Program Comprehension for Live Algorithmic Design
in Virtual Reality

Renata Castelo-Branco
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa
Lisbon, Portugal
renata.castelo.branco@tecnico.ulisboa.pt

ABSTRACT

Algorithmic Design (AD) is a design approach based on the develop-
ment of computer programs to describe architectural models. The
programs’ outputs are digital architectural 3D models, which are vi-
sual by nature and, therefore, benefit from immersive visualization.
Live Coding in Virtual Reality (LCVR) is a methodology for the
interactive development of AD programs while immersed in Virtual
Reality (VR), favoring a more intuitive development process for
architectural designs. However, complex buildings tend to require
complex AD programs and, despite the added visual aid, as pro-
grams grow in complexity, it becomes harder to understand which
parts of the program were responsible for which parts of the model.
Moreover, LCVR introduces a new level of complexity: interaction
with both model and program in VR. This research proposes to ease
the programming task for architects who wish to code their models
in VR, by supporting program comprehension in the LCVR work-
flow with traceability and refactoring mechanisms. These features
will help users interact with their designs from within the virtual
environment.

CCS CONCEPTS

+ Human-centered computing — Virtual reality; User inter-
face design; « Applied computing — Computer-aided design;
+ Software and its engineering — General programming lan-
guages.

KEYWORDS

Virtual Reality, Algorithmic Design, Live Coding, Program Com-
prehension, Interaction Mechanisms

ACM Reference Format:

Renata Castelo-Branco, Anténio Leitdo, and Catarina Bras. 2020. Program
Comprehension for Live Algorithmic Design in Virtual Reality. In Com-
panion Proceedings of the 4th International Conference on the Art, Science,
and Engineering of Programming (<Programming’20> Companion), March
23-26, 2020, Porto, Portugal. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3397537.3398475

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7507-8/20/03....$15.00
https://doi.org/10.1145/3397537.3398475

Antonio Leitdo
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa
Lisbon, Portugal
antonio.leitao@inesc-id.pt

69

Catarina Bras
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa
Lisbon, Portugal
catarinasaomiguel@tecnico.ulisboa.pt

Figure 1: AD workflow showing the adapted model of the
Isenberg School of Management Hub: on the left, the algo-
rithmic description, and on the right, the model generated
in Unity.

1 INTRODUCTION

Algorithmic Design (AD) has had an increasing impact in the archi-
tectural practice, having been adopted by well-known architecture
studios such as Foster + Partners, Gehry Partners, and Zaha Ha-
did Architects. AD defines the creation of architectural designs
through algorithmic descriptions [4]. As such, it allows architects
to model more complex geometries that would take a considerable
amount of time to produce otherwise, automate repetitive and time-
consuming tasks, and effortlessly generate diverse design solutions
without having to rework the model for every iteration [23]. Fig-
ure 1 presents an example of one such process, and Figure 2 shows
the final product with four possible variations of the same model
generated by a single algorithmic description. The model shown
is an adaptation of the Isenberg School of Management Hub, an
original project from BIG architects.

1.1 Visualization

Despite the innovation presented by this workflow, the visualiza-
tion of AD models remains largely dependent on traditional digital
design aid tools, such as Computer-Aided Design (CAD) or Building
Information Modelling (BIM). The typical interaction with architec-
tural 3D models in these tools entails a mouse-based manipulation
of 3D geometry, where the user manipulates the design through a
collection of windows showing the geometry from various perspec-
tives. This forces architects not only to combine the separate views
to form a mental model of the entire scenario [11], but also to scale
it to real size in their imagination. Although architects are known
for their 3D visualization capabilities, therefore being more than
able to work within these boundaries, their clients, on the other

https://doi.org/10.1145/3397537.3398475
https://doi.org/10.1145/3397537.3398475
https://doi.org/10.1145/3397537.3398475

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Renata Castelo-Branco, Anténio Leitdo, and Catarina Bras

Figure 2: Isenberg School of Management Hub adaptation: four possible variations of the model shown in Unity.

hand, are not. Particularly, the far-fetched design method presented
by AD, combined with the design complexity it allows, demand
better visualization mechanisms.

To overcome the limitations of the computer screen, traditional
architectural design processes heavily rely on the continuous pro-
duction of physical models. This activity has been at the heart of
the architectural practice for centuries, since it provides the dimen-
sionally required to assess the quality of a design solution [9, 21].
Unfortunately, the flexible nature of AD renders it impossible for
architects to produce physical models for every instance of the
design space, which means we require an alternative.

Virtual Reality (VR) presents itself a fast and cheap substitute to
physical model making [21], while guaranteeing not only the tactile
interaction offered by its analog counterpart but also the scalability
factor. VR has the potential to bring the currently existing AD
workflow closer to the traditional model manipulation techniques
architects are so familiar with.

1.2 Immediate Feedback

Designing a building through code is not a simple task. There is
a disconnection between the idealized geometry and the required
programming to generate it, which means architects find it hard to
understand if their scripting is progressing in the right direction
without constant verification of the algorithm’s outcome. For this
reason, AD approaches tend to be interactive processes, where the
programmer creates geometry incrementally, all the while expect-
ing immediate visual feedback on the impact of the changes the
programmer is performing.

Having this in mind, a Live Coding in Virtual Reality (LCVR) ap-
proach was developed, in the past, which joined these two realities,
AD and VR, in a real-time and interactive design process [5]. LCVR
proposes the integration of Live Coding (LC), which is a creativity
technique centered upon the writing of interactive programs on the
fly [18, 19], in Virtual Environments (VEs), using an AD workflow.
The proposed methodology entails the use of an AD tool integrated

70

in a VE, where architects can code their design intents in a flex-
ible and parametric manner. Architects are immersed in the VE,
where their designs are being concurrently updated in accordance
with the changes made to the algorithmic descriptions. In practice,
this constitutes a LC mechanism for architects to edit algorithmic
descriptions of their models while immersed in them.

1.3 Interaction Mechanisms

AD assumes that the architect is developing programs in a textual
programming interface throughout, ergo, quite a lot of typing is
required for this activity. Despite the advantages of immersion, writ-
ing code in VR is a challenge. Even the most efficient typing solution
is still no match for the typing speed one can achieve on a nor-
mal keyboard outside the VE [5], particularly for non-experienced
typists, who heavily rely on both visual and haptic feedback. This
question is particularly relevant in the present context, as the major-
ity of programming architects are, in fact, non-experienced typists.
This suggests the interaction mechanisms at play in the LCVR
workflow are still flawed and may deter architects from its use.

This paper proposes to aid the LCVR workflow with Program
Comprehension (PC) mechanisms, such as program-model trace-
ability, call chain exploration, and refactoring. PC is in itself an
important aid to the AD process alone. Coupled with VR, it has
the potential to improve the way architects currently interact with
their models. This research also motivates a discussion on differ-
ent interfaces and code input mechanisms that could offer a more
natural experience in the context of VR.

The following sections detail the state of the art on the use of
VR in architecture, the implementation details of the LCVR work-
flow along with the limitations identified in a preliminary study
performed with a small number of users, and finally the PC mecha-
nisms explored to improve upon this workflow.

2 VRIN ARCHITECTURE

Throughout the years, multiple authors have studied the benefits
and challenges of the use of VR in the Architecture, Engineering,

Program Comprehension for Live Algorithmic Design in Virtual Reality

and Construction (AEC) industries [15, 17]. The immersive prop-
erties of VR, such as stereoscopic views and representations at
full body scale, facilitate the essential perceptions of solid, void,
navigation, proportion, and function [7, 17, 22], as well as the ca-
pacity to detect errors or unresolved issues in the design [7]. This
is especially important when communicating the design to clients
and other team members, whose spatial perception might not be as
trained as an architect’s.

The development of an architectural project involves the collabo-
ration between several stakeholders. However, arranging meetings
with all entities involved is not a trivial task as physical gathering
might not always be possible. Collaborative Virtual Environments
(CVEs), a computer-based distributed virtual space or a set of places
where people can meet and interact with others, with agents or
with virtual objects [20], can ease this task by joining remote partic-
ipants in the same VR experience, e.g., multiple collaborators can be
inside a virtual model of a building, simultaneously interacting with
the building and with each other. This is fundamental for design
studios lacking a collective ideation space and allows design teams
to engage in long distance collaborations [8].

Virtual Reality Aided Design (VRAD) can be defined as a CAD
technique that uses VR methods [6]. This way, architects can benefit
from the visualization aspects of VR without having to break the
visualization workflow when they want to make adjustments to the
design. Experiments with highly interactive VEs indicated that fun
and exploratory factors positively contributed to creative thinking
[12], which is a fundamental part of the architectural design process.

3 LIVE CODING IN VIRTUAL REALITY

Considering the advantages VR presents to the architectural prac-
tice, a LCVR approach was developed, in the past, which joined AD
and VR in a real-time and interactive design process [5].

Figure 3 presents a scheme of the proposed workflow, combining
(1) the Traditional Algorithmic Design Coding (TADC) workflow,
where architects code their designs still outside the VE, (2) the
LCVR workflow, where architects are fully immersed in their cre-
ations, and (3) a hybrid approach, which consists in switching back
and forth between the two as architects see fit for the design pro-
cesses. For either approach we can also see the tools used for this
implementation, as well as where they intersect.

3.1 LCVRvs TADC

Both the TADC and the LCVR approach imply the use of an Inter-
active Development Environment (IDE) to input the algorithmic
descriptions into the AD tool, which is then responsible for control-
ling the visualizer. In this case, the combination Julia+Atom+Juno
was used for the IDE, while the AD tool chosen was Khepri [13].
The visualizer is Unity, a Game Engine (GE) that not only allows
for a fast update of model changes but also for the connection to
VR.

In either case, designers conduct an iterative process of program-
ming the algorithmic description followed by the visualization of
the generated architectural model, enhancing the project with each
iteration. The main difference in the LCVR process is that designers
are now inside the VE created by the GE, programming from there.
In the VE, the model is being updated just as it would in the GE’s

71

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

normal interface, with the added interactivity to the experience.
Designers can access the IDE from the VE, using the virtual desktop
application, which allows them to edit the algorithmic descriptions
of the models as the buildings change around them.

As for collecting text input for code modification, most strategies
for VR are based on either a physical or virtual keyboard. Virtual
keyboards are simulated on the VE and key pressing can be achieved
by using a controller as a tool, i.e., a drum-like interface [3], or using
bare-hand tracking devices with finger tracking. Physical keyboard
approaches collect the input from a real keyboard which provides
more haptic feedback and a smoother learning curve, leading to
better typing efficiencies than alternative approaches, as previously
studied in [5].

KHEPRI
VIRTUAL
DESKTOP Gl
LCVR <—— VRHEADSET STEAM VR
VR PLUG-IN

Figure 3: The TADC workflow highlighted in dark grey, the
LCVR workflow in light grey, and the hybrid approach con-
necting them.

3.2 Preliminary Study

The proposition still considers the use of the TADC approach for
two simple reasons: first, the physical discomfort caused by the
continuous use of a Head-Mounted Display (HMD) and, second,
the performance degradation that occurs when transitioning to
LCVR. Despite the advantages of immersion, writing code in VR
has proven to be a challenge.

A preliminary study was conducted on 10 subjects, 6 of which
were architects with programming experience, i.e architectural
practitioners trained in AD, and 4 were computer science Msc
students. Users were asked to code a very simple exercise using
LCVR: a random pagoda city. The exercise was intentionally basic,
in order to last no longer than 30 minutes. Figure 4 shows the view
our users had if they completed the exercise, on the left, and the user
setup, on the right. The experiment ended with a survey, whose
answers are summed up in Figure 5.

Users were asked if the LCVR experience was more fun, slower,
more productive, and more advantageous than TADC. The one to
five scale in the graph corresponds to a Likert scale ranging from
full disagreement to full agreement. The voting average for the
architectural subjects was a lot more pessimistic than their counter-
parts. Architects replied with almost full agreement that coding in

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Renata Castelo-Branco, Anténio Leitdo, and Catarina Bras

Figure 4: LCVR preliminary user test: random pagoda city exercise.

Likely to use LCVR
Useful for showcasing
Useful design tool

More advantages

More productive
Slower

More fun

—
[IS}
w
-
w

Computer Scientists B Architects

Figure 5: User study survey results: averaged answers for the
questions comparing the LCVR to the TADC approach.

LCVR is slower, while computer science students mostly disagreed.
The latter also voted for more fun, while architects remained fairly
close to neutral on average, on account of the typing difficulty,
according to the comments left on the open question. Architects
also voted LCVR as less productive and less advantageous than
TADC. However, they agreed on the usefulness of the workflow
for showcasing, and also for design, although less enthusiastically.
Only a few stated they would be likely to use LCVR in their own
design process, at least as it is currently presented. Comments were
also issued on the added difficulty in reading the program’s text in
VR for poor-sighted users.

3.3 Limitations

Despite the small number of participants involved, this prelimi-
nary study already allowed us to verify a set of issues in the LCVR
workflow. The short survey revealed that the group of users with

72

an architectural background, despite their familiarity with pro-
gramming tools, struggled to use them in the VE. If programming
architects found it difficult to manage the workflow, we can only as-
sume less experienced programmers will find even less motivation
to engage in LCVR.

Circling back to the two issues presented previously - physical
discomfort and typing performance — we believe they will soon be
solved. On the one hand, future generations of architects will be
more experienced typists on account of the impact computers are
having in younger generations by the day. On the other, alterna-
tive input mechanisms, such as voice recognition, may evolve to a
point where we need not type as much as we currently do. In the
meantime, however, and in favor of practitioners currently in the
market, we may ease the programming task for architects in VR
through other means, namely PC.

4 PROGRAM COMPREHENSION

One of the major difficulties architects find in understanding and
modifying AD programs is tied to the correlation between code and
model, that is, figuring out which parts of the code are responsible
for generating which parts of the model. This process may include
scrolling up and down the source code or searching for the names of
relevant functions or parameters. This search-and-change process
is aggravated if the parcels of code requiring modifications were
developed by a third party, which is a rather common scenario in
the collaborative work that characterizes the development of archi-
tectural projects. Understanding which code fragments generate
which parts of the model is not a simple task, particularly, when
the user is not familiar with the code, or when the code is complex
enough for the developer to get lost in it.

However, architectural programs are built on the type of data
that simplifies the establishment of correlations. Traceability al-
low us to retrieve the relationships between code and generated
shapes. This means we could simply identify the shape we wish to

Program Comprehension for Live Algorithmic Design in Virtual Reality

change (by grabbing it or clicking on it) and be guided towards the
corresponding code parcel, thus considerably helping the PC task.

Besides the identification of the code one wishes to modify, the
modification itself may also be challenging. Writing programs from
scratch, even with a well-defined plan, can result in poorly orga-
nized code structures. The nature of AD programs, in particular,
motivates the creation of messy code as architects typically iterate
multiple times over an idea until they reach a shape with which
they are satisfied. The situation is aggravated when performing
changes in programs originally written by someone else. To help
ensure that these changes do not introduce bugs in the AD pro-
grams, we propose the use of refactoring. The following sections
discuss these PC mechanisms.

4.1 Traceability

Traceability entails the identification of which parts of the model
correspond to which parts of the program, and/or vice versa [14].
Traceability reveals the correlation that exists between program
and generated output and is crucial to understand, maintain, and
debug the program.

Grasshopper! and Dynamo,? for instance, two popular visual
programming environments in architecture, present unidirectional
traceability mechanisms that relate code components to model
elements. This means users can select any component in the IDE
and the shapes generated by that component will automatically
be highlighted in the model. Rosetta [14] and Luna Moth [1], two
textual programming tools, as well as Khepri, the AD tool used
for the LCVR implementation, support bi-directional traceability,
which means users may select either code fragments or model parts
and the tool will highlight the corresponding part in the opposite
end. Khepri’s traceability is illustrated in Figure 6.

Traceability aids PC, maintenance, and debugging but it depends
on the ability to select model parts which, in the context of VR, can
not be done with the typical mouse-based selection mechanisms
employed by non-VR applications. The following section provides
some insight on how to address this issue.

4.2 Interaction Mechanisms

With the addition of a third dimension to the virtual space, the
human-computer interactions used in two dimensional spaces are
no longer suitable. Therefore, new interaction techniques for VR
have been developed throughout the years, exploring different input
modalities.

Some of the most used techniques for geometry selection within
a fully immersive VE are based on hand gestures and pointing
[2]. Hand gestures provide a direct mapping between physical
and virtual hands. The range of selection is limited to the arm’s
extent when working at full scale, which can restrict the quantity
of geometry that can be selected in large models. However, this
limitation can be mitigated by rescaling the model, though the
perception of the real dimensions of the building can be affected.
Hand gestures are also more physically demanding and require
more dexterity.

https://www.grasshopper3d.com
Zhttps://dynamobim.org

73

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

//|

|
' 1 o\
TR TR

e

. I | ‘
l. .“\\\\\i‘\‘\'\\\\\\‘C\

Figure 6: Khepri’s traceabilty module working on the Isen-
berg case study.

Pointing techniques, on the other hand, remove the physical
limitations by projecting a ray that intersects the geometry to be
selected. The ray can have its origin on the hand or eye, e.g., the ray-
casting and occlusion selection techniques, respectively. Despite
requiring considerably less hand effort, they do not remove the
dexterity issue. The selection of small or distant geometries can still
be a challenge, particularly when the user is not able to maintain a
steady hand during selection. The action confirmation task is also
likely to make a change in the user’s hand orientation, which can
lead to a wrong selection.

The implementation of the workflow for this paper was con-
ducted in a HTC VIVE headset. We implemented a ray-casting
technique, triggered by pressing a button on the controller. Both
hands perform the same action, leaving the choice up to the user’s
dominant hand. The highlights, both on the geometry and the code,
provide useful feedback for the interaction.

4.3 Call Chain

Traceability allows us to find the operations that, ultimately, gener-
ated the model part we wish to change. However, the part of the
code that we must modify is likely to be deeper down the call chain.
This means we also require a mechanism to navigate the sequence
of calls until the parcel of code responsible for the error is found.
From the AD tools mentioned earlier, only Rosetta [14] and
Khepri provide this feature. Figure 7 presents an example: a column
of the Isenberg case study model was selected in Unity, and the
corresponding function call was highlighted in Atom. However,
this call provides little information on the column’s conception

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

Renata Castelo-Branco, Anténio Leitao, and Catarina Bras

Figure 7: Khepri’s traceabilty module showing the call chain
of the columns’ invocation (intensity of the highlight color
increases as we move further away from the first call).

logic. We thus move through the relevant function calls, whose
highlight gets progressively stronger as we close in on the end of
the call chain.

4.4 Refactoring

While the previously explained features are meant to aid the com-
prehension task alone, we now introduce one that focuses on the
code modification task. This activity is a source of errors and in-
consistencies, which users frequently introduce in their program
while trying to solve other issues.

Refactoring is commonly defined as the process of improving the
structural integrity or performance of existing programs without
changing their external behavior [10]. In order to guarantee overall
consistency in the changes introduced, most refactoring tools do
the code manipulation work themselves. In the case of AD changes,
this means that, by using refactoring whenever possible, our users
would have to write less code on average than when applying
changes manually. More importantly, they would avoid introducing
bugs.

Figure 8 presents an example of Khepri’s refactoring capabilities.
The initial approach to the modeling of the slabs in this case study
considered a function that generated a C-shaped slab. The function
responsible for generating all building slabs then called the previous
function for each building floor. Later on, however, as the model
approached the real case study in its details, we decided to introduce
an exception: the base slab should have a slightly different shape
in order to meet the domino-shaped laminas that compose the
building’s facade.

Listings 1 and 2 present the two phases resulting from this pro-
cess. The introduction of the conditional expression in the slab func-
tion imposed an additional parameter on that function. Khepri’s
refactoring mechanisms automatically adjusted all function calls
affected by this change, guaranteeing that the program keeps on
running as expected despite the modification. The change in the
slabs function’s for-loop could also be automated by a partial loop
unrolling, since all we did was extract and modify the first instance
of the loop.

5 DISCUSSION

In order to combine the LCVR approach with the aforementioned
features we extended the methodology so that users programming

74

Figure 8: Slab function refactoring,.

their AD models in the VE can benefit from PC and program main-
tenance mechanisms. Traceability allows for a faster and more
intuitive way to find program-model correlations. Call chains map
this feature to the entire call sequence, which means users can
trace their shapes back to the lowest abstraction level, where the
changes are most likely to occur. Finally, refactoring mechanisms
help architects apply changes to their programs with less typing
required and, more importantly, with a consistency guarantee.

Listing 1: Slab functions before refactoring

function isenberg_slab(c, r;, re, @o, ap, @, n)
ps; = ps_circle(c, rij, ao, e, n)
pse = ps_circle(c, re, @p, @, Nn)
psp = ps_circle(c, re, ao, ap, n)
ps = [pse..., reverse(ps;)...]

slab(closed_polygonal_path(ps))
end

function slabs(c, r;, re, ao, ap,ae, fp, floors, n)
for i in 0:floors
isenberg_slab(c + vz(fp*i),
end
end

ri, re, @, @p, @, n)

Listing 2: Slab functions after refactoring

function isenberg_slab(c, ri, re, @o, @, e, n, base)
ps; = ps_circle(c, rj, ap, e, n)
se = ps_circle(c, re, ag, e, n)

psp = ps_circle(c, re, ao, ap, n)

pt = ¢ + veyl(re, ap, 0)

Aa = ae - ap

v = vpol(Aa*2re/m, ap + Aa)

ps = base ?
[psp..., Pt + v, pselend], reverse(ps;)...]
[pse..., reverse(ps;)...]

slab(closed_polygonal_path(ps))
end

function slabs(c, rj, re, ao, ap, e, fp, floors, n)
isenberg_slab(c, re, @, Qp, Qe, n, true)

for i in 1:floors

ri,

isenberg_slab(c + vz(fgp*i), r;, re,
end
end

ap, ap, ®e, n, false)

Program Comprehension for Live Algorithmic Design in Virtual Reality

5.1 Live Coding in Virtual Reality

Figure 9 presents an example of the workflow. While immersed
in the VE, the architect decides to improve upon the design by
changing the model. For this case specifically, by changing the pa-
rameters that define the large domino beams of the facade. The
chosen object is selected in the model, using the VR controllers,
and the corresponding fragment of code is highlighted in the editor.
The architect may immediately find the function needing modifica-
tions, or instead browse through the remaining highlights until the
function is located deeper down the call chain.

In this case, a simple modification was applied to enlarge the
domino beams, changing their maximum width from 3m (in the
first shot) to 6m (in the last one). In case a more complex change is
required, refactoring operations become extremely useful, as they
overcome several of the difficulties of making extensive program
changes while immersed in the VE.

5.2 Interfaces

As mentioned in Section 3.3, coding textual programs in VR raises
several issues, particularly regarding the use of keyboards. The so-
lution presented here relied on PC mechanisms to aid the program-
ming task, namely traceability and refactoring. Another feature
worth looking into is autocompletion. Tools like Intellisense® for
Visual Studio Code offer code completion, assistance and hinting
for various programming languages, significantly reducing the typ-
ing required. Dynamic completion goes even further, guessing any
sort of text completion based on probabilistic models of the user’s
typical writing patterns. With powerful-enough mechanisms of
this nature integrated in the workflow we can envision a scenario
where users almost do not need to code, they only need to accept
the suggested options.

Considering code input mechanisms, other options are also cur-
rently available. Hand-written code recognition, for instance, would
eliminate the need to visualize any physical apparatus in the VE.
However, the scale of the written characters in VR must be con-
sidered. Humans are considerably faster when writing symbols in
smaller scales, such as paper sheets, as opposed to whiteboards, for
instance. However, handwriting code in VR, as hardware stands
today, would have to rely on larger displacements of the writing
instruments for the sensors to detect the motion, which might
ultimately defeat the performance purpose.

Voice input is another viable option, and possibly one of the most
comfortable solutions for the user. Since Tavis Rudd presented his
system to dictate code in 2013%, a wave of vocal programming tools
has been flooding the market with better voice coding solutions.
Nevertheless, we can foresee a series of obstacles. Primarily, current
technology has low voice-recognition accuracy in loud environ-
ments, which means expensive equipment might be required when
working collaboratively. The same mechanisms may also reveal
intrusive for people in the same workspace not directly involved
in the activity. Finally, and more specific to the problem at hand,
dictating coding commands is not a trivial task and, thus, requires
training.

3https://code.visualstudio.com/docs/editor/intellisense
“https://pyvideo.org/pycon-us-2013/using-python-to-code-by-voice

75

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

As for solutions that attempt at reducing the amount of coding
required, we can imagine an intermediate interface: a solution
somewhere between direct manipulation and having the entire code
showcased in VR. As a building design evolves, it is expectable, that,
in later phases of the design process, the majority of changes that
architects want to apply are related to parameter values only (sizes,
materials, etc). These sort of changes are not difficult to support in
VR in a more user-friendly manner, e.g., with sliders and toggles
popping up in the VE upon selection of geometry. In this sense,
users would only need to interact with the entire AD program for
more profound changes to the structure of the program, witch they
may wish to perform outside the VE anyway.

In the end, multimodal approaches may hold the answer, i.e.,
taking advantage of multiple input modalities simultaneously. Or
perhaps we can be as bold as to imagine the integration of brain-
computer interfaces, which are becoming ever more sophisticated
[16]. We may soon enough arrive at a point where users can just

Figure 9: LCVR methodology applied to the Isenberg case
study, with traceability mechanisms at play.

<Programming’20> Companion, March 23-26, 2020, Porto, Portugal

think of the actions they wish to perform and the computer will
interpret their electroencephalograph signals and do the rest.

6 CONCLUSION AND FUTURE WORK

Live Coding in Virtual Reality (LCVR) is a methodology for develop-
ing Algorithmic Design (AD) programs describing architectural 3D
models while immersed in a virtual representation of those models.
While doing LCVR, architects are inside the Virtual Environment
(VE), changing the algorithmic descriptions of their models and,
thus, making the buildings change around them.

In this paper, we proposed to augment the LCVR approach
with Program Comprehension (PC) and manipulation mechanisms,
namely traceability and refactoring, in order to ease the program-
ming task for architects who wish to live code in Virtual Reality
(VR). This not only aids the comprehension task and makes it easier
to modify programs without introducing errors but also reduces
the typing and scrolling required in the process.

As a result, we expect to remove one of the largest obstacles to
the adoption of the LCVR approach in architectural studios, so that
architects can truly benefit from the advantages of VR in their AD
processes.

The preliminary study presented constitutes a very early eval-
uation of this research. In the future, we plan on repeating the
evaluation on a larger pool of users, now focusing on later stages of
the design process where we believe LCVR is most beneficial. This
could be done by offering users an already developed AD program
and asking them to modify it. The experiment would allow us to
assess the value of the PC mechanisms implemented in helping
architects understand AD programs developed by others.

ACKNOWLEDGMENTS

This work was supported by national funds through Fundagéo para
a Ciéncia e a Tecnologia (FCT) with references UIDB/50021/2020
and PTDC/ART-DAQ/31061/2017.

REFERENCES

[1] Pedro Alfaiate, Inés Caetano, and Anténio Leitdo. 2017. Luna Moth: Supporting

Creativity in the Cloud. In Proceedings of the 37th Annual Conference of the

Association for Computer Aided Design in Architecture (ACADIA). 72-81.

Ferran Argelaguet and Carlos Andujar. 2013. A survey of 3D object selection

techniques for virutal environments. Computers & Graphics 37, 3 (2013), 121-136.

https://doi.org/10.1016/j.cag.2012.12.003

[3] Costas Boletsis and Stian Kongsvik. 2019. Text Input in Virtual Reality: A Pre-
liminary Evaluation of the Drum-Like VR Keyboard. Technologies 7, 2 (2019),
31.

[4] Mark Burry. 2011. Scripting cultures: Architectural design and programming. John
Wiley & Sons.

[5] Renata Castelo-Branco, Antonio Leitdo, and Guilherme Santos. 2019. Immersive
Algorithmic Design: Live Coding in Virtual Reality. In Architecture in the Age
of the 4th Industrial Revolution: Proceedings of the 37th Education and research in

[2

=

Renata Castelo-Branco, Anténio Leitdo, and Catarina Bras

Computer Aided Architectural Design in Europe (e€CAADe) Conference, José Pedro
Sousa, Gongalo Castro Henriques, and Jodo Pedro Xavier (Eds.), Vol. 2. University
of Porto, Porto, Portugal, 455 — 464.

Dirk Donath and Holger Regenbrecht. 1995. VRAD (Virtual Reality Aided Design)
in the Early Phases of the Architectural Design Process. In Proceedings of the 6th
International Conference on Computer-Aided Architectural Design Futures (CAAD
Futures). 313-322.

Tomas Dorta, Gokee Kinayoglu, and Sana Boudhraa. 2016. A new representational
ecosystem for design teaching in the studio. Design Studies 47 (2016), 164 — 186.
https://doi.org/10.1016/j.destud.2016.09.003

Tomas Dorta, Annemarie Lesage, Edgar Pérez, and JM Christian Bastien. 2011.
Signs of collaborative ideation and the hybrid ideation space. In Design Creativity,
Toshiharu Taura and Yukari Nagai (Eds.). Springer, 199-206. https://doi.org/10.
1007/978-0-85729-224-7_26

N. Dunn. 2014. Architectural Modelmaking. Laurence King Publishing. https:
//books.google.pt/books?id=2yN20AEACAA]

Martin Fowler, Kent Beck, Don Roberts, and Erich Gamma. 1999. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional.

Enrico Gobbetti and Riccardo Scateni. 1998. Virtual reality: past, present and
future. Studies in health technology and informatics 58 (1998), 3-20. https:
//doi.org/10.3233/978-1-60750-902-8-3

Iris Graessler and Patrick Taplick. 2019. Supporting Creativity with Virtual
Reality Technology. Proceedings of the Design Society: International Conference on
Engineering Design (2019), 2011-2020.

Antonio Leitdo, Renata Castelo-Branco, and Guilherme Santos. 2019. Game of
Renders: The Use of Game Engines for Architectural Visualization. In Intelligent
& Informed: Proceedings of the 24th Annual Conference of the Association for
Computer-Aided Architectural Design Research in Asia (CAADRIA) Conference,
Matthias Hank Haeusler, Marc Aurel Schnabel, and Tomohiro Fukuda (Eds.),
Vol. 1. Victoria University of Wellington, Wellington, New Zealand, 655 — 664.
Anténio Leitao, Luis Santos, and José Lopes. 2012. Programming Languages for
Generative Design: A Comparative Study. International Journal of Architectural
Computing 10, 1 (2012), 139-162. https://doi.org/10.1260/1478-0771.10.1.139
Julie Milovanovic, Guillaume Moreau, Daniel Siret, and Francis Miguet. 2017.
Virtual and Augmented Reality in Architectural Design and Education: An Immer-
sive Multimodal Platform to Support Architectural Pedagogy. In Proceedings of
the 17th International Conference on Computer-Aided Architectural Design Futures
(CAAD Futures). 513-532.

Luis Fernando Nicolas-Alonso and Jaime Gomez-Gil. 2012. Brain Computer
Interfaces, a Review. Sensors 12, 2 (2012), 1211-1279. https://doi.org/10.3390/
5120201211

Michelle Portman, Asya Natapov, and Dafna Fisher-Gewirtzman. 2015. To go
where no man has gone before: Virtual reality in architecture, landscape archi-
tecture and environmental planning. Computers, Environment and Urban Systems
54 (2015), 376-384.

David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld.
2019. Babylonian-style Programming: Design and Implementation of an Integra-
tion of Live Examples into General-purpose Source Code. Programming Journal
3(2019), 9. https://doi.org/10.22152/programming-journal.org/2019/3/9
Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding: A Literature Study Com-
paring Perspectives on Liveness. Programming Journal 3, 1 (2018), 3.

Dave Snowdon, Elizabeth F. Churchill, and Alan J. Munro. 2001. Collaborative Vir-
tual Environments: Digital Spaces and Places for CSCW: An Introduction. Springer
London.

Milena Stavric, Predrag Sidanin, and Bojan Tepavcevic. 2013. Architectural Scale
Models in the Digital Age: design, representation and manufacturing. Birkhauser.
https://books.google.pt/books?id=II5SDgAAQBA]

Xiangyu Wang. 2007. Mutually augmented virtual environments for architectural
design and collaboration. In Proceedings of the Computer-Aided Architectural
Design Futures conference (CAAD Futures). Springer, 17-29. https://doi.org/10.
1007/978-1-4020-6528-6_2

Robert Woodbury. 2010. Elements of Parametric Design. Routledge.

https://doi.org/10.1016/j.cag.2012.12.003
https://doi.org/10.1016/j.destud.2016.09.003
https://doi.org/10.1007/978-0-85729-224-7_26
https://doi.org/10.1007/978-0-85729-224-7_26
https://books.google.pt/books?id=2yN2oAEACAAJ
https://books.google.pt/books?id=2yN2oAEACAAJ
https://doi.org/10.3233/978-1-60750-902-8-3
https://doi.org/10.3233/978-1-60750-902-8-3
https://doi.org/10.1260/1478-0771.10.1.139
https://doi.org/10.3390/s120201211
https://doi.org/10.3390/s120201211
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://books.google.pt/books?id=Il5SDgAAQBAJ
https://doi.org/10.1007/978-1-4020-6528-6_2
https://doi.org/10.1007/978-1-4020-6528-6_2

	Abstract
	1 Introduction
	1.1 Visualization
	1.2 Immediate Feedback
	1.3 Interaction Mechanisms

	2 VR in Architecture
	3 Live Coding In Virtual Reality
	3.1 lcvr vs tadc
	3.2 Preliminary Study
	3.3 Limitations

	4 Program Comprehension
	4.1 Traceability
	4.2 Interaction Mechanisms
	4.3 Call Chain
	4.4 Refactoring

	5 Discussion
	5.1 Live Coding in Virtual Reality
	5.2 Interfaces

	6 Conclusion and Future Work
	Acknowledgments
	References

