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Abstract. Algorithmic Design (AD) allows for the creation of form
through algorithms. Its inherent flexibility encourages the exploration
of a wider design space, the automation of design tasks and design opti-
mization, considerably reducing project costs and environmental impact.
Nevertheless, current AD uses representation methods that radically dif-
fer from those used in architectural practice, creating a mismatch that
is further exacerbated by the inadequacy of current programming envi-
ronments. This creates a barrier to the adoption of AD, demotivating
architects from its use.
We propose to address this problem by coupling AD with adequate rep-
resentation methods for designing complex architectural projects. To this
end, we explore three essential concepts: storytelling, interactive evalu-
ation, and reactivity. These concepts can be both complementary and
mutually exclusive, which means compromises must be made to accom-
modate them all. We outline a strategy for their integration with the AD
workflow, highlighting the advantages and disadvantages of each one, and
pinpointing their intersection. Finally, we evaluate the proposed strategy
using computational notebooks as programming environments.

Keywords: Algorithmic Design · Program Comprehension · Documen-
tation · Storytelling · Liveliness · Interactive Evaluation · Reactivity ·

Computational Notebooks.

1 Introduction

Algorithmic Design (AD) defines the creation of designs through algorithmic
descriptions, i.e., computer programs with instructions for the machine to per-
form [8]. Despite its numerous advantages, there is a comprehension barrier
demotivating many architects from its use. The goal of this research is to make
AD a more accessible design process, allowing the industry to benefit from AD’s
potential to combine design creativity and design optimization. In order to do
so, we will dive into program comprehension research, identifying strategies that
aid the construction and comprehension of AD programs.

1.1 Algorithmic Design

AD allows the designer to delegate repetitive tasks to the computer, accelerating
the production process and reducing human errors [8]. It also supports rapid
change with little effort, providing considerable cost savings to the industry [51].
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Another important advantage is AD’s influence on performance-based de-
sign [20], which is gaining ever more emphasis with the growth of climate change
awareness and cost-reduction needs. While the incorporation of analysis data in
early design stages alone already helps architects achieve better performing solu-
tions, the connection between AD and simulation tools opens the door to much
faster optimization processes [34].

Despite the numerous advantages AD presents to the process of architectural
creation, it relies on algorithms, written using programming languages. This
representation method radically differs from the ones traditionally used in design
and is therefore difficult to use by professionals of creative fields [32].

Visual programming languages present a friendlier approach to AD that sim-
plifies the learning process and offers more adequate graphical features for the
task at hand. However, they also lacks scalability [7], meaning that as programs
grow in complexity they become hard to understand and navigate [9,11], hin-
dering their use in large-scale projects [28].

Additionally, and in either case, AD programs (visual or textual) frequently
turn up to be the unstructured product of successive copy&paste of program
elements, which result from the experimentation process that characterizes de-
sign thinking [51]. Hence, programming architects find it difficult to understand
AD programs that represent complex designs, particularly those developed by
others [30] or by themselves in the past. This research targets the development
of AD programs that describe complex 3D models, hence we focus on text-based
AD.

1.2 Integrated Development Environments

Much of the programming struggle mentioned above can be alleviated with an
Integrated Development Environment (IDE): a computer application that aims
at facilitating the programming task. Sadly, existing IDEs are tailored for tra-
ditional software development processes. As such, architects find it hard to use
them as design tools.

We propose to make AD more akin to the traditional architectural practice by
integrating more adequate methods of developing and maintaining algorithmic
representations of complex architectural projects in current IDEs. To that end,
we explore two ideas that facilitate program comprehension: (1) documentation -
the task of explaining a project to facilitate its comprehension; and (2) liveliness
- the ability to live test the program as it is being developed or modified to
facilitate comprehension of the impact of changes.

Documentation and liveliness are two very broad concepts, which we further
subdivide to better suit architectural design. More specifically, we explore: (i)
storytelling, (ii) interactive evaluation, and (iii) reactivity. These three concepts
contribute to the comprehension of AD programs in very different ways and they
can be both complementary and mutually exclusive. In this article, we outline
a strategy for their integration with the AD workflow, which we evaluate using
computational notebooks as the base IDE for the experiments.
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2 Related Work

The difficult task of understanding computer programs is far from being limited
to the architectural community. Research in the field of program comprehension
has long aimed at modeling a cognitive theory on how programs are under-
stood [48]. The following sections present some of the theories developed over
time.

2.1 Program Comprehension

This section addresses two main branches of program comprehension: the un-
derstanding of computer programs through explanatory human-readable text
and the use of graphical representations to illustrate programs’ structure and
behavior.

Program Documentation In 1984, Donald Knuth proposed Literate Pro-
gramming [25], a system that encourages users to build programs as a structured
web of ideas, that is, by creating program parts and stating the relationships be-
tween them as they go, in whatever order they find best for the comprehension of
the work. The problem with this solution is the perceived lack of efficiency: hav-
ing to explain, in advance, the intended program, delays the programming task.
Documentation is generally agreed to be one of the most useful, yet dreadfully
tiresome parts of the job, and consequently one of the most avoided [5].

Naturally, given its importance for software maintenance, automatic docu-
mentation tools have also been developed [16]. Machine learning techniques, such
as neural networks, in particular, are currently achieving considerable success in
the automation of documentation [36,21]. However, for the specific case of ar-
chitecture, traditional program documentation fails to ensure program compre-
hension, as it is geared to the production of hyperlinked texts. In AD programs,
documenting complex geometry requires not textual explanations, but rather
the equivalent sketch translation.

Bret Victor [50] argued that, when designing, artists think visually. However,
when writing code, they must think linguistically. Not only is this translation
process hard on design ideas, but most often it is also impossible to convey the
entirety of artistic meaning with words. He also states that just as we created
writing to make thoughts visible (a user interface for reason), or mathematical
notation to make mathematical structures visible (a user interface for algebra),
we must also develop IDEs that can make our designs visible [49] (Fig. 1).

Program Visualization This specific branch of program comprehension re-
search focuses on the use of graphical systems to facilitate the comprehension
of programs. It began to have some expression in the ’60s to help programmers
deal with the complexity of (what was then considered) modern software [2].
The proposals included the use of various diagrammatic techniques to explain
programs [18,22,33] (examples in Fig. 2).
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Fig. 1. Bret Victor’s Inventing on Principle: from a simple code editor (left) to an
enhanced IDE (right) providing an ”immediate connection” to what is being created
(adapted from [49]).

Fig. 2. A - Goldstine and von Neumann’s flow-diagram [18]; B - Jackson diagram
for a process payment program [22]; C - Nassi-Shneiderman diagram for the factorial
function [33].

As technology evolved, so did the aspirations of the scientific community [12]
and the availability of better displays, colors, and, later on, 3D representations,
motivated a growing emphasis on animations over static representations of pro-
grams. Early on, Brown developed several systems that offered programmers
dynamic displays of the program’s fundamental operations [6].

Naturally, different programming paradigms motivate different types of visu-
alization. For instance, declarative programming visualization requires present-
ing what the program does, while imperative programming also requires visual-
izing how it does it. Following this line of thought, different authors focused on
different aspects of program visualization. Myers [32] classified program visual-
ization systems according to what they illustrate (data, code, or algorithm) and
how (statically or dynamically). Price et al. [40] further subdivided the field into
a more hierarchical taxonomy, and many others followed [4,43].
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Diehl [12] stressed that it is not only important to comprehend what a pro-
gram does and how it does it, but also how we got to that point in the devel-
opment process. The current widespread use of version control systems for both
individual and collaborative work stands as proof to this, although their reliance
on purely textual mechanisms hardly places them within program visualization.

A program visualization feature that fully exploits the visual nature of AD
is traceability, that is, the identification of which parts of the model correspond
to which parts of the program, and vice-versa [29]. This connection established
between the program and respective result is of utter importance for the compre-
hension of AD programs [49], and several AD tools offer it already, e.g., Dynamo
and Rosetta [29].

2.2 Liveliness

The dynamic component of program visualization introduced terms such as live-
liness, interactivity, or reactivity, which became the main agenda for IDE devel-
opers invested in program comprehension.

Live Coding The introduction of live coding blurred the lines between pro-
gramming and explaining, advocating a real-time connection between program
and result [42]. Live coding is frequently described as a creativity technique cen-
tered upon the writing of interactive programs on the fly [42]. In many cases, the
liveliness requirement addresses the timing needs of live performances, such as
musical ones [47]. However, its application to the programming task also helps
users relate the changes in the program to their respective impact on results,
thus aiding program comprehension.

In the case of AD, live coding requires the model to be quickly recomputed
for every change applied to the program, which can be difficult to ensure when
the program generates a complex model. For simple cases, however, there are
already competent solutions integrated with AD, such as Grasshopper and Luna
Moth [1].

Interactive Evaluation Another perspective on liveliness that also aids com-
prehension without implying a scalability issue is interactive evaluation. By op-
position to batch-evaluation, where the entire program must be loaded prior
to execution, interactive evaluation motivates users to test small program frag-
ments, debugging the program as it is being constructed [23]. It is frequently
used for exploratory programming [42], a workflow typically employed when the
requirements of the program are not fully defined. Hence the programming task
becomes more of an exploratory experiment, a common scenario in AD.

Despite the advantages, there is a catch, particularly for beginners. Interac-
tive evaluation promotes ad-hoc program construction that can introduce con-
fusing bugs for developers unfamiliar with the obstacles of program state [15].
Experienced programmers avoid this by using a batch-oriented style in interac-
tive systems, resetting the program after any major change, an approach that



6 Renata Castelo-Branco and António Leitão

Fig. 3. Grasshopper diagram from [45].

is enforced by some pedagogical IDEs [14,15]. Once more, the programming
paradigm used is also relevant, as declarative programming languages minimize
the negative effects of program state when compared to imperative ones.

Reactivity Reactivity is another take on liveliness that also advocates ex-
ploratory programming. However, the focus lies on tracking the dependencies
in the program so that any change updates the entire state, as it happens in
spreadsheets, for instance. The central idea is to have the system automatically
manage dependencies to free the user from such burden [3]. With reactivity,
since any change to the program triggers the re-evaluation of all dependencies,
the program state is always consistent. As such, this paradigm also provides an
alternative solution for the state problem introduced by interactive evaluation.

The data flow paradigm [27] is a good example of reactive programming.
Here, programs are described by graph structures with nodes representing the
functions and the wires that connect them representing the data that flows
between components whenever something changes upstream. Most visual pro-
gramming languages used in architecture, such as Grasshopper, are literal in-
terpretations of this paradigm (Fig. 3). Note, however, that in what regards
program comprehension, the data flow paradigm is flawed, since the node struc-
ture hides program complexity instead of explaining it, while also promoting
program fragment repetition.

3 The Program Comprehension Dyad

To promote the use of AD, we propose a new design medium that allows for the
creation of algorithmic descriptions in a live and documented way, making the
task of understanding and changing AD programs easier for both the creator and
others. To this end, we explore a program comprehension dyad: (1) documenta-
tion and (2) liveliness. These are two very broad concepts, which we fine-tune for
an ideal IDE for the development of AD projects. Documentation is narrowed
down to the concept of (i) storytelling, and liveliness is subdivided into (ii) in-
teractive evaluation and (iii) reactivity. The following paragraphs summarize the
definitions we consider for each of these concepts.
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(1) Documentation, in the programming context, refers to the task of ex-
plaining the program, to facilitate later comprehension to the authors and other
readers. The concept encompasses most of the research made under the pro-
gram comprehension and visualization umbrellas, with emphasis on static vi-
sualizations. Documentation can be done prior, during, and after the program
development, and it can also be internal and external to the program.

(i) Our proposal for the integration of documentation in the context of AD
narrows this concept down to storytelling: the creation of a tale for the pro-
gram’s evolution. Storytelling thus contemplates internal documentation done
while programming and aims at creating a narrative of the program develop-
ment history, with program and respective documentation intertwined.

(2) Liveliness is the ability to live-test programs. Liveliness accommodates
the dynamic or animated part of program visualization and subsequent branches.
Liveliness can manifest itself in many ways, including live coding, interactive
evaluation, and reactivity. Given that live coding tends to suffer from scalability
issues, we focus on the two latter concepts.

(ii) Interactive evaluation allows a two-way flow of information between
the computer and the user. With the user controlling just how lively a system
is, the scalability problem becomes less relevant, although it increases the risk
of program state inconsistencies.

(iii) In the context of AD, we consider reactivity as an automatic response
that maintains state consistency by reevaluating all program parts that depend,
directly or indirectly, from a part that was changed. This is more efficient than
reevaluating the entire program, as is typically done in live coding, thus delaying
but not eliminating the scalability problems that tend to affect complex AD
programs.

Storytelling, interactive evaluation, and reactivity intersect in many ways.
They can both complement and hinder each other. In the following sections,
we explore this relationship and point out mechanisms to elude possible con-
flicts. Two case study project adaptations will be used to illustrate the proposed
concepts: BIG Architects’ Business Innovation Hub for the Isenberg School of
Management in Amherst, Massachusetts (Fig. 4, left); and Santiago Calatrava’s
Liège-Guillemins railway station in Liège, Belgium (Fig. 4, right).

Fig. 4. Case study projects: Isenberg on the left and Liège-Guillemins on the right.
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3.1 Storytelling

In an ideal IDE for AD, designers should be allowed to keep the artifacts pro-
duced along the design process in an organized fashion, explaining and docu-
menting the resulting program. Storytelling intends to transform the program
into a creative journal of the design’s development that includes not only textual
documentation but also sketches the architect made during a creative sprout [13].
Drawings are ”essential to both public discourse about architecture and the de-
velopment of the architect’s thinking” [46, pp. 58]. Following this reasoning, we
argue that the drawings produced when idealizing the design and the way it
translates into a program (Fig. 5) can help document the program’s evolution
and expected outcome.

Fig. 5. Sketches made while developing the Isenberg school program.

Static images of the program’s output, such as snapshots or renders of gener-
ated model, are also relevant for the comprehension process. Very frequently, we
introduce bugs in the program without noticing. Having a correct version (or a
version of what the author considered to be the proper behavior of the program)
available for comparison, may prove vital in debugging.

Withal, it is important to note that architectural design is by no means a
linear process: upon seeing the (computational) results of their designs, archi-
tects frequently step back and change the design concept, rendering much of the
documentation out of date. Storytelling embraces this issue by applying Diehl’s
concept of software evolution [12] to the context of architectural design: new
documentation artifacts should be added whenever the program changes its in-
tended behavior, thus keeping the history of design changes in the AD program.
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3.2 Interactive Evaluation

Designers should feel motivated to construct and test their programs interac-
tively, that is, executing programs parts immediately after (re)writing them.
Interactive evaluation transforms what could otherwise be a very abstract pro-
cess into a tangible and relatable one.

Interactive evaluation of AD programs typically produces visual results, which
can become documentation artifacts. Given the proposed storytelling approach,
we adapt our take on liveliness to accommodate the narrative style as well. Fig. 6
presents the interactive development process of the slabs in the Isenberg project:
an initial iteration of the slab function creates the intended contour; modifica-
tions are applied to contemplate the ground-floor exception; and later iterations
convert the contour into 3D objects distributed along the height of the building.
Each change is followed by a test that produces these visual results and the
entire process is kept and documented in the AD program.

Fig. 6. Interactive test results from the Isenberg slab function evolution process.

Nevertheless, there are two major setbacks to this intersection of interactive
evaluation and storytelling: (1) the resulting verbosity, and (2) the aggravated
state problems.

(1) The step-by-step development process often results in an accumulation
of localized tests and repeated or scattered program fragments. Refactoring and
outlining techniques can help architects rearrange some of the scruffiness to
obtain a cleaner and more intelligible program in the end.

(i) Refactoring is commonly defined as the process of improving the structure
of existing programs without changing their semantics or external behavior [17].
There are several semi-automatic refactoring tools [31] that can be adapted to an
AD context. Of particular interest to the case are those that help the programmer
join scattered code in summarized functions.

(ii) Outlining techniques, i.e., the structuring and identification of what each
part of the program is or does, may also serve to hide parts of the program
for particular audiences and/or purposes. For instance, an outlining mechanism
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that identifies the tests the user wishes to activate or deactivate in any run con-
siderably improves the program’s performance and allows the same program to
serve multiple presentation purposes. This goes farther than the outlining sys-
tem typical of visual programming languages, such as Grasshopper (which allows
readers to deactivate individual nodes on demand), by supporting a structured
system of goal-oriented active/deactivated groups of program fragments.

Naturally, by using these mechanisms to reorganize the program, we are
partially relinquishing the development history. However, we believe this is a
necessary trade-off, since the order in which we create a story may not necessarily
correspond to the order in which we wish to tell it to others.

(2) State inconsistency is a direct consequence of the use of interactive evalu-
ation, which gets further exacerbated by the permanence of repeated definitions
in the program. Outlining may ease part of the problem by deactivating out-
dated definitions. To avoid it entirely, we propose reactivity, which is discussed
in the following section.

3.3 Reactivity

AD programs are systems of hierarchical relations between parts of the design.
The functions that compose the separate parts of the building are interdepen-
dent so that the entire ensemble can function as a whole. Consequently, all build-
ing elements should morph appropriately when design parameters are changed
(Fig. 7).

Fig. 7. Liège-Guillemins project: three possible variations of the model with different
lengths, widths, and height for the central hangar.

This workflow essentially means that changes to the program frequently in-
fluence more parts of that program, other than the one we are modifying. As
such, interdependencies must be considered when applying changes. However,
in large programs, keeping a mental track of this system of relations is close to
impossible. Hence, the program should make these relations visible for designers.

This can be achieved, for instance, by having the entire set of active tests in
the program reacting to the changes that are being applied. If we can immedi-
ately visualize the impact of the changes all over the program, we are more likely
to succeed in maintaining the necessary interdependencies in the AD project. Do-
ing so in an interactive manner, using user-friendly mechanisms, such as buttons
or sliders, to explore the influence of design parameters in the project’s design
space, further adds to the comprehension layer.
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Reactivity offers this capacity by keeping track of dependencies in the pro-
gram. Any change to the program triggers a reevaluation of the dependent parts,
ensuring state consistency. Naturally, this means there can be no outdated defini-
tions in the program. Once more, users must resort to outlining and refactoring
to deactivate old versions of existing definitions or relinquish storytelling all
together for reactivity to work. Furthermore, while reactivity does not neces-
sarily imply the regeneration of the entire model, it does imply the constant
re-processing of the dependency graph, which can become computationally in-
tensive in large programs. Liveliness always was and will continue to be a double-
edge knife. Hence, it should be used in accordance with the compromises it offers.

4 Exploratory Application

In this section we elaborate on a practical implementation of the proposed con-
cepts in an AD workflow – storytelling, interactive evaluation, and reactivity -
using computational notebooks as the base IDE for the experiment.

4.1 Computational Notebooks

Many of the problems described above are shared by the scientific community. In
science, reproducibility is critical but the increasing specialization of the different
areas is making it hard to reproduce published scientific results. To address this
issue, the scientific community is embracing new methods of experimentation
that rely more and more in computational simulation and analysis of different
phenomena.

Computational notebooks have emerged in this context, promoting method
transparency and data availability in the form of ”executable papers” [26]. By
supporting the description of computational experiments and the analysis of sim-
ulated or experimental results in an explanatory and reproducible way [44], they
became a critical tool in science [37,24], not only to understand the scientific
breakthroughs being presented, but also to reenact them. The following para-
graphs describe computational notebooks’ interpretation of the dyad concepts:
(1) documentation and (2) liveliness.

(1) Computational notebooks were designed to support computational nar-
ratives, allowing users to simultaneously execute, document, and communicate
their experiments through the intertwining of code and textual and visual doc-
umentation. The same notebook can serve multiple purposes, such as tutorial,
interactive manual, presentation, or even scientific publication [26,38].

(2) These tools also promote interactive evaluation, a workflow that greatly
benefits experimentation with data [38]. This is typically achieved with the input
and output cell system: users write a fragment of code in a cell and run it
immediately after to observe the result. The cell layout provides a half-solution
to the heavy computation agenda of liveliness, since the code lodged in each cell
is only run at the user’s request.
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However, interactive evaluation in notebooks motivates exploratory program-
ing and, in this paradigm, the hunger for immediate results frequently overpowers
the interest in organizing the program. Developers can add cells in a non-linear
order, definitions can be intertwined with tests in the same code cells, and re-
peated code bits can be spread along the document. This disarray creates a
complex dependency net with hidden program state, whose results frequently
confuse the developer. This fact has been identified as one of the major pain
points in the use of computational notebooks [10,19] and reactive notebook so-
lutions have also been put forward to respond to the criticism [35,39].

Given the above-mentioned benefits and burdens of the use of computational
notebooks as comprehensive IDEs, we propose to explore their use in the con-
text of AD to evaluate storytelling, interactive evaluation, and reactivity. To
that end, the two case studies presented above were developed in two different
notebooks: the Isenberg School model in Jupyter [41], and the Liège-Guillemins
station model in Pluto [39], both using the Julia programing language and the
Khepri AD tool [45]. Both projects relied on notebooks’ natural tendency for
documentation and liveliness, yet the implementation of the three sub-concepts
had to be adapted to each notebook, as they operate very differently.

Jupyter [41] is an open-source and web-based notebook. Although it was
originally developed to support the programming languages Julia, Python, and
R [38], nowadays, Jupyter not only offers a wide range of programming languages
but it also allows users to mix them in the same notebook. Jupyter is based on
the input/output cell approach and it supports repeated definitions, which allows
us to easily apply the storytelling strategy.

Pluto [39] is a computational notebook conceived specifically for the Julia
programing language, with one outstanding difference from typical notebooks:
reactivity. Pluto was inspired by Observable [35], a reactive computational note-
book for JavaScript. Both recognize dependencies between cells, so that when
one of them is changed, all dependent ones are automatically updated. This
means there can be no repeated definitions, which renders storytelling difficult
without outlining mechanisms.

4.2 Storytelling

Storytelling defends program documentation as a way to embrace the tale of the
program’s evolution. When organized chronologically, the artifacts we produce
to document our programs can tell the narrative of the design development
process for a better comprehension of the final design solution. Fig. 8 presents
the modeling history of the Liege-Germmins’ project.

To tell the tale of design development, instead of building on existing defini-
tions, storytelling states that developers should consider keeping the definition
history intact. In the Jupyter notebook, used to develop the Isenberg project,
consecutive versions of the same functions were kept in the document in chrono-
logical order. For instance, the project is composed of C-shaped slabs, as shown
in Fig. 6. All version of the above-mentioned slab function were kept in the
notebook, properly documented, textually and visually.
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Fig. 8. Liege-Germmins’ project development history: modeling sequence.

In Pluto, the same effect can only be obtained if we give each version of
the function a new name, or if we deactivate old versions (by commenting them
or using other outlining techniques). Being a reactive notebook, Pluto needs to
maintain state consistency. Hence, it does not allow for repeated definitions.

Regarding the integration of artifacts in the program, computational note-
books have several mechanisms available. For textual documentation, we can
use markdown, which can help both explain and structure the program (Fig. 9
left), and simple code comments to explain things inside function definitions
(Fig. 9 right). Markdown also supports mathematical notation, which is one of
the best ways to describe parametric shapes. Fig. 9 presents, on the left, part of
the Pluto notebook, where the sinusoidal function parameters are explained.
This function defines the shape of the station’s roof and arches.

Visual documentation can be added via HTML or through IPython’s display
package for Jupyter and PlutoUI for Pluto. This type of documentation can
consist of drawings created during design development that reveal the author’s
intention towards the program’s expected behavior and results (Fig. 9 right) or
images generated for the sole purpose of explaining parts of the program. The
latter case includes snapshots and rendered images of the generated model. These
images are useful devices to make sure the program is producing the results it
should. Fig. 10 presents some of the snapshots saved in the Jupyter notebook
after running test cells on the Isenberg program that generate isolated elements,
and the building as a whole.

4.3 Interactive Evaluation

Computational notebooks natively promote interactive evaluation as a form of
liveliness controlled by the user. Immediate visual results can be obtained by
running cells that produce geometry whenever the user wishes to test a particu-
lar code snippet. Ideally, this occurs after every new definition. Fig. 11 presents
an application of the interactive evaluation workflow to the the train station in
Pluto: (1) the programmer (re)defines the canopie_bars functions, (2) imple-
ments a test case, (3) runs the test, and (4) saves the visual result as docu-
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Fig. 9. Pluto, on the left, exploring and explaining the sinusoidal function. Jupyter,
on the right, illustrating Isenberg’s tilted façade panels’ function.

Fig. 10. Snapshots of function tests run from the Jupyter notebook, saved as docu-
mentation in the Isenberg program.
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mentation in the program. Steps 1 and 3 may be retaken several times until a
satisfactory result is achieved. Only then, should the user move on to step 4.

Fig. 11. Pluto notebook: interactive evaluation applied to the canopie bars’ function
in the Liege-Germmins’ project.

In this case, the user improved the resulting snapshot by identifying each
bar in the image with the corresponding name in the function definition. The
drawing thus became a more relevant piece of documentation, not only because
it shows what the expected result of the test is, but also because it visually
explains the body of the function it illustrates.

Both Jupyter and Pluto provide sets of commands to move cells up and
down, and merge and split cells. These can be used for refactoring purposes.
As for outlining, we developed two different mechanisms of identifying test cells
in the notebooks. In Jupyter, since cells only run at user request, we simply
wrapped all test examples with an outlining mechanisms that bound them to
a global variable. The state of this variable defines what happens when a test
cell is run: it either produces results, or the test is ignored. For Pluto, separate
variables manage the state of each test, else the dependency graph would have
them all running simultaneously. These variables are presented using PlutoUI’s
checkbox widget (Fig. 11). Checking a test box will prompt a test cell to run.



16 Renata Castelo-Branco and António Leitão

While the box is checked, the test cell will re-run if any change in the program
affects the code within it.

4.4 Reactivity

Reactivity means keeping track of dependencies in the program, so that immedi-
ate feedback on results can be provided whenever a change occurs. This is essen-
tial for users to understand program dependencies and guarantee consistency in
exploratory programming. In the context of AD, reactivity is particularly useful
for parametric manipulation (Fig. 12).

Fig. 12. Isenberg model test with sliders binding the building’s parameters. Four varia-
tions: 3 to 5 floors variation vertically, and 10 to 15 tilted beams variation horizontally.

Our implementation relies on two extensions of the chosen computational
notebooks: Interact for Jupyter and PlutoUI for Pluto, which allow the use of
sliders, toggles, and other widgets to visually manipulate data. However, the
core difference in the nature of the two notebooks means reactivity is used very
differently between them.

In an innately reactive environment like Pluto, widgets bound to global vari-
ables provoke immediate updates on dependent cells. This means that in the
example shown in Fig. 9 (left), when the sliders bound to the sinusoid param-
eters are changed, the graph shown beneath is immediately updated, as will be
other cells in the notebook that are dependent upon these variables. If they are
not specifically signaled as ignorable, they will render new results at any change
in the sliders. When one dependent cell causes side-effects, such as the creation
of architectural objects that is typical of AD, the cell’s reevaluation needs to
undo the previous side-effects to avoid accumulating them.
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To best adapt reactivity to AD, we modified the Pluto notebook to track
down not just cell dependencies but also their side-effects. As such, the note-
book’s dependency graph knows which geometry was affected by each change,
so that it can be selectively deleted and regenerated, maintaining state consis-
tency with good interactive performance.

In Jupyter, we cannot hope to achieve reactivity at the level of the notebook.
Since cells are only evaluated on user demand, we may strive for partial reactivity.
Interactive features, in this case, are best used for particular tests inside one cell
only. Fig. 12 presents an example: the widgets are bound to local variables in
a test cell used to generate the Isenberg model. Any change to the sliders will
prompt the regeneration of the model in that test cell.

5 Conclusion

In this paper, we explored the program comprehension dyad - documentation
and liveliness - as a means to improve the comprehension of Algorithmic De-
sign (AD) programs. We proposed the integration of more adequate methods of
developing and maintaining algorithmic representations of complex architectural
projects by fine-tuning the two concepts to better suit the architectural scenario.
Three ideas emerged: (1) storytelling – explaining the program through human-
readable text and meaningful imagery, intertwined with the code itself to tell
the narrative of design development; (2) interactive evaluation – a scalable way
of incorporating liveliness in programming, providing feedback on program re-
sults upon user demand; and (3) reactivity – a systematic approach to liveliness,
which offers immediate feedback on program changes and reveals program de-
pendencies. We proposed to incorporate the three concepts in an AD workflow
and we evaluated its application using computational notebooks as the base
programming environment.

The three ideas intersect in many ways, starting with interactive evaluation
and reactivity being two different ways of applying liveliness to the programming
task. Interactive evaluation offers a more scalable option, albeit with program
state issues, whereas reactivity resolves any state problems and promotes a more
interactive workflow, however, failing to scale to large projects without proper
outlining mechanisms. A trade-off is needed between efficiency and consistency,
but reactivity in itself will always suffer from scalability issues.

Both interactive evaluation and reactivity promote exploratory program-
ming, which can cause program disarray. Storytelling, on the other hand, defends
an organized approach to the programming endeavor, which means refactoring
mechanisms must be used for the three approaches to co-exist.

Storytelling also appeals to the preservation of the development history as
part of the narrative. This directly conflicts with reactivity’s requirements for a
consistent program state. The two can only operate simultaneously if outdated
definitions are disabled. Interactive evaluation, in turn, greatly contributes to
storytelling by producing artifacts that can be used as documentation, namely
tests results in the form of imagery.
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In sum, the three ideas provide different sets of advantages and trade-offs
to the process of developing AD projects. Their integration in the AD workflow
requires support from the programming environment according to the architect’s
own needs at any stage of the development process, as well as considering the
ultimate goal for the program. AD programs may be a means of attaining a
single constructive goal, they may represent a set of ideas to be re-used in the
future, they may serve as presentation mechanisms, etc. Taking this in mind,
some of the concepts may or may not apply to each case.

As future work we plan on investigating solutions for the ever-lasting compro-
mise between liveliness and scale. Given that architects do not need to visualize
the entirety of the project all the time, nor the entirety of the project’s de-
tail, we expect Levels Of Detail (LODs) and/or selective generation based on
project areas or view cones to yield good results. This may allow architects to
keep using reactive mechanisms later along the project’s development. We also
plan on incorporating traceability research to the proposed methodology, study-
ing mechanisms of integrating it with the remaining concepts in a functional
workflow.
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