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Abstract. The importance of Algorithmic Design (AD) is growing due to its 

advantages for the design practice: it empowers the creative process, facilitating 

design changes and the exploration of larger design spaces in viable time, and 

supports the search for better-performing solutions that satisfy environmental 

demands. Still, AD is a complex approach and requires specialized knowledge. 

To promote its use in architecture, we present a mathematics-based framework 

to support architects with the algorithmic development of designs by following 

a continuous workflow embracing the three main design stages: exploration, 

evaluation, and manufacturing. 

The proposed framework targets the design of buildings’ facades due to their 

aesthetical and environmental relevance. In this paper, we explain the frame-

work’s structure and its mathematical implementation, and we describe the pre-

defined algorithms, as well as their combination strategies. We focus on the 

framework’s algorithms that generate different geometric patterns, exploring 

their potentialities to create and modify different facade designs. In the end, we 

evaluate the flexibility of the framework for generating, modifying, and opti-

mizing different geometrical patterns in an architectural design context. 

Keywords: Algorithmic Design; Mathematical Framework; Higher-order Func-

tions; Facade Design. 

1 Introduction 

Algorithmic Design (AD) is a design approach based on algorithms [1]. Compared to 

manual approaches, AD provides greater flexibility, supports more complex geome-

tries, and handles larger amounts of information. AD also facilitates design changes 

and automates repetitive tasks, therefore enabling design optimization by automating 

the search for better-performing design solutions [2]. Still, AD requires specialized 

knowledge that most architects do not have, namely, programming experience. To 

make AD more attractive to the architectural community, we need to make it more 

accessible by providing ready-to-use algorithms that can be combined in arbitrary 

ways. We focus on building facades and we present a mathematics-based framework 

for the design of facades. 
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Building facades are the outer layer of buildings, separating the indoor spaces from 

the outside ones and, therefore, having many associated functions, namely environ-

mental performance [3, 4], structural behavior [5], cultural identity [6, 7], and urban 

communication [8, 9]. Lately, facade design has become an increasing complex task 

due to the current design trend to create intricate geometries/patterns and the growing 

design constraints, namely environmental requirements, economic limitations, and 

tight deadlines. AD helps dealing with these constraints, reducing the time and effort 

needed to explore different design solutions. To facilitate the adoption of AD in archi-

tecture, we propose a flexible mathematics-based framework that tames the complexi-

ty of AD techniques in the design exploration, analysis, and optimization of facade 

solutions. The framework is structured in a fivefold classification inspired by previous 

research [10–13], containing several algorithms addressing the facade design process.  

2 Methodology 

The idea of an algorithmic framework had as inspiration previous works [14–16] 

proving that sets of algorithms can be generalized and reused in the exploration of 

new designs. These strategies, known as modular programming and design patterns 

[14, 15], promise to mitigate the limitations architects still face when using AD, espe-

cially to reduce the time and effort spent with the algorithmic task: they avoid writing 

algorithms from scratch for each new design, while preventing extensive and poten-

tially error-prone programming efforts. However, when the pre-defined algorithms are 

not well-structured, it becomes difficult to combine them. To solve this problem, we 

propose a mathematics-based algorithmic framework for facade design that provides, 

for each scenario, a set of algorithms and combination strategies suiting the different 

design stages. Despite not considering all possible scenarios, which would be an un-

viable task, the framework addresses the most common ones and can be adapted to 

more specific ones. 

The framework development was twofold: (1) defining a mathematical theory for 

facade design and (2) implementing the theory in a framework containing predefined 

algorithms targeting building facades, that can be combined in arbitrary ways. The 

resulting framework promises to (1) promote the use of AD in facade design, (2) 

solve interoperability issues between design and analysis tools, and (3) guide the se-

lection of the algorithms/strategies that best suit a design scenario. 

3 Mathematics-based Framework 

The architectural practice depends on several external factors like the design brief’s 

specificities and both environmental and economical requirements. This means differ-

ent projects require different approaches either using an AD or a non-AD approach. 

As we address the AD one, we must handle design in a way that a computer under-

stands. Given that computational tools are based on instructions transmitted through 

Programming Languages (PLs) and that most PLs are inspired by the universal lan-

guage of mathematics, we consider the latter’s formalism to: 
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1. structure the AD theory; 

2. implement the different algorithms; 

3. organize both 1. and 2. in an algorithmic framework specialized in facade design.  

The mathematics-based framework must be able to handle the design (1) variability, 

adapting to the ever-changing  design requirements, (2) diversity, embracing and 

evaluating diverse design problems and scenarios, and (3) coherency, correctly inte-

grating the design information in a single workflow. Regarding its structure, the 

framework organizes the predefined algorithms in a fivefold classification, which we 

describe in the next sections. 

4 Framework Implementation 

The framework organizes the algorithms based on their type and role in the facade 

design process in the following categories: Geometry, Pattern, Distribution, Optimi-

zation, and Rationalization. For each one, it provides ℝ → ℝ, ℝ → ℝ2,  ℝ2 → ℝ2, 

and ℝ2 → ℝ3 algorithms that can be then combined with one another through func-

tion composition.  

In general, the framework handles all surface-related functions 𝑆(𝑢, 𝑣) within the 

domain 0 ≤ 𝑢 ≤ 1, 0 ≤ 𝑣 ≤ 1 and provides operators that can be arbitrarily com-

bined, namely the one-dimensional linear variation function 𝑙𝑖𝑛𝑒𝑎𝑟(𝑎, 𝑏) = 𝜆(𝑡). 𝑎 +
(𝑏 − 𝑎)𝑡 and the (paradoxical) constant “variation” function 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑐) =
𝜆(𝑡 … ). 𝑐. Here, we employ the λ-calculus notation for an anonymous function with 

parameter t [17]: the result of the function 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is therefore an anonymous func-

tion that can be combined with functions of any number of arguments, adapting its 

number of arguments according to those of the combined function. 

The next sections explain the implementation of the framework’s categories. 

4.1 Geometry 

This category contains algorithms to define the facade geometry. As the latter’s do-

main is often two-dimensional, we need to extend the one-dimensional variations’ 

domain into ℝ2. We use higher-order functions (HOFs) [17] to define two functions, 

𝑑𝑖𝑚𝑢(𝑓) = 𝜆(𝑢, 𝑣). 𝑓(𝑢) and 𝑑𝑖𝑚𝑣(𝑓) = 𝜆(𝑢, 𝑣). 𝑓(𝑣), that make a function 𝑓 vary 

only in one dimension, i.e., 𝑢 or 𝑣 accordingly. To generalize function composition 

operations, we provide the operator 

∘ (𝑓, 𝑔1, ⋯ , 𝑔𝑛) = 𝜆(𝑥1,⋯ , 𝑥𝑚). 𝑓(𝑔1(𝑥1, ⋯ , 𝑥𝑚),⋯ , 𝑔𝑛(𝑥1, ⋯ , 𝑥𝑚)) (1) 

and, to simplify the notation used, we define 𝑢 ⊗ 𝑙𝑖𝑚 = 𝑑𝑖𝑚𝑢(𝑙𝑖𝑛𝑒𝑎𝑟(0, 𝑙𝑖𝑚)) and  

𝑣 ⊗ 𝑙𝑖𝑚 = 𝑑𝑖𝑚𝑣(𝑙𝑖𝑛𝑒𝑎𝑟(0, 𝑙𝑖𝑚)), wherein 𝑙𝑖𝑚 is the domain’s upper limit. We also 

treat all numbers 𝑛 in a function context as 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑛) and we represent any first-

order function 𝑓 that receives functional arguments 𝑔1, ⋯ , 𝑔𝑛 as ∘ (𝑓, 𝑔1, ⋯ , 𝑔𝑛), thus 

being 𝑓 × 𝑔 the same as ∘ (×, 𝑓, 𝑔). 
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With HOFs we can move from the numeric space into the functional space and 

combine functions using functional operators rather than simply combining numbers 

using numeric operators. In a functional space, the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ) =
𝜆(𝑢, 𝑣). 𝑋𝑌𝑍(𝑢 × 𝑤, 0, 𝑣 × ℎ), which represents a 𝑤 × ℎ planar parametric surface, 

has the equivalent representation 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ) = 𝑋𝑌𝑍(𝑢 ⊗𝑤, 0, 𝑣 ⊗ ℎ). The 

other predefined surface geometries follow the same logic, which is further detailed in 

[13]. 

Having the surface’s algorithmic description, we can now explore its geometric 

pattern by using the algorithms of both Pattern and Distribution categories, which we 

explain in the next sections: the former create the shape(s) composing the pattern and 

the latter distribute those shapes on the surface domain. 

4.2 Distribution 

This category contains algorithms to distribute elements on a surface. These algo-

rithms receive a matrix of the surface points on which the distribution will be made, 

as provided by the Geometry algorithms, returning another matrix with the same 

points rearranged in different distribution configurations. As an example, the algo-

rithm 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠  rearranges the points in sets of four points describing a squared 

area on the surface. Regarding the algorithm 𝑔𝑟𝑖𝑑ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑠, it reorganizes the points in 

sets of six points representing hexagonal areas. Fig. 1 illustrates some of the prede-

fined distributions. 

4.3 Pattern 

This category contains algorithms to create different geometric patterns. Generally, a 

geometric pattern results from repeating an element either along one or both dimen-

sions of a two-dimensional domain. In the first case, the result is a pattern continuous 

in one of the domain’s directions but discrete in the other, whereas in the second, the 

pattern is discrete in both directions. We name the former as Continuous and the latter 

as Discrete pattern. In both cases, the repeated element can be kept unchanged along 

the facade domain or can suffer some transformations regarding its shape, size, etc. 

Therefore, this category provides algorithms to generate different geometric shapes, 

as well as to apply different geometric transformations to them, which are organized 

in two groups: Shape and Transformation. Each group contains algorithms handling 

both Discrete and Continuous patterns but, for the scope of this paper, we focus on 

the former ones. The latter ones are further detailed in [18]. 
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Fig. 1. Some Distribution algorithms: A. gridsquare; B. gridtriangles; C. gridtriangles2; D. gridrhombus; 

E. gridtriangles3; F. gridhexagons. 

Shape. This group contains algorithms to create different 2D and 3D geometric 

shapes, including polygonal, ellipsoidal, and spherical ones, among others. The avail-

able algorithms all receive the set of points where to centre the geometric shape; an 

information provided by the Distribution algorithms. The remaining parameters, in 

turn, depend on the characteristics of each geometric shape. Fig. 2 illustrates some 

Shape algorithms and their corresponding parameters. 

As an example, consider the function that creates star-polygons: besides the set of 

points (pts), it receives the number of vertices (nvertices), the inner and outer radii 

(rinner and 𝑟𝑜𝑢𝑡𝑒𝑟), and an angle (𝛼): 

𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟(𝑝𝑡𝑠, 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 , 𝑟𝑖𝑛𝑛𝑒𝑟 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼) (2) 

To create a geometric pattern based on star-polygons, we need to define (1) the sur-

face on which to apply the pattern and (2) the type of elements’ distribution. We 

choose a straight facade and a rhombus distribution, which requires combining three 

algorithms: 

1. one shaping the straight surface where to create the pattern – 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡;  
2. another creating a rhombus grid of points –  𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠;  
3. a last one producing the star-polygons – 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟. 
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Fig. 2. Some Shape algorithms and their inputs: in addition to the set of points represented by 

the black dots, the circle algorithm (A) receives a radius; the regular-polygon algorithm (B) 

receives a radius, an angle, and a number of sides; the rectangle algorithm (C) receives a length, 

a width, and an angle; the rosette algorithm (D) receives three radii, an angle, and a number of 

vertices; the rhombus algorithm (E) receives two diagonals and an angle; and the star-polygon 

algorithm (F) receives two radii, an angle, and a number of vertices. 

Fig. 3.A-C illustrate the result of this composition using different inputs. 

We can simplify the composition of the first two algorithms by writing 

𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)) and, to facilitate the mathematical representation of 

algorithms dealing with matrices, we can take advantage of broadcasting, i.e., the 

application of a function 𝑓 to an array of elements, even if the latter has a different 

number of dimensions from the other received arguments. Broadcasting is represent-

ed by the dot syntax 𝑓. (𝑎𝑟𝑔𝑠 … ) and it can be applied in single or nested calls 

𝑓. (𝑔. (𝑎𝑟𝑔𝑠 … )). This means we can simplify 

𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟

(

 
 

∘ (𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠 , 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡)(𝑤, ℎ),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑟𝑖𝑛𝑛𝑒𝑟),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝑟𝑜𝑢𝑡𝑡𝑒𝑟),

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(𝛼) )

 
 

 (3) 

into 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟. (𝑔𝑟𝑖𝑑𝑟ℎ𝑜𝑚𝑏𝑢𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑛𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 , 𝑟𝑖𝑛𝑛𝑒𝑟 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼). This is 

valid to all Shape algorithms, being some of them illustrated in Fig. 3. 
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Fig. 3. Examples of Shape algorithms combined with different Geometry and Distribution 

algorithms. 

Transformation. This group provides geometric transformations algorithms, which 

are organized into affine and rule-based transformations. 

The former includes scaling (𝑇𝑠𝑐𝑎𝑙𝑒), to change distances between points according 

to a constant factor k, compressing or stretching shapes if k < 1 or  k > 1, correspond-

ingly; reflection (𝑇𝑚𝑖𝑟𝑟𝑜𝑟), to invert shapes with respect to an axis or point; rotation 

(𝑇𝑟𝑜𝑡𝑎𝑡𝑒), to rotate shapes around an axis; shearing (𝑇𝑠ℎ𝑒𝑎𝑟), to distort shapes parallel 

to an axis or plane; and translation (𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒), to move shapes according to a dis-

placement vector.  

The latter contains transformations resulting from the application of rules inspired 

by real examples (Fig. 4), including shape substitution (𝑇𝑠ℎ𝑎𝑝𝑒), to replace shapes 
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with new ones; color application (𝑇𝑐𝑜𝑙𝑜𝑟), to apply different colors to the shapes; pro-

trusion creation (𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒), to move the shapes perpendicularly to the surface; recur-

sive subdivision (𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒), to subdivide shapes by recursively applying a geometric 

rule; and edge deformation (𝑇𝑒𝑑𝑔𝑒), to bend or fold the shapes’ edges. Combining 

these algorithms with the Shape ones allows generating a wider variety of more dy-

namic geometric patterns. 

 

Fig. 4. Examples of building facade patterns (Photos © The Authors). 

Affine Transformations. These algorithms receive a surface (𝑝𝑡𝑠𝑠), a specific position 

on the surface (𝑝𝑡), and a factor controlling the transformation effect intensity (𝑘), 

being 0 and 1 the null and maximum effects, correspondingly. The remaining argu-

ments depend on the transformation to apply. 

As an example, the algorithm 𝑇𝑠𝑐𝑎𝑙𝑒  allows scaling a shape according to different 

criteria, including (1) its position, (2) its distance to one or more attractor 

points/curves, (3) being or not contained in certain surface areas, and (4) random 

rule(s). For each case, 𝑇𝑠𝑐𝑎𝑙𝑒 receives the information needed to perform the transfor-

mation, e.g., the direction of the effect to produce (option 1); a set of attractor points 

or curves (option 2); a set of surface areas (option 3); and random values (option 4). 

We describe this algorithm as 𝑇𝑠𝑐𝑎𝑙𝑒(𝑝𝑡𝑠𝑠, 𝑝𝑡, 𝑘, 𝑎𝑟𝑔𝑠 … ), being 𝑎𝑟𝑔𝑠 … the support-

ed optional arguments. This logic applies to all affine transformations. 

To illustrate the practical application of these algorithms, we start with a pattern re-

sulting from horizontally and vertically aligned squares. We select the algorithms 

𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛, to create the squares, and 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠, to distribute them in a 

squared grid (Fig. 5.A). To increase the squares’ rotation in the 𝑢 direction, we com-

bine both algorithms with the algorithm 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 , which, in this case, returns a factor 

that increases with the surface length. The latter, in turn, affects the 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛’s 
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parameter angle (𝛼), producing squares whose angle increases with the 𝑢 dimension 

(Fig. 5.B):  

𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛. (𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑝𝑡𝑠𝑠), 𝑛𝑠𝑖𝑑𝑒𝑠 , 𝑟𝑜𝑢𝑡𝑒𝑟 , 𝛼 × 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 (𝑝𝑡𝑠𝑠, 𝑝𝑡, 𝑘,
𝑣𝑢

→)) (4) 

wherein 
𝑣𝑢
→ is the transformation effect direction. 

In this composition, 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 and 𝑇𝑟𝑜𝑡𝑎𝑡𝑒  inform the two parameters 𝑝𝑡𝑠 and 𝛼 

of 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛, correspondingly: the former provides the position of each polygon 

and the latter changes its angle according to a factor. In turn, both algorithms are in-

formed by the algorithm 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 but with a small difference: while 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠 

takes all surface points at once, 𝑇𝑟𝑜𝑡𝑎𝑡𝑒  receives a surface point at a time, correspond-

ing to the position of the element to rotate. The latter case can therefore benefit from 

broadcasting: 

𝑇𝑟𝑜𝑡𝑎𝑡𝑒 . (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ), 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑘,
𝑣𝑢
→) (5) 

The resulting composition therefore applies broadcasting techniques in nested func-

tion calls: 

𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛.

(

 
 

𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)),
𝑛𝑠𝑖𝑑𝑒𝑠 ,
𝑟𝑜𝑢𝑡𝑒𝑟 ,

𝛼 × 𝑇𝑟𝑜𝑡𝑎𝑡𝑒 . (𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ), 𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), 𝑘,
𝑣𝑢
→)
)

 
 

 (6) 

Following this logic, we can apply multiple transformations to this same pattern by 

combining more algorithms in sequential function compositions. For instance, to ran-

domly change both the squares’ radius size (Fig. 5.C) and center position (Fig. 5.D), 

we select the algorithms 𝑇𝑠𝑐𝑎𝑙𝑒, to control the parameter radius (𝑟𝑜𝑢𝑡𝑒𝑟), and 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒, 

to change the 𝑝𝑡𝑠 position. 

 

Fig. 5. A pattern of squares distributed in a squared grid (A), whose angle varies horizontally 

(B) and whose radius size (C) and center position (D) changes randomly. 

Fig. 3 illustrates more examples combining 𝑇𝑠𝑐𝑎𝑙𝑒  with different Shape algorithms: in 

pattern B, 𝑇𝑠𝑐𝑎𝑙𝑒 makes both 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟’s parameters 𝑟𝑖𝑛𝑛𝑒𝑟  and 𝑟𝑜𝑢𝑡𝑒𝑟  uniformly 

decrease along the 𝑢 dimension; in pattern C, 𝑇𝑠𝑐𝑎𝑙𝑒 controls only the 𝑠ℎ𝑎𝑝𝑒𝑆𝑡𝑎𝑟’s 
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parameter 𝑟𝑖𝑛𝑛𝑒𝑟  to randomly increase along the 𝑢 dimension; and, in pattern G, 𝑇𝑠𝑐𝑎𝑙𝑒  

controls the 𝑠ℎ𝑎𝑝𝑒𝑅𝑜𝑠𝑒𝑡𝑡𝑒’s parameter 𝑟𝑖𝑛𝑛𝑒𝑟  to uniformly increase along the 𝑢 di-

mension. 

Rule-based Transformations. Rule-based transformations are more complex than 

affine ones. Therefore, their mode of combination differs from what we have seen so 

far. Before explaining their application, we introduce the concept of matrix of func-

tions (MF), i.e., a matrix containing different functions. We use MFs to group the 

transformation algorithm(s) to apply, while defining their pattern of application. We 

represent a MF as 

𝑀𝐹 = [
𝑓1 𝑓2
𝑔1 𝑔2

], where |
𝑓1 ∈ ℒ(𝑈, 𝑈), 𝑓2 ∈ ℒ(𝑈, 𝑉),

𝑔1 ∈ ℒ(𝑉, 𝑈), 𝑔2 ∈ ℒ(𝑉, 𝑉).
 (7) 

MFs are useful to iterate along two-dimensional domains, which is the case of our 

surface-related algorithms: Geometry and Distribution algorithms produce two-

dimensional matrices of points (MP). To deal with possible size differences between 

matrices, rule-based algorithms map the smallest size matrices along the largest size 

ones, iteratively applying the former to a submatrix of the latter of the same size. For 

instance, consider Fig. 6: when mapped along the MP below, the 2 × 2 matrix A af-

fects 2 × 2 submatrices of the MP at a time, producing pattern 1; the same happens 

with the examples B and C. Note that, the framework supports MFs of any size, in-

cluding non-squared matrices, row matrices, columns matrices, unit matrices, or even 

matrices covering the entire surface at once. Having this knowledge, we can now 

focus on these algorithms’ application. 

 

Fig. 6. Examples of matrix of functions of different sizes applied to the same matrix of points. 
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Rule-based algorithms all receive tree matrices: one with the surface points (𝑝𝑡𝑠𝑠), 
another one with one or more algorithms to apply (𝑀𝑟𝑢𝑙𝑒𝑠), and a last one describing 

their order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛): 

𝑇𝑟𝑢𝑙𝑒𝐵𝑎𝑠𝑒𝑑(𝑝𝑡𝑠𝑠,𝑀𝑟𝑢𝑙𝑒𝑠, 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛) (8) 

Mathematically, these matrices are different, being 𝑝𝑡𝑠𝑠 a MP; 𝑀𝑟𝑢𝑙𝑒𝑠 a MF; and 

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 an integer matrix. The result is a new matrix merging both 𝑀𝑟𝑢𝑙𝑒𝑠  and 

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 information, which organizes the algorithms of 𝑀𝑟𝑢𝑙𝑒𝑠 according to the se-

quence set by 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛: the latter’s integers identify which algorithm of 𝑀𝑟𝑢𝑙𝑒𝑠  to 

apply at each position. For instance, consider both matrices 𝑀𝑟𝑢𝑙𝑒𝑠 = [𝑓 𝑔] and 

𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1 2
2 1

]. As the latter’s integers correspond to the former’s algorithms index-

es, integer 1 matches the same index algorithm, i.e., 𝑓, and integer 2 the algorithm of 

index 2, i.e., 𝑔, being the result [
𝑓 𝑔
𝑔 𝑓

]. As this new matrix’ size often differs from that 

of 𝑝𝑡𝑠𝑠, it is then resized to be a matrix of the same size as 𝑝𝑡𝑠𝑠, containing the algo-

rithms of 𝑀𝑟𝑢𝑙𝑒𝑠  arranged according to the pattern set by 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛.  

We illustrate their application with some examples combining rule-based algo-

rithms with those previously presented. For example, to replace the squares in Fig. 

5.D with circles at every four elements (Fig. 7.A), we select the shape substitution 

algorithm 𝑇𝑠ℎ𝑎𝑝𝑒  and we provide it with three matrices: 

1. one containing the surface points: 𝑝𝑡𝑠𝑠. 
2. one identifying the shapes composing the pattern: 𝑀𝑠ℎ𝑎𝑝𝑒𝑠. 

3. a last one describing their mode of application: 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

 

Fig. 7. The pattern in Fig. 5.D combined with rule-based algorithms to create a circle for every 

four squares with (A) a constant size and position or (B) a size and position that varies in the 

same way as the squares, and to (C) color both squares and circles in a yellow and white chess 

pattern. 

In this case, 𝑝𝑡𝑠𝑠 are the same as in Fig. 5.D, 𝑀𝑠ℎ𝑎𝑝𝑒𝑠 is a matrix containing both 

algorithms 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 and 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒, and 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 a matrix describing their 

order of application: 
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𝑇𝑠ℎ𝑎𝑝𝑒(𝑔𝑟𝑖𝑑𝑠𝑞𝑢𝑎𝑟𝑒𝑠(𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡(𝑤, ℎ)), [𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒], [1 1 1 2]) (9) 

As visible in Fig. 7.A, we can apply different transformations to each Shape algorithm 

in 𝑀𝑠ℎ𝑎𝑝𝑒𝑠: while the squares are affected by both algorithms 𝑇𝑠𝑐𝑎𝑙𝑒 and 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒, the 

circles are not. The example in Fig. 7.B, in turn, already applies both transformations 

to both Shape algorithms. 

We follow the same logic in the remaining rule-based algorithms. As an example, 

to apply different colors to the pattern in Fig. 7.B, we select the color application 

algorithm 𝑇𝑐𝑜𝑙𝑜𝑟 . We provide it with the same 𝑝𝑡𝑠𝑠 plus two new matrices, one with 

the colors to apply and another with their pattern of application (Fig. 7.C): 

𝑇𝑐𝑜𝑙𝑜𝑟 (𝑝𝑡𝑠𝑠, [⬛ ⬛], [
2 1
1 2

]) (10) 

In this composition, 𝑇𝑠ℎ𝑎𝑝𝑒 and 𝑇𝑐𝑜𝑙𝑜𝑟  originate a new matrix of the same size as 𝑝𝑡𝑠𝑠, 

merging the information of the following matrices [𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒], 

[1 1 1 2], [⬛ ⬛], and [
2 1
1 2

]: as the first two produce 

[𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒] and the last ones return 

[
⬛⬛

⬛⬛
], the resulting matrix therefore is 

[
𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒
𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝑃𝑜𝑙𝑦𝑔𝑜𝑛 𝑠ℎ𝑎𝑝𝑒𝐶𝑖𝑟𝑐𝑙𝑒

] (11) 

To move the shapes perpendicularly to the surface and create different three-

dimensional effects like the one in Fig. 4.C, we use the algorithm 𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒. Besides 

the surface points 𝑝𝑡𝑠𝑠, it receives the protrusion movements to apply, which we rep-

resent with vector functions, and their order of application: 

𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒(𝑝𝑡𝑠𝑠,𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛) (12) 

Like the previous rule-based algorithms, 𝑇𝑝𝑟𝑜𝑡𝑟𝑢𝑑𝑒 maps the protrusion movements 

along the surface’s shapes as set in 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

As another example, to recursively subdivide a triangular tiling [19] using the ge-

ometric rule in Fig. 8.A, we select the algorithm 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒  and provide it with the 

subdivision rule to apply (𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒). As subdivision rules are recursively applied to 

shapes, we have to prevent them from being endlessly executed by controlling the 

number of iterations. Therefore, 𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒  receives an additional input, the subdivi-

sion rules’ level of recursion (𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛): 

𝑇𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒(𝑝𝑡𝑠𝑠,𝑀𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑑𝑒 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛) (13) 

As an example, in Fig. 8.B, rule A is applied twice, corresponding to a 𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = 2, 

whereas in Fig. 8.C and 8.D it is applied three and four times, respectively. Fig. 8.E 

illustrates rule A applied to a triangular tiling with different levels of recursion. Fig. 

8.F and 8.G result from the same rule and a 𝑙𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛 = 3 on different tilings. 
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Fig. 8. A. the subdivision rule; B-D: the rule applied twice, thrice, and four times; E-G: Rule A 

applied in three triangular tilings (the latter are illustrated in the top-left of each example). 

We can also add some randomness to the subdivision rules, as illustrated in Fig. 9 (I.C 

and II.C). This is triggered by the additional input 𝑟𝑎𝑛𝑑𝑜𝑚, which receives a Boolean 

value: when true, it adds some randomness to the subdivision rule’s level of recursion. 

Finally, to deform the edges of a square tiling (Fig. 10.A), we select the algorithm 

𝑇𝑒𝑑𝑔𝑒 . Mathematically, we represent the edge deformation movement with a single 

vector function 𝑣, being its amplitude the vector’s length and its direction the vector’s 

sign (Fig. 10.1). We can apply multiple deformation movements to the same edge and 

obtain deformations with different amplitude and directions: Fig. 10.2 illustrates the 

result of two deformation movements of opposite directions. To deal with multiple 

deformations, 𝑇𝑒𝑑𝑔𝑒  needs to be informed about the edge’s subdomain to which each 

deformation movement will be applied, which we represent with different 𝑡 factors 

(Fig. 10.2). We can also control the maximum curvature position of each deformation 

movement with different 𝑘 factors: in Fig. 10.3, the left deformation has a 𝑘 = 0.5 

(the middle position), whereas the right one has a 𝑘 = 0.3. 
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Fig. 9. Top: the triangular tiling and the applied subdivision rules Rule I and Rule II; Middle: 

Rule I applied with a level of recursion of one (I.A), two (I.B), and three with randomness 

(I.C); Bottom: Rule II applied with a level of recursion of one (II.A), two (II.B), and three with 

randomness (II.C). 

Considering this, 𝑇𝑒𝑑𝑔𝑒  receives two additional inputs: a matrix containing the 𝑡 fac-

tors and another one with the 𝑘 factors. In sum, 𝑇𝑒𝑑𝑔𝑒  receives (1) the surface points 

(𝑝𝑡𝑠𝑠), (2) the vector functions organized in sets {𝑣1, … , 𝑣𝑛} (𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠), (3) the latter’s 

order of application (𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛), (4) the 𝑡 factors {𝑡1, … , 𝑡𝑛} (𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛), being 𝑡 =

 0 the edge’s starting point and 𝑡 =  1 its ending point, and (5) the 𝑘 factors 

{𝑘1, … , 𝑘𝑛} (𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒): 

𝑇𝑒𝑑𝑔𝑒(𝑝𝑡𝑠𝑠,𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 , 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 , 𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 , 𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒) (14) 

In practice, 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 dictates where each set of vector functions is used over the 𝑝𝑡𝑠𝑠 

and, in each position, the applied vector functions receive the respective factors in 

both matrices 𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 and 𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒. 

Fig. 10 illustrates some edge deformations examples, being B, for instance, the re-

sult of applying 𝑇𝑒𝑑𝑔𝑒  to A with the following inputs: 
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• 𝑀𝑣𝑒𝑐𝑡𝑜𝑟𝑠 = [{𝑣1, 𝑣1, 𝑣2, 𝑣2}], wherein 𝑣1 and 𝑣2 have the same amplitude but oppo-

site directions; 

• 𝑀𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = [
1 1
1 1

], meaning the set {𝑣1, 𝑣1, 𝑣2, 𝑣2} is applied to all squares; 

• 𝑀𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛 = [{0, 1}], which indicates the deformation occurs in the entire edge; 

• 𝑀𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = [{0.5}], informing the maximum curvature matches the edge’s mid-

dle. 

 

Fig. 10. Top: 1. edge deformation movement sign and amplitude; 2. edge subdomain factors; 3. 

deformation maximum curvature factors; Bottom: A. a square tilling; B-F the same square 

tilling after applying the algorithm Tedge with different input values. 

4.4 Optimization and Rationalization 

These categories contain algorithms to analyse, optimize, and rationalize designs, by 

either driving the changes made to the geometric pattern or controlling the number of 

different shapes composing the pattern. 

For the former case, we can select algorithms like 𝑜𝑝𝑡𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡 , to optimize natural 

daylight illumination, or 𝑜𝑝𝑡𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒 , to improve the natural ventilation, among oth-

ers. Generally, optimization algorithms receive (1) the surface domain 𝑝𝑡𝑠𝑠 and (2) 

the pattern to optimize 𝑠ℎ𝑎𝑝𝑒𝑠. The other arguments, in turn, depend on the type of 

optimization to perform. As an example, 𝑜𝑝𝑡𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡  receives information about the 

design’s context, including building’s location and orientation, average hours of sun-

light, among others. In turn, 𝑜𝑝𝑡𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒  receives information that is specific to the 

type of analysis to execute.  

Based on the received information, 𝑜𝑝𝑡 algorithms analyse the design and change 

it according to the results obtained. Then, they rerun the analysis, repeating the cycle 
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until reaching a solution with the desired performance requirements. In practice, 𝑜𝑝𝑡 
algorithms return one or more values to be then used as input in the final pattern, 

which may result in shapes of different sizes (if affecting size-related parameters), 

positions (if altering translation-related values), deformations (if changing defor-

mation-related inputs), or even geometries (if modifying shape-related functions). The 

result is a new partially improved design. The latter is again used as input in 𝑜𝑝𝑡 algo-

rithms, which in turn return new improved values for the geometric pattern. 

As an example, consider a pattern based on rhombus shaped openings whose size 

needs to be optimized to match certain performance requirements: the more intense 

the red tone is, the smaller the aperture size should be (Fig. 11). We select the rhom-

bus-shape algorithm  

𝑠ℎ𝑎𝑝𝑒𝑅ℎ𝑜𝑚𝑏𝑢𝑠(𝑝𝑡𝑠, 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝛼) (15) 

wherein 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  and 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  are its horizontal and vertical diagonals and 𝛼 its 

rotation. To optimize their size, we select an 𝑜𝑝𝑡 algorithm, which we generically 

represent as 𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 … ), being 𝑎𝑟𝑔𝑠 … the information related to the 

performed optimization. We combine both algorithms so that the latter controls the 

size-related parameters of the former, which, in this case, are 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  and 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 . 

In case the 𝑜𝑝𝑡 algorithm optimizes the 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , the pattern converges towards ex-

ample A: 

𝑠ℎ𝑎𝑝𝑒𝑅ℎ𝑜𝑚𝑏𝑢𝑠(𝑝𝑡𝑠, 𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 … ) × 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , 𝛼) (16) 

Otherwise, if the 𝑜𝑝𝑡 algorithm improves the 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 , the pattern converges towards 

example B. Finally, if both parameters are optimized, the pattern becomes similar to 

pattern C: 

𝑠ℎ𝑎𝑝𝑒𝑅ℎ𝑜𝑚𝑏𝑢𝑠 (

𝑝𝑡𝑠,

 𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 … ) × 𝑢𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ,

𝑜𝑝𝑡(𝑝𝑡𝑠𝑠, 𝑠ℎ𝑎𝑝𝑒𝑠, 𝑎𝑟𝑔𝑠 … ) × 𝑣𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 ,
𝛼

) (17) 

To control the number of different shapes composing the pattern, we select the algo-

rithm 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒, which is important to minimize the design manufacturing costs, 

while increasing its construction viability. When applied, 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 iteratively re-

duces the pattern’s diversity of shapes, while making the balance between its design 

intent and performance. Finally, to identify and count the different existing shapes, we 

use the algorithm 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔, which returns each shape typology locations and quanti-

ties; an information that is critical to proceed to the ensuing manufacturing stage. 

Mathematically, 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 follows a discretization process that aims at reducing 

the number of values accepted by a continuous variable, converting a continuous set 

of values into a finite range grouped into 𝑛 intervals. This allows us to set the maxi-

mum number of intervals of the discretized range, which, in turn, corresponds to the 

maximum number of different elements in the design (𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠). Since the exist-

ence of different elements in a pattern is directly related to the number of Shape algo-

rithms used and to the values given to their parameters, it is then important that 
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𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 constrains these two ranges. In practice, 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒 collects the values 

that differ from element to element, producing a new range of values varying between 

the maximum and minimum values found and containing the same number of values 

as 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠. Then, it replaces the parameters’ original values with their closest 

match in the new interval, guaranteeing the final design contains 𝑛𝑡𝑦𝑝𝑜𝑙𝑜𝑔𝑖𝑒𝑠 different 

shapes. 

 

Fig. 11. Top: the rhombus shape’s diagonal parameters (left); the rhombus-based pattern to 

optimize (middle); a conceptual representation of the optimization requirements (right); Bot-

tom: the original pattern with their rhombuses’ size optimized regarding their (A) diagonal 

u,(B) diagonal v, and (C) both diagonals. 

Regarding the algorithm 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔, it extracts/stores the design information that is 

important to manage its construction process on site, including the existing element 

typologies’ quantities and positions. Mathematically, 𝑡𝑎𝑙𝑙𝑦𝑖𝑛𝑔 receives a pattern, 

returning a list with its shapes organized by type, with their quantities, geometric 

information, and spatial locations. It also enables the visualization of this information 

through the 3D model in the design tool, applying different colours to each shape 

typology. Further details on this algorithmic category can be found in [20]. 

5 Evaluation 

To evaluate the framework’s application in an AD context, we selected the AD tool 

Khepri [21], a textual programming tool tailored for architectural design, based on the 
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Julia PL [22]. Although we evaluate the framework on a particular tool using a spe-

cific PL, it can be applied in any other AD tool using its own PL because the pro-

posed theory is described in mathematical terms. 

As the framework follows an AD approach, it therefore benefits from the latter’s 

advantages. First, it allows the transition from a manual design process to a fully au-

tomated one. Moreover, the resulting process is both flexible and parametric, facilitat-

ing the integration of design changes, supporting the generation of more complex 

designs, enabling the exploration of wider design spaces, and allowing for the auto-

mation of the generation-analysis-regeneration cycle typical of optimization process-

es. Contrastingly, manually using design tools requires considerable time and effort to 

change the designs, which not only limits the complexity of the obtained solutions, 

but also narrows the design space explored. Finally, the proposed approach is also 

highly configurable due to allowing the available algorithms to receive functions as 

input. 

Moreover, the framework embraces all designs stages in a single and continuous 

workflow: the resulting function compositions integrate algorithms addressing differ-

ent stages, meaning that modifications made to one algorithm automatically propagate 

to the other algorithms. Also, its implementation in the AD tool Khepri allowed the 

framework to benefit from some of its capabilities, namely the algorithms portability 

among different CAD, BIM, and analysis tools. In practice, the same algorithmic 

description generates identical models in the different supported tools by adapting the 

embedded information according to the tool: while in CAD tools it produces a simple 

geometric model, in BIM tools it enriches the model with building semantics and, in 

analysis tools, it generates a simplified version of the model with only the information 

needed for each specific analysis. 

There are already some tools that provide functionalities similar to those available 

in the framework. These include ParaCloud Gem [23], a 3D pattern modeler, and 

some plug-ins for Grasshopper and Dynamo, including:  

1. PanelingTools, that contains surface paneling functionalities supporting grid ma-

nipulation and the morphing of patterns, and rationalization techniques for analysis 

and fabrication [24]. 

2. LunchBox, that provides functionalities to explore mathematical shapes, surface 

paneling, and wire structures [25]. 

3. Weaverbird, that includes mesh subdivision and transformation operators and func-

tionalities to help the preparation of meshes for fabrication [26]. 

4. Parakeet, that has functionalities to generate algorithmic patterns resulting from 

tilings, geometric shapes and grids subdivisions, edge deformations, among others 

[27]. 

5. SkinDesigner, that provides functionalities to generate facade geometries from 

building massing surfaces repeating panels [28]. 

Despite addressing the same problems, these tools are limited by the available prede-

fined operators [29], not allowing the latter’s configuration so as to respond to more 

specific design contexts or intents. Also, they require the user to directly interact with 

the design tool, hindering the automation of the design process. This results in itera-
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tive design exploration processes that are tiresome and error prone. Finally, most tools 

resort to visual PLs, e.g., Grasshopper and Dynamo, that are hard to apply to complex 

problems [30, 31]. Our framework, in turn, overcomes these shortcomings by (1) 

structuring and providing algorithmic strategies that adapt to diverse design scenarios 

and requirements and to different design tools and workflows; (2) promoting an en-

tirely algorithmic use of the functionalities available, despite also allowing user inter-

action with the design tool, e.g., to take advantage of visual inputs [21]; and (3) being 

designed for textual PLs implementations and, thus, benefiting from their expressive 

power [30, 32, 33]. Nevertheless, in its current state, the framework requires more 

programming experience than the previous tools and is less visually attractive and 

intuitive. Future work will focus on improving these shortcomings. 

6 Conclusions 

Algorithmic Design (AD) is a powerful design approach that supports the exploration 

of more complex designs and wider design spaces, as well as the search for better-

performing solutions. Unfortunately, architects still face several limitations when 

adopting AD techniques: (1) the transition from a purely visual to a more complex 

and abstract design process and (2) the need for specialized knowledge, including 

programming experience. The challenge, then, is to make AD more accessible and 

attractive to the architectural community.  

Based on previous studies proving that the provision of predefined algorithms and 

strategies facilitates the development of algorithmic solutions, we proposed a mathe-

matics-based framework designed to tame the complexity of AD techniques. As do-

main of application, we focused on building facades due to their major role in build-

ing design, presenting a mathematical theory for them. In the paper, we described the 

proposed mathematics-based theory and its implementation in an algorithmic frame-

work. We explained its structure and available algorithms and we illustrated its appli-

cation through a sequence of conceptual examples. In the end, we demonstrated the 

ability of the framework to be generalized and to be applied in different design con-

texts and workflows. 
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