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)) and, to facilitate the mathematical representation of

algorithms dealing with matrices, we can take advantage of broadcasting, i.e., the

application of a function 𝑓 to an array of elements, even if the latter has a different

number of dimensions from the other received arguments. Broadcasting is represent-

ed by the dot syntax 𝑓. (𝑎𝑟𝑔𝑠 …) and it can be applied in single or nested calls

𝑓. (𝑔. (𝑎𝑟𝑔𝑠 …)). This means we can simplify

𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟

(

∘ (𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 , 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)(𝑤, ℎ),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑟𝑖𝑛𝑛𝑒𝑟),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑟𝑜𝑢𝑡𝑡𝑒𝑟),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝛼))

 (3)

into 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟. (𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 , 𝑟𝑖𝑛𝑛𝑒𝑟 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼). This is

valid to all Shape algorithms, being some of them illustrated in Fig. 3.

7

Fig. 3. Examples of Shape algorithms combined with different Geometry and Distribution

algorithms.

Transformation. This group provides geometric transformations algorithms, which

are organized into affine and rule-based transformations.

The former includes scaling (𝑇𝑠𝑐𝑎𝑙𝑒), to change distances between points according

to a constant factor k, compressing or stretching shapes if k < 1 or k > 1, correspond-

ingly; reflection (𝑇𝑚𝑖𝑟𝑟𝑜𝑟), to invert shapes with respect to an axis or point; rotation

(𝑇𝑟𝑜𝑡𝑎𝑡𝑒), to rotate shapes around an axis; shearing (𝑇𝑠ℎ𝑒𝑎𝑟), to distort shapes parallel

to an axis or plane; and translation (𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒), to move shapes according to a dis-

placement vector.

The latter contains transformations resulting from the application of rules inspired

by real examples (Fig. 4), including shape substitution (𝑇𝑠ℎ𝑎𝑝𝑒), to replace shapes

8

with new ones; color application (𝑇𝑐𝑜𝑙𝑜𝑟), to apply different colors to the shapes; pro-

trusion creation (𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒), to move the shapes perpendicularly to the surface; recur-

sive subdivision (𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒), to subdivide shapes by recursively applying a geometric

rule; and edge deformation (𝑇𝑒𝑑𝑔𝑒), to bend or fold the shapes’ edges. Combining

these algorithms with the Shape ones allows generating a wider variety of more dy-

namic geometric patterns.

Fig. 4. Examples of building facade patterns (Photos © The Authors).

Affine Transformations. These algorithms receive a surface (𝑝𝑡𝑠𝑠), a specific position

on the surface (𝑝𝑡), and a factor controlling the transformation effect intensity (𝑘),

being 0 and 1 the null and maximum effects, correspondingly. The remaining argu-

ments depend on the transformation to apply.

As an example, the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒 allows scaling a shape according to different

criteria, including (1) its position, (2) its distance to one or more attractor

points/curves, (3) being or not contained in certain surface areas, and (4) random

rule(s). For each case, 𝑇𝑠𝑐𝑎𝑙𝑒 receives the information needed to perform the transfor-

mation, e.g., the direction of the effect to produce (option 1); a set of attractor points

or curves (option 2); a set of surface areas (option 3); and random values (option 4).

We describe this algorithm as 𝑇𝑠𝑐𝑎𝑙𝑒(𝑝𝑡𝑠𝑠, 𝑝𝑡, 𝑘, 𝑎𝑟𝑔𝑠 …), being 𝑎𝑟𝑔𝑠 … the support-

ed optional arguments. This logic applies to all affine transformations.

To illustrate the practical application of these algorithms, we start with a pattern re-

sulting from horizontally and vertically aligned squares. We select the algorithms

𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛, to create the squares, and 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠, to distribute them in a

squared grid (Fig. 5.A). To increase the squares’ rotation in the 𝑢 direction, we com-

bine both algorithms with the algorithm 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 , which, in this case, returns a factor

that increases with the surface length. The latter, in turn, affects the 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛’s

9

parameter angle (𝛼), producing squares whose angle increases with the 𝑢 dimension

(Fig. 5.B):

𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛. (𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑝𝑡𝑠𝑠), 𝑛𝑠𝑖𝑑𝑒𝑠 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼 × 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 (𝑝𝑡𝑠𝑠, 𝑝𝑡, 𝑘,
𝑣𝑢

→)) (4)

wherein
𝑣𝑢
→ is the transformation effect direction.

In this composition, 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 and 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 inform the two parameters 𝑝𝑡𝑠 and 𝛼

of 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛, correspondingly: the former provides the position of each polygon

and the latter changes its angle according to a factor. In turn, both algorithms are in-

formed by the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 but with a small difference: while 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠

takes all surface points at once, 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 receives a surface point at a time, correspond-

ing to the position of the element to rotate. The latter case can therefore benefit from

broadcasting:

𝑇𝑟𝑜𝑡𝑎𝑡𝑒 . (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ), 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑘,
𝑣𝑢
→) (5)

The resulting composition therefore applies broadcasting techniques in nested func-

tion calls:

𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛.

(

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),
𝑛𝑠𝑖𝑑𝑒𝑠 ,
𝑟𝑜𝑢𝑡𝑒𝑟 ,

𝛼 × 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 . (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ), 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑘,
𝑣𝑢
→)
)

 (6)

Following this logic, we can apply multiple transformations to this same pattern by

combining more algorithms in sequential function compositions. For instance, to ran-

domly change both the squares’ radius size (Fig. 5.C) and center position (Fig. 5.D),

we select the algorithms 𝑇𝑠𝑐𝑎𝑙𝑒, to control the parameter radius (𝑟𝑜𝑢𝑡𝑒𝑟), and 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒,

to change the 𝑝𝑡𝑠 position.

Fig. 5. A pattern of squares distributed in a squared grid (A), whose angle varies horizontally

(B) and whose radius size (C) and center position (D) changes randomly.

Fig. 3 illustrates more examples combining 𝑇𝑠𝑐𝑎𝑙𝑒 with different Shape algorithms: in

pattern B, 𝑇𝑠𝑐𝑎𝑙𝑒 makes both 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟’s parameters 𝑟𝑖𝑛𝑛𝑒𝑟 and 𝑟𝑜𝑢𝑡𝑒𝑟 uniformly

decrease along the 𝑢 dimension; in pattern C, 𝑇𝑠𝑐𝑎𝑙𝑒 controls only the 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟’s

10

parameter 𝑟𝑖𝑛𝑛𝑒𝑟 to randomly increase along the 𝑢 dimension; and, in pattern G, 𝑇𝑠𝑐𝑎𝑙𝑒

controls the 𝑠ℎ𝑎𝑝𝑒𝑅𝑜𝑠𝑒𝑡𝑡𝑒’s parameter 𝑟𝑖𝑛𝑛𝑒𝑟 to uniformly increase along the 𝑢 di-

mension.

Rule-based Transformations. Rule-based transformations are more complex than

affine ones. Therefore, their mode of combination differs from what we have seen so

far. Before explaining their application, we introduce the concept of matrix of func-

tions (MF), i.e., a matrix containing different functions. We use MFs to group the

transformation algorithm(s) to apply, while defining their pattern of application. We

represent a MF as

𝑀𝐹 = [
𝑓1 𝑓2
𝑔1 𝑔2

], where |
𝑓1 ∈ ℒ(𝑈, 𝑈), 𝑓2 ∈ ℒ(𝑈, 𝑉),

𝑔1 ∈ ℒ(𝑉, 𝑈), 𝑔2 ∈ ℒ(𝑉, 𝑉).
 (7)

MFs are useful to iterate along two-dimensional domains, which is the case of our

surface-related algorithms: Geometry and Distribution algorithms produce two-

dimensional matrices of points (MP). To deal with possible size differences between

matrices, rule-based algorithms map the smallest size matrices along the largest size

ones, iteratively applying the former to a submatrix of the latter of the same size. For

instance, consider Fig. 6: when mapped along the MP below, the 2 × 2 matrix A af-

fects 2 × 2 submatrices of the MP at a time, producing pattern 1; the same happens

with the examples B and C. Note that, the framework supports MFs of any size, in-

cluding non-squared matrices, row matrices, columns matrices, unit matrices, or even

matrices covering the entire surface at once. Having this knowledge, we can now

focus on these algorithms’ application.

Fig. 6. Examples of matrix of functions of different sizes applied to the same matrix of points.

11

Rule-based algorithms all receive tree matrices: one with the surface points (𝑝𝑡𝑠𝑠),
another one with one or more algorithms to apply (𝑀𝑟𝑢𝑙𝑒𝑠), and a last one describing

their order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛):

𝑇𝑟𝑢𝑙𝑒𝐵𝑎𝑠𝑒𝑑(𝑝𝑡𝑠𝑠,𝑀𝑟𝑢𝑙𝑒𝑠, 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛) (8)

Mathematically, these matrices are different, being 𝑝𝑡𝑠𝑠 a MP; 𝑀𝑟𝑢𝑙𝑒𝑠 a MF; and

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 an integer matrix. The result is a new matrix merging both 𝑀𝑟𝑢𝑙𝑒𝑠 and

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 information, which organizes the algorithms of 𝑀𝑟𝑢𝑙𝑒𝑠 according to the se-

quence set by 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛: the latter’s integers identify which algorithm of 𝑀𝑟𝑢𝑙𝑒𝑠 to

apply at each position. For instance, consider both matrices 𝑀𝑟𝑢𝑙𝑒𝑠 = [𝑓 𝑔] and

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1 2
2 1

]. As the latter’s integers correspond to the former’s algorithms index-

es, integer 1 matches the same index algorithm, i.e., 𝑓, and integer 2 the algorithm of

index 2, i.e., 𝑔, being the result [
𝑓 𝑔
𝑔 𝑓

]. As this new matrix’ size often differs from that

of 𝑝𝑡𝑠𝑠, it is then resized to be a matrix of the same size as 𝑝𝑡𝑠𝑠, containing the algo-

rithms of 𝑀𝑟𝑢𝑙𝑒𝑠 arranged according to the pattern set by 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

We illustrate their application with some examples combining rule-based algo-

rithms with those previously presented. For example, to replace the squares in Fig.

5.D with circles at every four elements (Fig. 7.A), we select the shape substitution

algorithm 𝑇𝑠ℎ𝑎𝑝𝑒 and we provide it with three matrices:

1. one containing the surface points: 𝑝𝑡𝑠𝑠.
2. one identifying the shapes composing the pattern: 𝑀𝑠ℎ𝑎𝑝𝑒𝑠.

3. a last one describing their mode of application: 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

Fig. 7. The pattern in Fig. 5.D combined with rule-based algorithms to create a circle for every

four squares with (A) a constant size and position or (B) a size and position that varies in the

same way as the squares, and to (C) color both squares and circles in a yellow and white chess

pattern.

In this case, 𝑝𝑡𝑠𝑠 are the same as in Fig. 5.D, 𝑀𝑠ℎ𝑎𝑝𝑒𝑠 is a matrix containing both

algorithms 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 and 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒, and 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 a matrix describing their

order of application:

12

𝑇𝑠ℎ𝑎𝑝𝑒(𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), [𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒], [1 1 1 2]) (9)

As visible in Fig. 7.A, we can apply different transformations to each Shape algorithm

in 𝑀𝑠ℎ𝑎𝑝𝑒𝑠: while the squares are affected by both algorithms 𝑇𝑠𝑐𝑎𝑙𝑒 and 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒, the

circles are not. The example in Fig. 7.B, in turn, already applies both transformations

to both Shape algorithms.

We follow the same logic in the remaining rule-based algorithms. As an example,

to apply different colors to the pattern in Fig. 7.B, we select the color application

algorithm 𝑇𝑐𝑜𝑙𝑜𝑟 . We provide it with the same 𝑝𝑡𝑠𝑠 plus two new matrices, one with

the colors to apply and another with their pattern of application (Fig. 7.C):

𝑇𝑐𝑜𝑙𝑜𝑟 (𝑝𝑡𝑠𝑠, [⬛ ⬛], [
2 1
1 2

]) (10)

In this composition, 𝑇𝑠ℎ𝑎𝑝𝑒 and 𝑇𝑐𝑜𝑙𝑜𝑟 originate a new matrix of the same size as 𝑝𝑡𝑠𝑠,

merging the information of the following matrices [𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒],

[1 1 1 2], [⬛ ⬛], and [
2 1
1 2

]: as the first two produce

[𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒] and the last ones return

[
⬛⬛

⬛⬛
], the resulting matrix therefore is

[
𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒
𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒

] (11)

To move the shapes perpendicularly to the surface and create different three-

dimensional effects like the one in Fig. 4.C, we use the algorithm 𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒. Besides

the surface points 𝑝𝑡𝑠𝑠, it receives the protrusion movements to apply, which we rep-

resent with vector functions, and their order of application:

𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒(𝑝𝑡𝑠𝑠,𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛) (12)

Like the previous rule-based algorithms, 𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒 maps the protrusion movements

along the surface’s shapes as set in 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

As another example, to recursively subdivide a triangular tiling [19] using the ge-

ometric rule in Fig. 8.A, we select the algorithm 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 and provide it with the

subdivision rule to apply (𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒). As subdivision rules are recursively applied to

shapes, we have to prevent them from being endlessly executed by controlling the

number of iterations. Therefore, 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 receives an additional input, the subdivi-

sion rules’ level of recursion (𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛):

𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒(𝑝𝑡𝑠𝑠,𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛) (13)

As an example, in Fig. 8.B, rule A is applied twice, corresponding to a 𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = 2,

whereas in Fig. 8.C and 8.D it is applied three and four times, respectively. Fig. 8.E

illustrates rule A applied to a triangular tiling with different levels of recursion. Fig.

8.F and 8.G result from the same rule and a 𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = 3 on different tilings.

13

Fig. 8. A. the subdivision rule; B-D: the rule applied twice, thrice, and four times; E-G: Rule A

applied in three triangular tilings (the latter are illustrated in the top-left of each example).

We can also add some randomness to the subdivision rules, as illustrated in Fig. 9 (I.C

and II.C). This is triggered by the additional input 𝑟𝑎𝑛𝑑𝑜𝑚, which receives a Boolean

value: when true, it adds some randomness to the subdivision rule’s level of recursion.

Finally, to deform the edges of a square tiling (Fig. 10.A), we select the algorithm

𝑇𝑒𝑑𝑔𝑒 . Mathematically, we represent the edge deformation movement with a single

vector function 𝑣, being its amplitude the vector’s length and its direction the vector’s

sign (Fig. 10.1). We can apply multiple deformation movements to the same edge and

obtain deformations with different amplitude and directions: Fig. 10.2 illustrates the

result of two deformation movements of opposite directions. To deal with multiple

deformations, 𝑇𝑒𝑑𝑔𝑒 needs to be informed about the edge’s subdomain to which each

deformation movement will be applied, which we represent with different 𝑡 factors

(Fig. 10.2). We can also control the maximum curvature position of each deformation

movement with different 𝑘 factors: in Fig. 10.3, the left deformation has a 𝑘 = 0.5

(the middle position), whereas the right one has a 𝑘 = 0.3.

14

Fig. 9. Top: the triangular tiling and the applied subdivision rules Rule I and Rule II; Middle:

Rule I applied with a level of recursion of one (I.A), two (I.B), and three with randomness

(I.C); Bottom: Rule II applied with a level of recursion of one (II.A), two (II.B), and three with

randomness (II.C).

Considering this, 𝑇𝑒𝑑𝑔𝑒 receives two additional inputs: a matrix containing the 𝑡 fac-

tors and another one with the 𝑘 factors. In sum, 𝑇𝑒𝑑𝑔𝑒 receives (1) the surface points

(𝑝𝑡𝑠𝑠), (2) the vector functions organized in sets {𝑣1, … , 𝑣𝑛} (𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠), (3) the latter’s

order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛), (4) the 𝑡 factors {𝑡1, … , 𝑡𝑛} (𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛), being 𝑡 =

 0 the edge’s starting point and 𝑡 = 1 its ending point, and (5) the 𝑘 factors

{𝑘1, … , 𝑘𝑛} (𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒):

𝑇𝑒𝑑𝑔𝑒(𝑝𝑡𝑠𝑠,𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , 𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 , 𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒) (14)

In practice, 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 dictates where each set of vector functions is used over the 𝑝𝑡𝑠𝑠

and, in each position, the applied vector functions receive the respective factors in

both matrices 𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 and 𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒.

Fig. 10 illustrates some edge deformations examples, being B, for instance, the re-

sult of applying 𝑇𝑒𝑑𝑔𝑒 to A with the following inputs:

15

• 𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = [{𝑣1, 𝑣1, 𝑣2, 𝑣2}], wherein 𝑣1 and 𝑣2 have the same amplitude but oppo-

site directions;

• 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1 1
1 1

], meaning the set {𝑣1, 𝑣1, 𝑣2, 𝑣2} is applied to all squares;

• 𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 = [{0, 1}], which indicates the deformation occurs in the entire edge;

• 𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = [{0.5}], informing the maximum curvature matches the edge’s mid-

dle.

Fig. 10. Top: 1. edge deformation movement sign and amplitude; 2. edge subdomain factors; 3.

deformation maximum curvature factors; Bottom: A. a square tilling; B-F the same square

tilling after applying the algorithm Tedge with different input values.

4.4 Optimization and Rationalization

These categories contain algorithms to analyse, optimize, and rationalize designs, by

either driving the changes made to the geometric pattern or controlling the number of

different shapes composing the pattern.

For the former case, we can select algorithms like 𝑜𝑝𝑡𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 , to optimize natural

daylight illumination, or 𝑜𝑝𝑡𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒 , to improve the natural ventilation, among oth-

ers. Generally, optimization algorithms receive (1) the surface domain 𝑝𝑡𝑠𝑠 and (2)

the pattern to optimize 𝑠ℎ𝑎𝑝𝑒𝑠. The other arguments, in turn, depend on the type of

optimization to perform. As an example, 𝑜𝑝𝑡𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 receives information about the

design’s context, including building’s location and orientation, average hours of sun-

light, among others. In turn, 𝑜𝑝𝑡𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒 receives information that is specific to the

type of analysis to execute.

Based on the received information, 𝑜𝑝𝑡 algorithms analyse the design and change

it according to the results obtained. Then, they rerun the analysis, repeating the cycle

16

until reaching a solution with the desired performance requirements. In practice, 𝑜𝑝𝑡
algorithms return one or more values to be then used as input in the final pattern,

which may result in shapes of different sizes (if affecting size-related parameters),

positions (if altering translation-related values), deformations (if changing defor-

mation-related inputs), or even geometries (if modifying shape-related functions). The

result is a new partially improved design. The latter is again used as input in 𝑜𝑝𝑡 algo-

rithms, which in turn return new improved values for the geometric pattern.

As an example, consider a pattern based on rhombus shaped openings whose size

needs to be optimized to match certain performance requirements: the more intense

the red tone is, the smaller the aperture size should be (Fig. 11). We select the rhom-

bus-shape algorithm

𝑠ℎ𝑎𝑝𝑒𝑅ℎ𝑜𝑚𝑏𝑢𝑠(𝑝𝑡𝑠, 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝛼) (15)

wherein 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 and 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 are its horizontal and vertical diagonals and 𝛼 its

rotation. To optimize their size, we select an 𝑜𝑝𝑡 algorithm, which we generically

represent as 𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 …), being 𝑎𝑟𝑔𝑠 … the information related to the

performed optimization. We combine both algorithms so that the latter controls the

size-related parameters of the former, which, in this case, are 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 and 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 .

In case the 𝑜𝑝𝑡 algorithm optimizes the 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , the pattern converges towards ex-

ample A:

𝑠ℎ𝑎𝑝𝑒𝑅ℎ𝑜𝑚𝑏𝑢𝑠(𝑝𝑡𝑠, 𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 …) × 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝛼) (16)

Otherwise, if the 𝑜𝑝𝑡 algorithm improves the 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , the pattern converges towards

example B. Finally, if both parameters are optimized, the pattern becomes similar to

pattern C:

𝑠ℎ𝑎𝑝𝑒𝑅ℎ𝑜𝑚𝑏𝑢𝑠 (

𝑝𝑡𝑠,

 𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 …) × 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ,

𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 …) × 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ,
𝛼

) (17)

To control the number of different shapes composing the pattern, we select the algo-

rithm 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒, which is important to minimize the design manufacturing costs,

while increasing its construction viability. When applied, 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 iteratively re-

duces the pattern’s diversity of shapes, while making the balance between its design

intent and performance. Finally, to identify and count the different existing shapes, we

use the algorithm 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔, which returns each shape typology locations and quanti-

ties; an information that is critical to proceed to the ensuing manufacturing stage.

Mathematically, 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 follows a discretization process that aims at reducing

the number of values accepted by a continuous variable, converting a continuous set

of values into a finite range grouped into 𝑛 intervals. This allows us to set the maxi-

mum number of intervals of the discretized range, which, in turn, corresponds to the

maximum number of different elements in the design (𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠). Since the exist-

ence of different elements in a pattern is directly related to the number of Shape algo-

rithms used and to the values given to their parameters, it is then important that

17

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 constrains these two ranges. In practice, 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 collects the values

that differ from element to element, producing a new range of values varying between

the maximum and minimum values found and containing the same number of values

as 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠. Then, it replaces the parameters’ original values with their closest

match in the new interval, guaranteeing the final design contains 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠 different

shapes.

Fig. 11. Top: the rhombus shape’s diagonal parameters (left); the rhombus-based pattern to

optimize (middle); a conceptual representation of the optimization requirements (right); Bot-

tom: the original pattern with their rhombuses’ size optimized regarding their (A) diagonal

u,(B) diagonal v, and (C) both diagonals.

Regarding the algorithm 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔, it extracts/stores the design information that is

important to manage its construction process on site, including the existing element

typologies’ quantities and positions. Mathematically, 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔 receives a pattern,

returning a list with its shapes organized by type, with their quantities, geometric

information, and spatial locations. It also enables the visualization of this information

through the 3D model in the design tool, applying different colours to each shape

typology. Further details on this algorithmic category can be found in [20].

5 Evaluation

To evaluate the framework’s application in an AD context, we selected the AD tool

Khepri [21], a textual programming tool tailored for architectural design, based on the

18

Julia PL [22]. Although we evaluate the framework on a particular tool using a spe-

cific PL, it can be applied in any other AD tool using its own PL because the pro-

posed theory is described in mathematical terms.

As the framework follows an AD approach, it therefore benefits from the latter’s

advantages. First, it allows the transition from a manual design process to a fully au-

tomated one. Moreover, the resulting process is both flexible and parametric, facilitat-

ing the integration of design changes, supporting the generation of more complex

designs, enabling the exploration of wider design spaces, and allowing for the auto-

mation of the generation-analysis-regeneration cycle typical of optimization process-

es. Contrastingly, manually using design tools requires considerable time and effort to

change the designs, which not only limits the complexity of the obtained solutions,

but also narrows the design space explored. Finally, the proposed approach is also

highly configurable due to allowing the available algorithms to receive functions as

input.

Moreover, the framework embraces all designs stages in a single and continuous

workflow: the resulting function compositions integrate algorithms addressing differ-

ent stages, meaning that modifications made to one algorithm automatically propagate

to the other algorithms. Also, its implementation in the AD tool Khepri allowed the

framework to benefit from some of its capabilities, namely the algorithms portability

among different CAD, BIM, and analysis tools. In practice, the same algorithmic

description generates identical models in the different supported tools by adapting the

embedded information according to the tool: while in CAD tools it produces a simple

geometric model, in BIM tools it enriches the model with building semantics and, in

analysis tools, it generates a simplified version of the model with only the information

needed for each specific analysis.

There are already some tools that provide functionalities similar to those available

in the framework. These include ParaCloud Gem [23], a 3D pattern modeler, and

some plug-ins for Grasshopper and Dynamo, including:

1. PanelingTools, that contains surface paneling functionalities supporting grid ma-

nipulation and the morphing of patterns, and rationalization techniques for analysis

and fabrication [24].

2. LunchBox, that provides functionalities to explore mathematical shapes, surface

paneling, and wire structures [25].

3. Weaverbird, that includes mesh subdivision and transformation operators and func-

tionalities to help the preparation of meshes for fabrication [26].

4. Parakeet, that has functionalities to generate algorithmic patterns resulting from

tilings, geometric shapes and grids subdivisions, edge deformations, among others

[27].

5. SkinDesigner, that provides functionalities to generate facade geometries from

building massing surfaces repeating panels [28].

Despite addressing the same problems, these tools are limited by the available prede-

fined operators [29], not allowing the latter’s configuration so as to respond to more

specific design contexts or intents. Also, they require the user to directly interact with

the design tool, hindering the automation of the design process. This results in itera-

19

tive design exploration processes that are tiresome and error prone. Finally, most tools

resort to visual PLs, e.g., Grasshopper and Dynamo, that are hard to apply to complex

problems [30, 31]. Our framework, in turn, overcomes these shortcomings by (1)

structuring and providing algorithmic strategies that adapt to diverse design scenarios

and requirements and to different design tools and workflows; (2) promoting an en-

tirely algorithmic use of the functionalities available, despite also allowing user inter-

action with the design tool, e.g., to take advantage of visual inputs [21]; and (3) being

designed for textual PLs implementations and, thus, benefiting from their expressive

power [30, 32, 33]. Nevertheless, in its current state, the framework requires more

programming experience than the previous tools and is less visually attractive and

intuitive. Future work will focus on improving these shortcomings.

6 Conclusions

Algorithmic Design (AD) is a powerful design approach that supports the exploration

of more complex designs and wider design spaces, as well as the search for better-

performing solutions. Unfortunately, architects still face several limitations when

adopting AD techniques: (1) the transition from a purely visual to a more complex

and abstract design process and (2) the need for specialized knowledge, including

programming experience. The challenge, then, is to make AD more accessible and

attractive to the architectural community.

Based on previous studies proving that the provision of predefined algorithms and

strategies facilitates the development of algorithmic solutions, we proposed a mathe-

matics-based framework designed to tame the complexity of AD techniques. As do-

main of application, we focused on building facades due to their major role in build-

ing design, presenting a mathematical theory for them. In the paper, we described the

proposed mathematics-based theory and its implementation in an algorithmic frame-

work. We explained its structure and available algorithms and we illustrated its appli-

cation through a sequence of conceptual examples. In the end, we demonstrated the

ability of the framework to be generalized and to be applied in different design con-

texts and workflows.

7 Acknowledgements

This work was supported by national funds through Fundação para a Ciência e a

Tecnologia (FCT) with references UIDB/50021/2020 and PTDC/ART-

DAQ/31061/2017, and by the PhD grant under contract of FCT with reference

SFRH/BD/128628/2017.

References

1. Caetano, I., Santos, L., Leitão, A.: Computational Design in Architecture: Defining Para-

metric, Generative, and Algorithmic Design. Frontiers of Architectural Research (2020).

20

2. Aguiar, R., Cardoso, C., Leitão, A.: Algorithmic design and analysis fusing disciplines. In:

Disciplines and Disruption - Proceedings of the 37th Annual Conference of the

Association for Computer Aided Design in Architecture, pp. 28–37. Cambridge,

Massachusetts, USA (2017).

3. Trubiano, F.: Performance Based Envelopes: A Theory of Spatialized Skins and the Emer-

gence of the Integrated Design Professional. Buildings 3, 689–712 (2013).

4. El Sheikh, M. M.: Intelligent building skins: Parametric-based algorithm for kinetic fa-

cades design and daylighting performance integration. PhD thesis. University of Southern

California. Los Angeles, USA (2011).

5. Al-Kodmany, K., Ali, M. M.: An Overview of Structural and Aesthetic Developments in

Tall Buildings Using Exterior Bracing and Diagrid Systems. International Journal of High-

Rise Buildings 5(4), 271–291 (2016).

6. Schulz, C. N.: Existence, space & architecture. Praeger. Stamps, New York (1971).

7. Schittich, C.: Building Skins. Birkhäuser (2006).

8. Stojšić, M.: (New) Media Facades: Architecture and/as a Medium in Urban Context. AM

Journal 12, 135–148 (2017).

9. Venturi, R., Brown, D. S., Izenour, S.: Learning from Las Vegas. MIT Press (1972).

10. Moussavi, F., Kubo, M.: The Function of Ornament. Actar (2006).

11. Otani, M., Kishimoto, T.: Fluctuating Patterns of Architecture Façade and their Automatic

Creation. In: CAADRIA 2008 - Proceedings of the 13th International Conference on

Computer Aided Architectural Design Research in Asia, pp. 375–382. Chiang mai, Thai-

land (2008).

12. Pell, B.: The Articulate Surface: Ornament and Technology in Contemporary Architecture.

Birkhäuser GmbH, Germany (2010).

13. Caetano, I., Santos, L., Leitão, A.: From Idea to Shape, From Algorithm to Design: A

Framework for the Generation of Contemporary Facades. In: Celani, G., Sperling, D.,

Franco, J. (eds.) Computer-Aided Architectural Design: The Next City – New Technolo-

gies and the Future of the Built Environment 16th International Conference, CAAD Fu-

tures 2015, Selected Papers, pp. 527-546. Springer-Verlag Berlin Heidelberg (2015).

14. Woodbury, R., Aish, R., Kilian, A.: Some Patterns for Parametric Modeling. In: Expand-

ing Bodies: Art • Cities• Environment - Proceedings of the 27th Annual Conference of the

Association for Computer Aided Design in Architecture, pp. 222–229. Halifax, Nova Sco-

tia (2007).

15. Qian, Z. C.: Design Patterns: Augmenting Design Practice in Parametric CAD Systems.

PhD thesis. School of Interactive Arts and Technology: Simon Fraser University. Burnaby,

Canada (2009).

16. Chien, S., Su, H., Huang, Y.: PARADE: A pattern-based knowledge repository for para-

metric designs. In: Emerging Experience in Past, Present and Future of Digital Architec-

ture - Proceedings of the 20th International Conference of the Association for Computer-

Aided Architectural Design Research in Asia (CAADRIA), pp. 375-384. Daegu, Korea

(2015).

17. Leitão, A.: Improving generative design by combining abstract geometry and higher-order

programming. In: Rethinking Comprehensive Design: Speculative Counterculture - Pro-

ceedings of the 19th International Conference on Computer- Aided Architectural Design

Research in Asia (CAADRIA), pp. 575–584. Kyoto, Japan (2014).

18. Caetano, I., Leitão, A.: Weaving Architectural Façades: Exploring algorithmic stripe-based

design patterns. In: Hello, Culture – Proceeding of the 18th International Conference on

Computer Aided Architectural Design Futures, pp. 1023–1043. Daejeon, South Korea

(2019).

21

19. Grünbaum G., Shephard, G. C.: Tilings and patterns. New York: W.H. Freeman, New

York, USA (1987).

20. Caetano, I., Leitão, A.: Algorithmic Patterns for Facade Design: Merging design explora-

tion, optimization and rationalization. In: Facade Tectonics 2018 World Congress Confer-

ence Proceedings, vol. 1, pp. 413–422. Los Angeles, USA (2018).

21. Sammer, M., Leitão, A., Caetano, I.: From Visual Input to Visual Output in Textual Pro-

gramming. In: Intelligent & Informed - Proceedings of the 24th International Conference

of the Association for Computer-Aided Architectural Design Research in Asia, vol. 1, pp.

645–654. Wellington, New Zeland (2019).

22. The Julia Language (by J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah),

https://julialang.org/, 2012, last accessed 2020/03/28.

23. ParaCloud GEM, https://paracloud-gem.software.informer.com/, 2011, last accessed

2020/03/29.

24. PanelingTools for Rhino and Grasshopper (by Rajaa Issa),

https://www.food4rhino.com/app/panelingtools-rhino-and-grasshopper, 2013, last accessed

2020/03/27.

25. LUNCHBOX (by Nathan Miller), https://www.food4rhino.com/app/lunchbox, 2011, last

accessed 2020/03/21.

26. Weaverbird – Topological Mesh Editor, http://www.giuliopiacentino.com/weaverbird/,

2009, last accessed 2020/03/19.

27. PARAKEET (by Esmaeil), https://www.food4rhino.com/app/parakeet, 2019, last accessed

2020/03/23.

28. SKINDESIGNER (by sgaray), https://www.food4rhino.com/app/skindesigner, 2017, last

accessed 2020/03/21.

29. Zboinska, M. A.: Hybrid CAD/E platform supporting exploratory architectural design.

CAD Computer Aided Design 59, 64–84 (2015).

30. Leitão, A., Santos, L., Lopes, J.: Programming Languages For Generative Design: A

Comparative Study. International Journal of Architectural Computing 10(1), 139–162

(2012).

31. Janssen, P.: Visual Dataflow Modelling: Some Thoughts on Complexity. In: Fusion - Pro-

ceedings of the 32nd eCAADe Conference, vol. 2, pp. 305–314. Department of Architec-

ture and Built Environment, Faculty of Engineering and Environment, Newcastle upon

Tyne (2014).

32. Wortmann, T., Tunçer, B.: Differentiating parametric design: Digital workflows in con-

temporary architecture and construction. Design Studies 53, 173–197 (2017).

33. Celani, G., Vaz, C.: CAD Scripting and Visual Programming Languages for Implementing

Computational Design Concepts: A Comparison from a Pedagogical Point of View. Inter-

national Journal of Architectural Computing 10(1), 121–138 (2012).

