
When the Geometry Informs the Algorithm

A hybrid visual/textual programming framework for facade design

Inês Caetano1, António Leitão2
1,2INESC-ID/Instituto Superior Técnico, University of Lisbon
1,2{ines.caetano|antonio.menezes.leitao}@tecnico.ulisboa.pt

Facade design is becoming increasingly complex, forcing architects to more
frequently resort to analysis and optimization processes. However, these
processes are time-consuming and require the coordination of multiple tools.
Algorithmic Design (AD) has the potential to overcome these limitations through
the use of algorithms implemented in Textual Programming Languages (TPLs) or
Visual Programming Languages (VPLs). VPLs are more used in architecture due
to their smoother learning curve and user-friendliness, but TPLs are better suited
than VPLs for handling complex AD problems. To make TPLs more appealing to
architects, we incorporated VPLs' features in the textual paradigm, namely,
Visual Input Mechanisms (VIMs). In this paper, we propose an extension to an
existing AD framework for the design exploration, analysis, and optimization of
facades to support a TPL-based approach that handles VIMs.

Keywords: Algorithmic Design, Facade Design, Textual Languages, Visual Input

INTRODUCTION
Architectural design needs to consider the cur-
rently growing design constraints, e.g., environmen-
tal (Picco et al. 2014), structural (El Sheikh 2011), and
aesthetical (Schulz 1971; Schittich 2006), often forc-
ing architects to resort to analysis and optimization
processes (Machairas et al. 2014), although with two
serious limitations: (1) these processes are typically
time-consuming and, as the available time is usually
short, the final solutions are often only partially im-
proved (Nguyen et al. 2014); and (2) analysis pro-
cesses involve multiple tools with different data for-
mats, causing information losses and the accumula-
tion of design errors resulting from imperfect data
transfers between tools (Leitão et al. 2017). These
shortcomings hinder the adoption of analysis/opti-

mization processes, confining their application to lat-
ter design stages (Turrin et al. 2011; Shi 2010) where,
unfortunately, their impact in the solution’s perfor-
mance is limited (Konis et al. 2016). Algorithmic De-
sign (AD) promises to overcome these limitations by
facilitating the analysis and optimization of architec-
tural designs (Alfaris and Merello 2008) from early
stages. AD uses algorithms to create designs, allow-
ing for more complex design solutions, facilitating
changes, and automating repetitive tasks, in particu-
lar, the generation-analysis-regeneration cycle, typical
of optimization processes.

AD can be implemented using Textual Program-
ming Languages (TPLs) or Visual Programming Lan-
guages (VPLs). Architects tend topreferVPLsnotonly
due to their visual nature, but also because TPLs are

D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA - Volume 2 - eCAADe 38 |
371



less intuitive, as well as more difficult to learn and
use than VPLs. Additionally, TPLs rarely support the
Visual Input Mechanisms (VIMs) of most VPLs that
allow for the direct use of graphical entities, such
as points, curves, and surfaces, as inputs to the AD
program. However, TPLs show greater potential for
large-scale designs (Leitão et al. 2012; Celani and
Vaz 2012; Wortmann and Tunçer 2017) and, once
mastered, they tend to be more productive. Given
TPLs‘ and VPLs’ different advantages, it is appropri-
ate to consider their combination, either by incorpo-
rating textual programming components in VPLs, as
demonstrated by Grasshopper’s Python component,
or by extending TPLs with VIMs (Sammer et al. 2019).
The latter will be the focus of this paper.

We propose extending a TPL-based AD frame-
work, whose domain of application is building fa-
cades, to support VIMs. The extended framework
provides several predefined algorithms for the de-
sign, analysis, and optimization of facades, now cou-
pled with the most relevant VIMs for specifying the
constraints that affect facade design.

In the past, this framework addressed archi-
tectural problems integrating environmental factors
(Caetano et al. 2018) and design rationalization (Cae-
tano and Leitão 2018). In this paper, we focus on its
combination with VIMs. The research entailed three
stages: (1) studying the differences between a Visual
Input (VI) and a Textual Input (TI); (2) understanding
how a VI can be incorporated within a text-based AD
approach; (3) implementing a set of VIMs in the algo-
rithmic framework for facade design.

BACKGROUND
AD requires programming experience, which most
architects do not have. Fortunately, several Program-
ming Languages (PLs) were developed to facilitate
the learning process: some are textual, such as Pro-
cessing, Racket, and Python, but the most popular
ones among architects are visual, such as Generative
Components, Dynamo, and Grasshopper. They allow
users to create AD programs bymanipulating graph-
ical elements (Janssen 2014), thus being more intu-

itive and productive for beginners when compared
with TPLs (Zboinska 2015). VPLs also integrate fea-
tures that facilitate the programming task, namely
traceability, real-time feedback (Leitão et al. 2014),
and VIMs.

Despite their appeal, VPLs still present several
limitations: (1) they lack scalability, making large pro-
grams difficult to understand andmodify (Leitão and
Santos 2011; Janssen 2014); (2) they confine users
to the predefined modules/components available in
each VPL, hindering solutions that need more ad-
vanced features (Zboinska 2015); and (3) they lose
their real-time feedback capabilities when dealing
withmore computationally-intensive designs (Leitão
et al. 2014). As a result, for complex design problems,
architects tend to use TPLs (Leitão et al. 2012), prov-
ing the inability of VPLs for long-termuse (Noone and
Mooney 2018).

Unfortunately, it is difficult to transition from a
VPL to a TPL, and more so when one is accustomed
to VIMs, since these mechanisms are rarely available
in TPLs. A possible strategy to facilitate this transi-
tion and flatten TPLs’ learning curve is to incorporate
some VPLs features in TPLs to make them more intu-
itive and, thus,more adequate for teachingpurposes;
a perspective already addressed in the past (Sammer
et al. 2019). In this paper, we go further by extend-
ing a TPL-based AD framework for facade design to
also support VIMs, while preserving its capability to
generate, analyze, and optimize large-scale designs.
In the following sections we explain the framework
and the proposed extension, and we evaluate it with
a case study.

ALGORITHMIC FRAMEWORK FOR FACADE
DESIGN
Any AD framework must address the typical variabil-
ity of architectural design in a way that a computer
understands. Computers operate upon a set of in-
structions transmitted via PLs and, while the first PLs
were difficult to learn and use, the current ones are
getting closer to the universal language of mathe-
matics. Therefore, the implementation of the AD

372 | eCAADe 38 - D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA -
Volume 2



framework for facade design considered the formal-
ism of mathematics, being organized in a fivefold
classification: (1) Geometry, to define the overall ge-
ometry of the building facade; (2) Pattern, to explore
several geometric facade patterns through the com-
bination of different shapes and geometric transfor-
mations; (3) Distribution, to create different facade
grids and pattern distributions; (4) Optimization, to
improve the design according to fitness goals; and
(5) Rationalization, to make a balance between the
conceptual design intent and the solution’s feasibil-
ity. Each category contains a set of predefined algo-
rithms that are portable betweendifferentmodelling
tools, namely AutoCAD, Rhinoceros, and Revit, and
analysis tools, namely Robot and Radiance, among
others. Despite originally supporting only TIs, in this
paper, we extend the AD framework to also deal with
VIs.

In general, a VI represents amanually created ge-
ometry in a design tool, whereas a TI comprises a tex-
tual description. While the latter can be directly com-
binedwith any algorithm available in the framework,
the former needs to be first converted into a format
suiting the algorithm. To this end, we extended the
AD framework with some VIMs that allow the use of
shapes created in the modelling tools as input to the
framework’s algorithms. These functionalities apply
principles explored in previous research (Sammer et
al. 2019), thus evaluating their suitability for architec-
tural design and, more specifically, facade design.

The available VIMs rely on the selection of one
or more shapes in the modeling tool, which are then
provided as VI to the algorithms. During this pro-
cess, users can decide whether they want to pre-
serve a dependency between the AD program and
the selected shapes. In the affirmative case, the AD
program is automatically rerun every time the input
shapes are changed in the modeling tool; otherwise,
it only considers these changes when the shapes are
re-selected. For the latter scenario, the framework re-
sorts to metaprogramming techniques, i.e., the use
of programs to generate other programs (Czarnecki
et al. 2002) that, in this case, correspond to equiva-

lent algorithmic descriptions of the existing VIs in the
modeling tool. To make the AD program indepen-
dent from a given VI, we replace the program frag-
ment representing the VIM with the generated pro-
gram fragment reproducing that same VI. This allows
the latter to be stored in the AD program, no longer
reacting to changesmade to its original shape, and to
be reproduced either in the same or in another mod-
eling tool. This enables the framework to have a gen-
eral application, not restricting the available func-
tionalities to a specific tool, while permitting to take
advantage of VIs produced inmultiple modelling en-
vironments. Nevertheless, the resulting algorithmic
descriptions are non-parametric, which means they
represent and reproduce only the original VI and not
variations of it. Further details on the available func-
tionalities and their implementation can be found in
Sammer et al. (2019).

EVALUATION
In this section, we evaluate the framework in a case
study, following a three-phase process: first, we
model the original case study using a purely AD ap-
proach; then, we explore different design variations
of it by applying only TIs; and, lastly, we generate the
samedesignvariationsbutusingonlyVIs. In this eval-
uation, we use Khepri (Leitão et al. 2019), a descen-
dent of the AD tool Rosetta (Lopes and Leitão 2011).

Case Study
Our case study is inspired by the facade of the
Formstelle building designed by Format Elf Architekte,
which is composedby several hexagonal apertures of
different sizes, creating a gradual stain in the facade’s
central area (figure 1, top). We selected this case
study due to its large design space, that can be eas-
ily explored using VIs. To reproduce this design us-
ing the algorithmic framework, we select algorithms
from: (1) the Geometry category, to produce the sur-
face’s spatial locationsonwhichwewant todistribute
the hexagonal openings (figure 1A); (2) the Distribu-
tion category, to arrange the apertures in a rhom-
bus mesh (figure 1B); and (3) the Pattern category, to

D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA - Volume 2 - eCAADe 38 |
373



Figure 1
Top: Formstelle
building in Töging
am Inn, Germany
(courtesy of Format
Elf Architekten);
Bottom: the case
study’s algorithmic
development: A.
surface original
points; B. rhombus
mesh creation; C.
hexagonal
elements’
placement; D.
hexagonal
elements’ size
variation; E. final
facade design.

create a hexagonal aperture in each location (figure
1C) and to control their size according to a rule that,
in this case, corresponds to the elements’ distance
to the facade’s horizontal axis (figure 1D). Then, we
combine these algorithms through function compo-
sition techniques: weuse thefirst algorithm (straight)
as input for the second one (gridrhombus), which
returns a set of locations distributed in a rhombus-
shaped grid; then, these locations are used as in-
put for the other two algorithms (regularPolygon and
scale), which create the hexagonal elements, in the

first case, and control their size according to their dis-
tance to the facade’s horizontal axis, in the second
case.

Geometric Exploration
This section focuses on the application of design
changes to our case study following two strategies:
one using only TIs and the other using VIs.

Textual Inputs.At this stage, we explore several vari-
ations of our case study using only TIs. To obtain
the original design (figure 1E), we combine the scale

374 | eCAADe 38 - D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA -
Volume 2



Figure 2
Case study design
variations using TIs:
defining curves
(A-D) or points (E-F)
to change the size
of the apertures, or
areas to apply
certain design
variations (G-J).

algorithm with another one acting as an attractor
(attractorcurve), which receives as input a curve and
an attraction intensity factor (from 0 to 1) and re-
turns, for each facade element, a value that differs ac-
cording to its distance to the curve. We provide this
algorithm with another one describing a horizontal
straight curve.

To change the original design, we can use other
curves (figures 2A to 2D) or use the attractorpoints al-
gorithmand set one (figure 2E) ormore points (figure
2F) as attractors. We can also select the facade areas
where we want to apply design variations, like creat-
ing elements of different shapes (figure 2G) or sizes
(figures 2I and 2J) or simply having no elements (fig-
ure 2H). For this we have the affectedareas algorithm,
which receives closed curves delimiting the area(s)
to change and the transformation rules to apply and

their intensity factors. In practice, this algorithm tests
if each element matches the given areas and, in case
it does, it applies the transformation(s) to it, other-
wise, it keeps the element unchanged.

Visual Inputs.To changeour case studyusingVIs, we
have to manually produce in the design tool differ-
ent shapes according to the requirements of the se-
lected algorithms, e.g., points (figure 3E) and curves
(figures 3A to 3D) in case we use the attractorpoints
and attractorcurve algorithms, or closed curves de-
limiting areas in case we apply the affectedareas
algorithm (figures 3F to 3J). Note that, here, the
attractorpoints, attractorcurve, and affectedareas al-
gorithms receive as input one or more geometric en-
titiesmanually produced in themodelling tool. To al-
low this, the framework resorts tometaprogramming
techniques to convert non-algorithmic elements into

D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA - Volume 2 - eCAADe 38 |
375



Figure 3
Case study design
variations using VIs:
creating curves
(A-D), points (E) in
the modeling tool
to change the
apertures’ size, or
areas to apply
different design
variations (F-J).

algorithmic ones. The resulting scenario enables
us to constantly interact with the design tool and
iteratively combine the VIs with the framework al-
gorithms, including analysis and optimization ones.
Also, it allows us to change the VIs’ resulting algorith-
mic descriptions to achieve aesthetic or performance
goals, as well as to store them in the framework, mak-
ing them available for future projects.

As an example, to optimize our case study in
terms of natural lighting and privacy levels, we need
to iteratively analyze several design variations to find
the solution that best suits both goals. In a typical
design process using VIs, i.e., where the selected in-
put is a shapemanually created in thedesign tool, the
analysis of different design configurations requires us
to manually change the input shape before starting

a new analysis cycle; a scenario that clearly hinders
the automation of multiple analyses in an optimiza-
tion process. Our framework overcomes this limita-
tion, as the available algorithms handle all inputs in
the same way, independently of being textual or vi-
sual inputs. In practice, while the former directly in-
forms the optimization process, the latter is first con-
verted into an algorithm to then inform the optimiza-
tion. This means that we can use both VIs and TIs to
drive optimization processes. Figure 4 shows an ex-
ample where the optimization algorithm automati-
cally changes both the position of a VI, i.e., a straight
curve, and its intensity factor, producing a pool of
results from which the architect can choose the one
that most pleases him.

376 | eCAADe 38 - D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA -
Volume 2



DISCUSSION
This section analyzes the previous approaches, mak-
ing some final considerations on the benefits of inte-
grating VIMs in a textual-based AD framework.

Portability
Concerning theportability of each approach,we con-
clude TIs are more advantageous because they (1)
are independent from the modeling tool, (2) gener-
ate the exact same results in different tools, (3) store
all the information needed to reproduce the results
of their application at any time, and (4) can be eas-
ily converted into their corresponding visual repre-
sentation. Contrarily, as a VI is typically created in a
specific modelling tool, the AD programs using it be-
come dependent on both the tool and the file con-
taining the VI. Our framework overcomes these lim-
itations by converting VIs into TIs, allowing the for-
mer to benefit from some of the latter’s advantages
in terms of portability. Also, when a VI is stable, i.e.,
whenwe no longerwant tomodify it, we can store its
algorithmic description, becoming henceforth just
part of a larger algorithm. As an example, consider
figure 3I: in a first stage, wemodelled different curves

in the design tool, while applying the same trans-
formation rule to the elements, i.e., a random size
variation. When satisfied, we stored the final curve
and, thereafter, we explored various transformations
to the hexagonal elementswithout ever having to re-
select the curve in the design tool (figure 5).

Ability to Generate Geometries
Regarding the ease that each approach has in gen-
erating different types of geometric information, we
conclude that both have advantages over the other
depending on the context. In a situation where
model-user interaction is critical, i.e., where the ar-
chitect has little or no AD experience, the use of VIs
is essential, as it allows the user to freely create/ma-
nipulate the VI in themodeling tool and immediately
see the resulting solution. VIs are also advantageous
whenwe need to use pre-existing geometries or cre-
ate organic/free-form shapes, whose corresponding
mathematical descriptions are often difficult to de-
rive. Contrarily, TIs are advantageous when we need
to use known mathematical curves or surfaces as in-
put or to provide the output of an AD program as in-
put to another.

Figure 4
Case study
optimization:
analysis of solutions
resulting from
different intensity
factors (0.4 to 1.0)
and attractor-curve
positions; (A)
original position;
(B-C) two of the
positions tested.

D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA - Volume 2 - eCAADe 38 |
377



Figure 5
Different design
variations using the
same free-form
curve of figure 3I.

These relative advantages are visible in the previ-
ous examples: while, in figure 2A, the mathematical
sine curve resulting from a TI evidences a more per-
fect sinusoidal effect than the one manually created
in figure 3A, the implementation of TIs represent-
ing the free-form curves in figures 3I and 3J would
require us to algorithmically describe each point of
the curve, which would be more laborious and time-
consuming thanmodeling them directly in themod-
elling tool.

Flexibility
Based on the above considerations we conclude that
TIs are usually more accurate and portable than VIs.
Nevertheless, as our framework handles VIs and TIs
similarly, both end up having almost the same flexi-
bility. Still, while most TIs correspond to parametric
algorithmic descriptions, the conversion of VIs into
TIs results in non-parametric ones. To obtain para-
metric descriptions, we need to spend extra time
and effort with their implementation, which also re-
quires programming experience. Moreover, finding
the parametric descriptions of VIs can be a difficult
task, as it happens with the curves in figures 3C, 3I,
and 3J.

As an example, consider again the designs in fig-
ure 2A and 3A. In the first case, the sine curve is de-
scribed by a parametric function, allowing us to eas-
ily alter its parameters, namely amplitude, phase, and
frequency, and obtain different curves as result. This

does not happen with the second example, because
it uses a manually produced curve and, although the
framework can convert the curve into an algorithm,
the latter is not parametric. Thus, to alter its ampli-
tude, frequency, or phase, we need to either imple-
ment its parametric description or manually create
a new curve in the modelling tool with the desired
modifications.

The differences between VIs and TIs become rel-
evant in analysis and optimization processes, where
VIs evidence more limitations due to their lack of
portability, limited flexibility, and CAD-dependency.
TIs, due to their greater flexibility, end upgivingmore
freedom and autonomy to the optimization process,
widening the range of design variations explored
and, therefore, increasing the likelihood of finding
better-performing solutions.

As a final example, consider the designs in fig-
ures 2D and 3D. The first one uses the parametric de-
scription of thewitchofAgnesi curve as TI, allowingus
to easily obtain different curve instances by chang-
ing its parameters. The second one uses an approx-
imation of the same curve modelled in the design
tool as VI, which is then converted by the framework
into its algorithmic but non-parametric description.
Inpractice, when combining the TIwith theoptimiza-
tion algorithm,we canmake the latter control the for-
mer’s parameters throughout the entire process, ob-
taining better-performing solutions. When combin-
ing the VI with the optimization algorithm, the latter

378 | eCAADe 38 - D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA -
Volume 2



can also modify the former by changing its algorith-
mic description, however, it can only change the spa-
tial locations that define the curve individually be-
cause there is no parametric dependency between
them.

CONCLUSION
The architectural practice is moving towards an in-
creasing use of analysis and optimization processes.
However, these processes are time-consuming and
thevarious typesof analysis requiredata transfersbe-
tweenmultiple tools, causing information losses and
the accumulation of design errors (Leitão et al. 2017).
These shortcomings hinder the adoption of analysis
and optimization processes in architecture.

We can overcome these limitations by combin-
ing analysis and optimization with Algorithmic De-
sign (AD) (Alfaris and Merello 2008), which is a de-
sign approach based on the use of algorithms that
demonstrates great potential for automating the
generation-analysis-regeneration cycle typical of op-
timization processes. AD can resort to Textual Pro-
gramming Languages (TPLs) or Visual Programming
Languages (VPLs), the latter being themostpreferred
ones by architects due to their visual nature and
ability to support Visual Input Mechanisms (VIMs),
making them more intuitive and easier to learn and
use. However, TPLs are more expressive, support-
ing the development of large-scale designs (Leitão et
al. 2012; Celani and Vaz 2012; Wortmann and Tunçer
2017). Given their different advantages, it is benefi-
cial to combine them in a hybrid approach.

AD is not new and was already applied to carry
out complex projects that otherwisewould be unfea-
sible. It has also proved its ability to reduce construc-
tion costs and waste, while improving the quality of
the design solutions. We expect that, in the near fu-
ture, AD will be integrated in all stages of the design
process, and inmost design studios and construction
companies.

In this paper, we extended a TPL-based AD
framework for facade design, analysis, and optimiza-
tion to support VIMs. We explained the features that

were integrated in the framework to handle differ-
ent typesof Visual Inputs (VIs),making themportable
across different design tools, as well as suitable to
be integrated in a text-based AD approach. We used
some of them to describe different graphical inputs,
such as points, curves, and areas, that constrained
the facade design. We evaluated the framework in
the development of a case study, for which we used
both VIs and Textual Inputs (TIs), concluding that
both have advantages depending on the design sit-
uation. Still, TIs evidenced significant advantages re-
garding accuracy, portability, and flexibility. More-
over, when combinedwith the framework’s optimiza-
tion algorithms, VIs proved to bemore limited due to
lack of flexibility and parametricity.

As futurework, we plan to extend the framework
with more VIMs, such as images, 3D scans, and point
clouds, and improve the already existing ones, espe-
cially to allow the direct conversion of a VI into its
parametric representation. Also, we plan to research
the use of VIMs for other AD problems, particularly,
those addressing 3D spatial configurations, such as
paths for cameras in rendering tasks, locations to op-
erate as generators of 3D volumetric forms or as dis-
tributorsofbuildingelements in space, or surfaces for
terrainmodeling tasks or for creating architectural el-
ements such as roof space frames and shading struc-
tures.

ACKNOWLEDGEMENTS
This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT)
with references UIDB/50021/2020 and PTDC/ART-
DAQ/31061/2017, and by the PhD grant under con-
tract of FCT with reference SFRH/BD/128628/2017.

REFERENCES
Alfaris, A and Merello, R 2008 ’The Generative Multi-

Performance Design System’, ACADIA 08 › Silicon +
Skin › Biological Processes and Computation, pp. 448-
457

Caetano, I, Ilunga, G, Belém, C, Aguiar, R, Feist, S, Bastos,
F and Leitão, A 2018 ’Case Studies on the Integration
of Algorithmic Design Processes in Traditional De-

D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA - Volume 2 - eCAADe 38 |
379



sign Workflows’, Learning, Adapting and Prototyping,
Proceedings of the 23rd International Conference of
the Association for Computer-Aided Architectural De-
sign Research in Asia, pp. 129-138

Caetano, I and Leitão, A 2018 ’Algorithmic Patterns
for Facade Design: Merging design exploration,
optimization and rationalization’, FACADE TECTON-
ICS 2018World Congress Conference Proceedings, pp.
413-422

Celani, G and Vaz, C 2012, ’CAD Scripting And Visual Pro-
gramming Languages For Implementing Computa-
tional Design Concepts: A Comparison From A Ped-
agogical Point Of View’, International Journal of Ar-
chitectural Computing, 10(01), pp. 121-138

Czarnecki, K, Østerbye, K and Völter, M 2002, ’Generative
Programming’, in Hernández, J and Moreira, A (eds)
2002,Object-Oriented Technology ECOOP2002Work-
shop Reader, Springer, Berlin, Heidelberg, pp. 15-29

Janssen, P 2014 ’Visual Dataflow Modelling: Some
Thoughts on Complexity’, Fusion - Proceedings of the
32ndeCAADeConference -Volume2, Newcastle upon
Tyne, England, UK, p. 305–314

Konis, K, Gamas, A and Kensek, K 2016, ’Passive perfor-
mance and building form: An optimization frame-
work for early-stage design support’, Solar Energy,
125(February), pp. 161-179

Leitão, A, Castelo Branco, R and Cardoso, C 2017
’Algorithmic-based Analysis: Design and Analysis in
a Multi Back-end Generative Tool’, Protocols, Flows
and Glitches, Proceedings of the 22nd International
Conference of the Association for Computer-Aided Ar-
chitectural Design Research in Asia, Suzhou, China, p.
137–146

Leitão, A, Castelo Branco, R and Santos, G 2019 ’Game of
Renders: The Use of Game Engines for Architectural
Visualization’, Intelligent and Informed - Proceedings
of the 24th International Conference on Computer-
Aided Architectural Design Research in Asia, Victoria
University of Wellington, New Zealand, pp. 655-664

Leitão, A, Lopes, J and Santos, L 2014 ’Illustrated Pro-
gramming’, Acadia 2014: Design Agency, Los Ange-
les, California, US, pp. 291-300

Leitão, A and Santos, L 2011 ’Programming Languages
for Generative Design: Visual or Textual?’, Respecting
Fragile Places: Proceedings of the 29th eCAADe Con-
ference, Ljubljana, Slovenia, pp. 139-162

Leitão, A, Santos, L and Lopes, J 2012, ’Programming
Languages For Generative Design: A Comparative
Study’, International Journal of Architectural Comput-
ing, 10(1), pp. 139-162

Lopes, J and Leitão, A 2011 ’Portable Generative Design
for CAD Applications’, Integration Through Compu-
tation - Proceedings of the 31st Annual Conference of
theAssociation forComputerAidedDesign inArchitec-
ture, Calgary/Banff, Alberta, Canada, pp. 196-203

Machairas, V, Tsangrassoulis, A and Axarli, K 2014, ’Algo-
rithms for optimizationof buildingdesign: A review’,
RenewableandSustainable EnergyReviews, 31(1364),
pp. 101-112

Nguyen, AT, Reiter, S and Rigo, P 2014, ’A review on
simulation-based optimization methods applied to
building performance analysis’, Applied Energy, 113,
pp. 1043-1058

Noone, M and Mooney, A 2018, ’Visual and textual pro-
gramming languages: a systematic review of the lit-
erature’, Journal of Computers in Education, 5(2), pp.
149-174

Picco, M, Lollini, R and Marengo, M 2014, ’Towards en-
ergy performance evaluation in early stage building
design: A simplification methodology for commer-
cial buildingmodels’, Energy&Buildings, 76, pp. 497-
505

Sammer, M, Leitão, A andCaetano, I 2019 ’FromVisual In-
put to Visual Output in Textual Programming’, Intelli-
gent& Informed, Proceedings of the 24th International
Conference of the Association for Computer-Aided Ar-
chitectural Design Research in Asia, p. 645–654

Schittich, C (eds) 2006, Building Skins, Birkhäuser
Schulz, CN 1971, Existence, space & architecture, New

York: Praeger. Stamps
El Sheikh, MM2011, Intelligent building skins: Parametric-

based algorithm for kinetic facades design and day-
lighting performance integration, Ph.D. Thesis, Uni-
versity of Soutern California

Shi, X 2010, ’Performance-based and performance-
driven architectural design and optimization’, Fron-
tiers of Architecture and Civil Engineering in China,
4(4), pp. 512-518

Turrin, M, Von Buelow, P and Stouffs, R 2011, ’Design ex-
plorations of performance driven geometry in archi-
tectural design using parametric modeling and ge-
netic algorithms’, Advanced Engineering Informatics,
25(4), p. 656–675

Wortmann, T and Tunçer, B 2017, ’Differentiating para-
metric design: Digital workflows in contemporary
architecture and construction’, Design Studies, 53,
pp. 173-197

Zboinska, MA 2015, ’Hybrid CAD/E platform supporting
exploratory architectural design’, Computer-Aided
Design, 59, pp. 64-84

380 | eCAADe 38 - D2.T9.S1. CULTURE / SHIFT THROUGH UBIQUITOUS COMPUTING/ SCRIPTING AND LINGUA FRANCA -
Volume 2


