
VISUAL MEETS TEXTUAL

A Hybrid Programming Environment for Algorithmic Design

RENATA CASTELO-BRANCO1 and ANTÓNIO LEITÃO2
1,2INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
1,2{renata.castelo.branco|antonio.menezes.leitao}@tecnico.ulisboa.pt

Abstract. Algorithmic approaches are currently being introduced
in many areas of human activity and architecture is no exception.
However, designing with algorithms is a foreign concept to many
and the inadequacy of current programming environments creates a
barrier to the generalized adoption of Algorithmic Design (AD). This
research aims to provide architects with a programming tool they feel
comfortable with, while allowing them to fully benefit from AD’s
advantages in the creation of complex architectural models. We present
Khepri.gh, a hybrid solution that combines Grasshopper, a visual
programming environment, with Khepri, a flexible and scalable textual
programming tool. Khepri.gh establishes a bridge between the visual
and the textual paradigm, offering its users the best of both worlds while
providing an extra set of advantages, including portability among CAD,
BIM, and analysis tools.

Keywords. Algorithmic Design; Hybrid Programming
Environment; Textual Programming; Visual Programming.

1. Introduction
Algorithmic Design (AD) is a method increasingly present in the architectural
practice, which entails the creation of designs through algorithmic descriptions,
allowing the designer to delegate repetitive tasks to the computer, accelerating
the production process, reducing human errors (Burry, 2011) and allowing
considerable cost savings (Woodburry, 2010).

However, designing with algorithms is a foreign concept to many (Terzidis,
2006) and, moreover, it requires representation methods that radically differ from
those used in architecture (Maleki & Woodbury, 2013), thus creating a mismatch
that is further exacerbated by the inadequacy of current Integrated Development
Environments (IDEs). This hinders the adoption of AD, demotivating architects
from its use and, thus, limiting the potential benefits.

2. Programming Paradigms
Given the advantages AD brings to the practice, many IDEs have been developed.
Despite multiple attempts by different communities to develop means for

RE: Anthropocene, Proceedings of the 25th International Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA) 2020, Volume 1, 375-384. © 2020 and published by the
Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong.



376 R. CASTELO-BRANCO AND A. LEITãO

describing computation, two main paradigms stand out: (1) Visual Programming
Languages (VPLs), which simplify the learning process but lack scalability
(Bentrad&Meslati, 2011), i.e., as programs grow in complexity, they become hard
to understand and navigate (Leitão, et al., 2012); and (2) Textual Programming
Languages (TPLs), which scale better with larger programming projects but
usually entail a steeper learning curve and are less attractive for the innate visual
nature of architects (Sammer, et al., 2019).

2.1. VISUAL PROGRAMMING

In Visual Programming (VP), users can specify programs in a two or
more-dimensional fashion (Zhang, 2007). Elements like spatial relationships,
time, or visual expressions such as diagrams and sketches can all be used to convey
the semantics of the instructions (Burnett, 199). TPLs do not qualify as VP, since
they are compiled or interpreted as long one-dimensional streams (Myers, 1990).

Strategies for VP include, for instance, concreteness (focus on particular
instances) and explicitness (little inference required) - two features that make
VP appealing at start by guaranteeing a smooth learning curve but which deter
programmers from its use at large scales (Burnett, 199). This lack of abstraction
mechanisms has long led to the conclusion that the benefit of using VP is inversely
proportional to the size and complexity of the problem (Whitley, 1997).

Furthermore, the efficacy of VP systems is intimately dependent on the context
and task to be performed. Despite largely reducing their ideal field of application
(Whitley, 1997), this also makes them an important puzzle piece to end-user
programming in specific domains, which is the case of architecture. In proof of
this stand languages like Grasshopper (GH), Dynamo or Generative Components,
who have had stunning success among this community.

2.2. TEXTUAL PROGRAMMING

For general-purpose programming by professional programmers, Textual
Programming (TP) is the appropriate and most favored choice (Myers, 1990).
While VP diagrams tend to rapidly overflow the bounds of the screen (Nardi,
1993), TP, on the other hand, supports higher information density with abstraction
and filtering mechanisms. The problem of TP lies in diametrically opposed
concepts to those which lower VP’s utility: the steep learning curve and the
difficulty architects face in understanding AD programs and relating them to the
building’s concept.

The human brain is inherently visual and multi-dimensional (Zhang, 2007)
and, despite the proven advantages of this approach, graphics are, in fact, closer
to the user’s mental representation of problems. Especially for non-expert or
novice programmers, graphical representations make the programming task easier
to understand (Myers, 1990). Specifically, in the architectural context, users
must translate mental pictures into textual representations, which is a considerable
challenge even for the most gifted (Boshernitsan & Downes, 2004). This suggests
that textual programming alone also fails to satisfy our needs for all possible
scenarios.



VISUAL MEETS TEXTUAL 377

2.3. HYBRID PROGRAMMING

Hybrid programming solutions have also been developed, in an attempt to join
the best of both worlds. Different classifications of hybrid programming consider
both (1) programs that are created visually and then translated into an underlying
textual language (Boshernitsan & Downes, 2004; Nardi, 1993), and (2) the use of
VP environments to write textual code (Burnett, 2001). Within the specific domain
of architecture, there are several examples of hybrid systems.

For the first case, there is Programming In the Model (PIM) (Maleki &
Woodbury, 2013), whose interface offers three interactive live windows showing
the model, the dependency graph (visual), and the script (textual). Users can write
a program both in a VPL and a TPL and the tool converts between these paradigms:
a twist on option number one. Unfortunately, this solution requires substantial
computational power in order to scale.

Möbius (Janssen, et al., 2016) is a parametric modeler for the web and,
although the authors consider this to be a VPL system, the interface is definitely
hybrid. It presents a flowchart area where users develop networks of nodes
and wires in an associative/data flow programming style. Each of these nodes
corresponds to a set of procedures defined in imperative/code-block style. When
run, the entirety of the program is converted into JavaScript for execution.

For the second case, and once more despite being considered a VPL, Dynamo
provides users with the possibility to code in miniature text-scripting interfaces
within the visual IDE as well, using DesignScript, the associative programming
language at the heart of Dynamo and, more recently, Python.

3. Hybrid Programming Environment
Neither the visual nor the textual paradigm seem to suffice for the complex task
of developing AD programs. Furthermore, current hybrid systems do not always
succeed in gathering the best of both nor at providing the learning opportunity
lying underneath. This research aims to provide architects with a programming
tool they feel comfortable with, while allowing them to fully benefit from AD’s
advantages in the creation of complex architectural models. However, instead of
developing newVPLs or TPLs, we rely on already established ones, facilitating the
learning process. Thus, we present a hybrid solution that combines GH, a popular
VP environment, with Khepri, a flexible and scalable textual programming tool -
Khepri.gh.

3.1. TOOLS

Khepri (Sammer, et al., 2019) is a TP tool based on the idea that a
single algorithmic description can be used to generate equivalent models in
different backends, such as Computer-Aided Design (CAD), Building Information
Modelling (BIM), analysis, and gaming applications. Khepri is currently
implemented in Julia (Bezanson, et al., 2017), a modern programming language
with a smooth learning curve, fast execution, and support for large-scale
development.

GH is a well-knownVP tool tightly integrated with Rhinoceros. As a VPL, GH



378 R. CASTELO-BRANCO AND A. LEITãO

requires no prior knowledge of programming, which is a very attractive quality for
architects with little scripting experience. However, as most VPLs, this one also
lacks scalability, as the abstraction mechanisms that help manage complexity are
at fault in this paradigm. GH offers several solutions to bypass this issue, which
resort to textual programming, namely in C#, Visual Basic (VB) or Python.

3.2. IMPLEMENTATION

Khepri.gh’s implementation is in many ways similar to GH’s currently available
textual scripting editors: users drag a blank Khepri component onto the canvas
(Figure 1A), open up the editor box by double-clicking a component and develop
Julia code within (Figure 1B); they can then save the new components onto a
dedicated tab (Figure 1C).

Figure 1. A – Khepri components on canvas with various inputs and/or outputs; B – Julia
editor showing a component’s code; C – User tab, where new components are saved.

However, while the C#, VB, and Python scripting editors only provide
the features of each programming language unless other libraries are loaded,
our implementation not only integrates the Julia language but also the Khepri
programming tool from the start. This means, that besides the language primitives,
users have access to the modeling primitives available in Khepri, which are
transversal to the multiple backends.

3.3. PROGRAMMING STAGES

In order to better illustrate this workflow, we defined three main stages of program
development where the differences between the typical GH approach and the
Khepri.gh approach become visible. Phase one (1) includes simple calculations,
the definition of mathematical functions, mapping locations, etc., all of which
are typically achieved using native GH components. In the Khepri.gh workflow,
these can also be done using Khepri components. Phase two (2) concerns
the construction of more abstract computations, such as recursive and iterative



VISUAL MEETS TEXTUAL 379

procedures, or high-order functions, which are typically implemented with the aid
of textual scripts. Phase three (3) involves geometry generation and any other
sort of operation realization in the connected applications. In GH’s case, this is
usually done with native components, which provide immediate visual feedback in
Rhinoceros and that can be baked in the end. In Khepri.gh, this stage would have
to be done with Khepri components forcefully if the geometry is to be portable
amongst backends.

Figure 2 presents a graphical representation of these three phases organized
temporally according to the most common strategy of program development. The
last phase is transversal to all others, as it regards the programming environment
itself. In GH’s workflow, we are naturally using the IDE’s canvas to program
through the entire process. With Khepri.gh’s, we are also given the possibility
to visualize the entirety of the textual part of the program in a dedicated textual
environment. This feature will be further discussed later on.

Figure 2. Workflow comparison, considering the three development stages, and the tools
involved in the process (Grasshopper, Textual Programming (TP) editors, Rhinoceros, Khepri

and its multiple backends).

4. User-friendly Features
Khepri.gh’s implementation focuses on three main features designed to facilitate
the coding task for non-expert programmers that, typically, find it difficult to
understand complex programs and the impact of the changes applied to them:
traceability, immediate feedback, and different code editing options.

To illustrate these features, in the ensuing subsections we present a project for a
Nautical Center in Lisbon, a building projected onto the Tagus River. The Center is
divided into three main blocks, anchored at the pier, which are then interconnected



380 R. CASTELO-BRANCO AND A. LEITãO

by two other volumes lifted in the air above the boat launch ramps. Figure 3 shows
rendered images of this project, along with a physical model. In the Khepri.gh
model of the building, most of the geometrical constraints defining the shape of
the three volumes are variable. Some of them can be seen in Figure 4.

Figure 3. Case Study: Nautical Center renders and physical model.

4.1. TRACEABILITY

Traceability entails the identification of which parts of the model correspond
to which parts of the program, and vice-versa (Leitão, et al., 2014), a crucial
correlation to understand, maintain, and debug the program. While GH presents
unidirectional traceability, only relating program components to model elements,
Khepri.gh supports bi-directional traceability and in multiple backends. Figure 5
shows the traceability feature in the AutoCAD and Unity backends.

4.2. IMMEDIATE FEEDBACK

Immediate feedback is the ability to re-compute changes to the program’s input or
to the program itself in (near) real time (Rauch, et al., 2019), allowing designers to
easily understand the program’s behavior (Alfaiate, et al., 2017). GH immediately
updates the geometry upon adding/changing components, Boolean toggles or
sliders. Our solution extends this feature to the various backends but performance
must be taken into consideration when dealing with complex models. Scale is
already an issue for GH’s optimized preview mode (i.e., non-baked geometry);
even more so for Khepri.gh, which has to generate the geometry in the backends,
a somewhat equivalent process to baking. This process is considerably faster in
more performative backends, such as game engines, or using CAD tool’s more
performative view options, such as wireframe models. Figure 4 shows several
variations of the Nautical Center generated by moving the project’s sliders.



VISUAL MEETS TEXTUAL 381

Figure 4. Screenshots from Rhino showing variations of the Nautical Center. The red arrows
represent the variable parameters being changed in the model.

Figure 5. Traceability in different backends: GH program on the right showing the selected
component, and respective representations automatically highlighted in AutoCAD, and Unity.

4.3. CODE EDITING OPTIONS

Khepri.gh supports different code editing options (Figure 6). In the visual
IDE the user can (a) manipulate existing GH components and (b) create new
Khepri components, each one representing a parcel of code, using the textual
programming editor available within GH. However, for more experienced
programmers, (c) the code can also be accessed in a textual programming editor,
such as Atom.

5. The Power of Abstraction
Having toured around the visual benefits of the proposed solution, we now peer
into the advantages brought about by the textual paradigm.



382 R. CASTELO-BRANCO AND A. LEITãO

Figure 6. Code editing options: (a) visual, (b) textual within visual, and (c) full textual.

5.1. NO REPETITION

Following GH’s native structure, VB, C# or Python scripting motivates the
construction of standalone components, which both implement and execute
operations. When reusing such components, the code is essentially duplicated
and further changes to that structure must be performed in all similar components.
Textual programming follows a different logic, where repetition is avoided at
all costs for logic and organizational purposes. This makes the code structure
more comprehensible and manageable, sparing the user the time-consuming and
error-prone task of maintaining several versions of the same functionality.

Khepri.gh follows the textual logic in this issue, introducing a fundamental
separation between function definitions and function calls. All components on
canvas are processed on demand, with or without inputs, with or without specific
modeling instructions. Users may gather function definitions, in one or more
components, that can be used in all the others that call them, thus eliminating
repeated definitions. When the user edits a definition component, the changes will
have automatic repercussions in any other components dependent upon this one.

5.2. COMPLEXITY

The scalability issue inherent to VPLs affects many of the features that make
these systems so appealing to users in earlier stages (Aish, 2003): both immediate
feedback and program readability are compromised as complexity increases. For
the first issue, GH cleverly offers a solution unsurprisingly inspired in the way
TPLs deal with geometry generation: inputting numbers directly onto sliders
instead of dragging them, or even disabling the solver as we edit the program,
thus significantly reducing the number of times the model is recomputed.

For the second problem, the most obvious solution is abstraction: the
possibility to encapsulate complex computations in much simpler program



VISUAL MEETS TEXTUAL 383

structures, such as recursive and iterative first-order or higher-order functions.
These mechanisms allow the development of more complex programs without
resorting to the repetition of instructions. However, most VPLs, including GH, do
not (directly) support these functionalities. Since Khepri.gh is built on top of the
Julia language, any Julia functionality can be used from GH as well, meaning that
the data that flows between components includes not only basic data structures,
such as numbers and positions, but also functions, arrays, tuples, dictionaries, etc,
and arbitrary combinations of these.

6. Discussing Transition
For all the advantages of abstraction, we get pulled further away from concreteness
and explicitness, which helped smooth the learning curve of programming. The
question then becomes: where should one draw the line between visual and
textual? In this case, when should users shift from GH to Khepri components,
relinquishing the ease of use in exchange for computational power? And should
the answer somehow relate to one’s programming capabilities?

To elaborate on this debate, we circle back to the scheme presented in Figure 2,
where we defined three main phases of program development. After the presented
experiments with the prototype, our own opinion reverts to the conclusion that
phase (1) should be performed using mainly GH components by users with more
experience using this IDE than any other. Provided they use Khepri components
for phase (3) they will still benefit from the main advantages brought about by
this approach. Users that find themselves limited by the existing GH components
may also be motivated to learn how to create new Khepri components in phase (2).
This solution is clearly the one where the least effort is required to program, and
it represents a soft adaptation curve to Khepri’s framework.

More experienced programmers may prefer to model Khepri components from
the start. By developing phases (1), (2), and (3) on a Khepri base, users can access
the entirety of their code in a textual programming environment as well, which
provides a good incentive to the visual-to-textual transition. But, while developing
Khepri components within GH’s IDE, users can also benefit from the graphical
properties provided by the environment, which facilitate the comprehension task.

In the end, we believeKhepri.gh can also serve as a smooth bridge for architects
who which to transition from the visual to the textual paradigm. The dichotomy
between the two has for long represented a gap in the learning curve, with no
visible progression from one to the other. Our solution thus also hopes to provide
themeans for expert VPL users to transition to the textual paradigmwithout having
to restart the learning process from scratch. Having all of Khepri’s operations
available for use in a platform that architects feel comfortable using may help
them get acquainted with the tool before switching to a textual IDE entirely.

7. Conclusion
Khepri.gh is a hybrid programming environment that combines Grasshopper, a
popular visual programming environment, with Khepri, a flexible and scalable
textual programming tool for algorithmic design. Exploiting the potential



384 R. CASTELO-BRANCO AND A. LEITãO

of hybrid environments to serve as the middle ground between visual and
textual programming languages, Khepri.gh provides users with a comfortable
user-friendly visual interface while guaranteeing the portability, scalability, and
complexity-handling mechanisms offered by the textual paradigm.

While the evaluation here presented focused mainly on Khepri’s
functionalities, as future work, we plan on further exploring the proposed
benefits of the abstraction mechanisms provided by the Julia programming
language within the Grasshopper environment.

Acknowledgments
This work was supported by national funds through Fundação para a
Ciência e a Tecnologia (FCT) with references UIDB/50021/2020 and
PTDC/ART-DAQ/31061/2017.

References
Aish, R.: 2013, DesignScript: Scalable Tools for Design Computation, Proceedings of eCAADe

2013, Delft, The Netherlands, 18-20.
Alfaiate, P., Caetano, I. and Leitão, A.: 2017, Luna Moth: Supporting Creativity in the Cloud,

Proceedings of ACADIA 2017, Massachusetts, USA, 72-81.
Bentrad, S. and Meslati, D.: 2011, Visual Programming and Program Visualization: Towards an

Ideal Visual Software Engineering System, Journal on Information Technology, 1(3), 56-62.
Bezanson, J., Edelman, A., Karpinski, S. and Shah, V.B.: 2017, Julia: A Fresh Approach to

Numerical Computing, SIAM Review, 59(1), 65-98.
Boshernitsan, M. and Downes, M.S.: 2004, Visual programming languages: A survey, EECS

Department, University of California, Berkley, 25.
Burnett, M.: 2001, Visual programming, Wiley Encyclopedia of Electrical and Electronics

Engineering, 275-283.
Burry, M.: 2011, Scripting Cultures, John Wiley & Sons Ltd., United Kingdom.
Jassen, P., Li, R. and Mohanty, A.: 2016, Mobius: A Parametric Modeller for the Web,

Proceedings of CAADRIA 2016, Melbourne, Australia, 157-166.
Leitão, A., Lopes, J. and Santos, L.: 2014, Illustrated Programming, Preceedings of ACADIA

2014, Los Angeles, USA, 291-300.
Leitão, A., Santos, L. and Lopes, J.: 2012, Programming Languages For Generative Design: A

Comparative Study, International Journal of Architectural Computing, 10(1), 139-162.
Maleki, M.M. andWoodbury, R.: 2013, Programming In TheModel: ANew Scripting Interface

for Parametric CAD Systems, Proceedings of ACADIA 2013, Cambridge, Canada, 191-198.
Myers, B.: 1990, Taxonomies of Visual Programming and Program Visualization, Journal of

Visual Languages & Computing, 1(1), 977-123.
Nardi, B.A.: 1993, A Small Matter of Programming: Perspectives on End User Computing,

MIT Press, Cambridge, USA.
Rauch, D., Rein, P., Ramson, S., Lincke, J. and Hirschfeld, R.: 2019, Babylonian-style

Programming - Design and Implementation of an Integration of Live Examples Into
General-purpose Source Code, Programming Journal, 3, 9.

Sammer, M.J., Leitão, A. and Caetano, I.: 2019, From Visual Input to Visual Output in Textual
Programming, Proceedings of CAADRIA 2019, Welligton, New Zealand, 645-654.

Terzidis, K.: 2006, Algorithmic Architecture, Architectural Press, Oxon and New York.
Whitley, K.N.: 1997, Visual Programming Languages and the Empirical Evidence For and

Against, Journal of Visual Languages & Computing, 8(1), 109-142.
Woodbury, R.: 2010, Elements of Parametric Design, Routledge, Oxon.
Zhang, K.: 2007, Visual Languages and Applications, Springer Science, New York.


