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Abstract: The growing interest in sustainability and environmental design promoted the development of 
tools that respond to the architects’ demand for efficient ways to evaluate building performance and 
optimize their designs. To optimize a design, a parametric model of that design is iteratively instantiated 
and evaluated by an optimization algorithm that searches for the solutions that best fulfil a set of 
performance objectives. However, according to Wolpert´s No-Free-Lunch Theorem, different 
optimization problems are best served by different optimization algorithms and, thus, architects should 
test multiple ones. Unfortunately, this is not a straightforward task for the currently available algorithmic 
design tools because different optimization algorithms have different requirements, forcing architects to 
spend considerable time and effort to adapt their parametric models and simulation tools, to configure 
the optimization algorithms, and to visualize the optimization results. This paper addresses the 
beforementioned problems by presenting the integration of a wide range of optimization within the same 
algorithmic design tool. We discuss the use of this tool in a case study that demonstrates the usefulness 
of multiple optimization algorithms to avoid the potential non-optimality that emerges from using just 
one of them. 
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1. Introduction
The adoption of building optimization strategies has been growing as a result of the increasing interest in 
sustainability and environmental design, promoting the development of tools that respond to the 
architects’ demand for efficient ways to evaluate performance and optimize designs (Touloupaki and 
Theodosiou, 2017). To this end, architects resort to Algorithmic Design (AD) tools to create the necessary 
parametric models and then evaluate their performance using analysis tools. This can then be coupled 
with an optimizer to iteratively create and evaluate design variations in the search for a better- performing 
alternative. However, there are many optimizations algorithms available and it is difficult to know a priori 
which algorithm is the most adequate for solving a particular design problem. In this context, a wide range 
of algorithms should be tested, especially at initial design stages, to allow architects to understand which 
one is more suitable for their problem, and confidently resort to  that one during the remaining stages of 
the project development. 
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Architectural optimization is usually simulation-based, meaning the objective functions are computed 
through time-intensive analysis, resulting in highly time-consuming and often time-unfeasible processes. 
For this reason, many architects refrain from using algorithmic optimization in their daily practice. 
Moreover, this becomes much more problematic when they not only need to test multiple optimization 
algorithms but also these are scattered across different optimization tools.  This implies that changes to 
the optimization setup, even if small, must be made to adapt to the requirements of the new tool. 

In this paper, we proposed an approach that addresses these problems by integrating a wide range of 
optimization algorithms in the same AD environment and allowing for the simultaneous testing of multiple 
optimization processes. The proposed approach reduces the time needed to test different optimization 
algorithms, increasing the confidence in the results, and motivating architects to continually employ such 
methodologies in their daily practices. 

2. Architectural optimization
Architectural optimization problems tend to have multiple objectives that often conflict with each other, 
meaning the best solution for one objective might have poor performance in the others. Additionally, 
architectural optimization is frequently criticized for not considering all aspects of the design, focusing on 
a few selected objectives, and not giving sufficient control to the architect that, ultimately, is responsible 
for the design decisions. In this view, one of the main goals of architectural optimization is to find a way 
to efficiently reconcile performance and design freedom. 

Pareto optimization provides an attractive approach to achieve that goal. This is a Multi-Objective 
Optimization (MOO) approach that finds a set of solutions where none of the objectives can be improved 
without degrading some of the others (Khazaii, 2016). This set of optimal solutions represent the trade-
offs found by the optimization algorithm and embody the so-called Pareto front. By producing not just 
one but a possibly large set of optimal solutions, Pareto optimization allows the architect to select from 
this set what he considers the best solution, satisfying not only the measurable objectives used during the 
optimization but also personal ones. 

3. No Free Lunch Theorem
Architectural optimization problems are often simulation-based, meaning the objective functions do not 
have a known mathematical expression and, instead, are calculated through analysis tools. Since it is not 
possible to extract information from the objective functions to guide the optimization process, black-box 
optimization algorithms are more suitable to address architectural optimization problems (Wortmann and 
Nannicini, 2016). These can be sub-divided into three main classes: metaheuristic algorithms, which are 
inspired by natural phenomena and biological analogies, for example, evolution by natural selection or 
swarm behaviours; direct-search algorithms, which sequentially evaluate design solution through 
deterministic methods; and model-based algorithms, which create an approximation of the black-box 
objective functions and then iteratively refine it as the optimization progresses. 

Interestingly, according to Wolpert’s No Free Lunch Theorem, no optimization algorithm constantly 
outperforms all others in all problems (Wolpert and Macready, 1997). Therefore, knowing which 
optimization algorithms are most suitable for a specific problem requires testing a heterogeneous set of 
algorithms. Moreover, each algorithm makes different assumptions regarding the problem they aim to 
solve, thus testing multiple ones increases the chances of finding the best match for a specific problem. 
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This, in turn, can result in large optimization gains. Yet, testing different optimization algorithms is time- 
consuming, especially in building performance optimization, where complex simulations are necessary. 

In general, optimization requires a large number of evaluations of the objective functions. However, 
in simulation-based optimization, the evaluations are computationally expensive and, thus, it is necessary 
to use optimization algorithms capable of produce satisfactory results with a small sample of the design 
space (Wortmann, 2019). 

Model-based algorithms are faster at calculating objective functions, since the time-consuming 
simulations are replaced by an approximation, and have been showing promising results, particularly in 
Single-Objective Optimization (SOO) (Wortmann et al., 2017). However, to produce better predictions 
these algorithms need to sample, using simulation-based evaluations, a sufficiently large fraction of the 
design space, which may hinder the speedup gained by using the approximation. Additionally, the 
architectural field seems to prefer a sub-class of the metaheuristics – the evolutionary algorithms. 
However, these may not be the best option as they usually need a high number of evaluations to achieve 
the same results as other classes of algorithms. 

4. Architectural optimization tools
The interest in architectural design optimization has been increasing over the last two decades, as is visible 
in the growing number of optimization tools available. These tools are usually developed as plugins for AD 
tools, such as Grasshopper or Dynamo, allowing architects to easily couple parametric modelling and 
building performance simulations with optimization strategies. The following sections present an 
overview of the most well-known optimization tools for architecture, along with the challenges architects 
may face when they want to test multiple optimization algorithms. 

Despite the variety of optimization tools currently available, they significantly differ in the type of 
problems they can solve (e.g., single or multiple objective) and in the number and class of optimization 
algorithms they offer. 

4.1. Grasshopper 

Grasshopper for Rhino is a popular AD tool where architects can develop their designs by dragging and 
connecting graphical components. The following paragraphs present some of the optimization plugins 
that were developed specifically for Grasshopper. 

Galapagos (Rutten, 2013) is a SOO plugin that uses two generic solvers: a genetic algorithm and a 
simulated annealing algorithm. It offers a simple, well-organized, and user-friendly interface where all the 
necessary options for the optimization have pre-defined defaults. On the one hand, its simplicity 
encourages designers with little experience in optimization to start integrating optimization strategies in 
their workflow. On the other hand, more experienced designers may feel limited when using it. 

Wallacei (Makki et al., 2020) supports MOO, allowing users to run the well-known evolutionary 
optimization algorithm NSGA-II (Deb et al., 2002). It also provides detailed analytic tools coupled with a 
wide range of visualization options to assist users in understanding the results produced and, therefore, 
making more informed decisions. 

Opossum (Wortmann, 2017) supports SOO and MOO, and includes metaheuristic algorithms and 
model-based ones for both optimization problems. For SOO it provides the model-based RBFOpt (Costa 
and Nannicini, 2018) and the evolutionary-based CMA-ES (Hansen et al., 2006), and for MOO, the 
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model-based RBFMOpt, the evolutionary-based MOEA/D (Rubio-Largo et al., 2014) and NSGA-II, the ant- 
colony-based MACO (Sun et al., 2010), and, finally, the particle swarm-based NSPSO (Liu, 2008). 
Additionally, Opossum addresses different levels of expertise, has a user-friendly and ready-to-use 
interface, with pre-defined default values for each algorithm, which can be re-configured by more 
experienced users. 

Octopus (Vierlinger, 2020) is based on the MOO evolutionary algorithms SPEA2 (Zitzler et al., 2001) 
and HypE (Bader and Zitzler, 2011), and already includes some model-based algorithms. It works in a 
similar way to Galapagos but includes the concept of Pareto optimization. Octopus’ interface is as user- 
friendly as the one of Galapagos, generating multiple visualizations that help the user to better understand 
the optimization results. 

Goat (Rechenraum, 2016) uses the NLopt library (Johnson, 2008) to provide SOO algorithms from  the 
black-box-optimization classes mentioned in Section 3. It has the metaheuristic algorithms CRS2, the 
direct-search algorithms DIRECT and SUBPLEX, and the model-based algorithms COBYLA and BOBYQA. 
Moreover, Goat is deterministic, i.e., running the same algorithm with the same parameters will always 
yield the same result. This feature allows for the reproducibility of results, a valuable quality for scientific 
work. On the other hand, it only returns a single optimal solution, which is not appreciated by most 
architects. 

Silvereye (Cichocka et al., 2017) is a SOO plugin based on the PSO algorithms. The main goal of 
Silvereye is to help inexperienced users solve complex real-world optimization problems. It has a simple 
and user-friendly interface, with default values for the algorithms’ configuration. These can be updated 
by the user, and the tool will automatically save the new values to be used as the default configuration 
the next time the plugin is loaded. 

4.2. Dynamo 

Dynamo is another well-known AD tool. It is also based on a visual programming language, but 
differently from Grasshopper, it is integrated with the BIM tool Revit. Although in smaller numbers, there 
are also optimization plugins developed specifically for Dynamo. Here, we present the one that is most 
used by practitioners of this AD tool. 

Optimo (Asl et al., 2015) uses NSGA-II to solve both SOO and MOO problems. It does not provide users 
with a user-friendly graphical interface, meaning even post-processing and visualizations must be done 
through components and are showed as background of the Dynamo environment. This may keep the less 
experienced users away from using the tool. 

4.3. Comparison 

Table 1 summarizes the features we consider more relevant for this research from each one of the plugins 
presented previously. From all the tools we analysed, Opossum is the tool with a more diverse offer of 
optimization algorithms and the only Grasshopper plugin that includes options for both SOO and MOO. 
Octopus and Goat also have a fair number of algorithms and, similarly to Opossum, provide model-based 
algorithms. Moreover, Goat is the only one that provides direct-search algorithms. Finally, current 
optimization plugins already provide all classes of black-box optimization for both SOO and MOO, except 
direct-search for the later, a combination that is still being researched. 
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Table 1: Design optimization plugins and their corresponding optimization algorithms. 
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5. Discussion
To address the challenges mentioned previously, we coupled a textual-based AD tool with a set of 
simulation-based evaluation tools and with a parallelized optimization framework that relies on  a unified 
description of the optimization problem. This combination (1) provides a large variety of optimization 
algorithms, (2) parallelizes the optimization processes, and, finally, (3) supports post- processing and 
visualizations techniques to compare optimization results more easily. 

5.1. Optimization problem 

To test the proposed approach, we developed a case study that consists of a skylight truss. The skylight is 
divided into multiple truss pyramids where the height of each one changes randomly within a pre- defined 
range. Additionally, the number of pyramids can also vary. Figure 1 shows some variations regarding the 
number of pyramids (a to c, and b to d), and the maximum height (a to b, and c to d). 
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Figure 1: Variations of the truss skylight. 
 

The number of pyramids (n) and the maximum height of the pyramids (h), as well as the material of 
the structural bars (mat) and its radius(r), were considered as the variables of our optimization problem. 
As objectives, we were interested in improving the structural behaviour of the skylight, measured in terms 
of the structure maximum displacement, while reducing its cost, measured in terms of the structure’s 
volume and the materials cost per m3, as described in Equations 1 and 2. These are conflicting objectives 
because a material with better structural performance is also more expensive. Thus, the goal for the 
optimization is to reconcile these objectives by finding the set of design solutions for the truss skylight 
that represent the best trade-off between structural performance and cost. 

 
(1) 
(2) 

 

To test the parallelization approach and to find out which optimization algorithm yields the best results 
for this case study, we tested nine different ones: six metaheuristics and three model-based algorithms. 
To allow a fair comparison with the previously presented optimization plugins, we excluded the direct-
search class. As for the metaheuristic class, we tested the particle swarm-based SMPSO and OMPSO, and 
the evolutionary-based SPEA2, NSGA-II, MOEA/D, and PESA2 (Corne et al., 2001). Concerning the model-
based class, to create the approximation of the objective functions we tested the Random Forest 
Regressor (RFR), the Extra Tree Regressor (ETR), and the Gaussian Process Regressor (GPR) (with a radial 
basis function as kernel), and we combined them with a metaheuristic solver (SPEA2). 

Additionally, to allow a fair comparison between the different algorithms, they were limited to the 
same maximum number of evaluations: 600. This value corresponds to a very small percentage of this 
problem’s design space, more precisely to 4.3%. Moreover, all of the metaheuristic algorithms, which in 
our case are population-based, were given the same initial population, computed through the Latin 
hypercube algorithm, and the same number of iterations (20), resulting in a population size of 30 
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elements. The model-based algorithms work in a different way than the beforementioned class, thus, 
were defined in a more suitable way. To construct the approximations, we initially produced 420 random 
evaluations, corresponding to 70% of the maximum possible evaluations, and then, leave the remaining 
30% to be evaluated during the optimization. We performed three runs to minimize the randomization 
factor inherent to each algorithm and to have more informed conclusions about the performance of each 
one, resulting in 27 optimization processes. 

5.2. Optimization results 

Once we had the results of all three runs of the optimization algorithms tested, we produced the 
corresponding Pareto front to compare the algorithm’s performance. The results are illustrated in Figure 
2, where one Pareto front contains all of the optimal solutions found during the multiple runs. 

From this figure, we can clearly observe that the particle swarm algorithms were the ones that showed 
the worst performance in this problem, particularly, OMOPSO was the algorithm with the poorest 
performance. The evolutionary algorithms and model-based ones exhibited similar performance, with the 
former being slightly worse than the latter. This shows one of the main drawbacks of using Pareto fronts 
to compare the performance of algorithms and reinforces the need to use other metrics to evaluate the 
performance of the optimization algorithms. 

Figure 2: Pareto fronts for the optimization algorithms tested. 

To have more in-depth performance evaluation and to determine which of the tested algorithms is the 
more adequate for our optimization problem, we decided to use the hypervolume and the Overall Non-
dominated Vector Generation (ONVG) indicators. The former measures the volume of the dominated 
space and the latter measures the number of optimal solutions. Moreover, to understand how the 
optimizations evolve over time, we measure these indicators per iteration, as illustrated in Figure 3. It is 
noteworthy that for the model-based algorithms, only the solutions found through the 
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approximations are represented. From the information in this figure, we can take more concrete 
conclusions about the performance of the algorithms. Particularly, the model-based RFR_SPEA2 and 
ETR_SPEA2 were not only the algorithms that more quickly achieved a higher value of hypervolume, but 
also the ones that found more optimal solutions. 

Figure 3: Hypervolume and ONVG indicators per evaluation. 

5.3. Parallelization results 

When a set of tasks can be executed in parallel, the time needed to complete all of them depends only on 
the longest one. This means that the maximization of the parallelization speedup requires that all tasks 
take approximately the same time to complete. However, in our case study, we observed that the SMPSO 
algorithm took, on average, twice as much time to complete as the second slowest one, which caused a 
decline in the speedup factor. Given that our approach supports selective cancelling of the optimization 
processes that are running in parallel, it is up to the architect to decide if the solutions produced by other 
optimizations are good enough to allow for early termination. As a result, to better evaluate the 
parallelization effort, we divided it into two parts: one where the outlier algorithm is not considered, and 
another where it is. In the first case, assuming that we have as many processing cores  as needed and 
taking into account the actual time need for each optimization the theoretical speedup was 13.3. 
However, as the number of tasks (21) exceeded the capabilities of the available hardware (only eight cores 
with hyper-threading), the observed speedup was 6.7. In the second case, as we increased the number of 
tasks (27) to include SMPSO’s runs, the theoretical speedup decreases to 8.6 but the actual one was 2.9. 

Despite being considerably below the theoretical speedups, the results represent a significant 
improvement in the time needed to test multiple optimization algorithms, and more so for the first case. 
This means that the parallelization has the potential to motivate architects already interested in 
optimization to test a wider range of algorithms, while simultaneously appealing to those interested in 
environmental design, but afraid of the time-consuming aspect of optimization. Finally, results show that 
even in machines with limited resources, parallelization approaches can considerably reduce the 
computational time needed for experimenting with the different optimization algorithms. In fact, in 
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other case studies, tested in more powerful hardware, we have experienced larger speedups that reach 
one order of magnitude. 

 

6. Conclusions and Future work 
Architectural optimization can help architects achieve more performative and sustainable designs. To this 
end, architects must use optimization algorithms that are adequate for their design problem. However, in 
general, this adequacy is not known beforehand. Therefore, for each optimization problem, it is important 
to test a wide range of optimization algorithms. Unfortunately, the currently typical optimization 
workflow is not practical, forcing architects to (1) switch between tools and (2) test algorithms 
sequentially, considerably increasing the time spent in what is already a highly time- consuming process. 

To address these problems, we proposed a framework that combines an algorithm design tool with 
simulation and optimization tools, allowing architects to use a unified description of the optimization 
problem to test multiple optimization algorithms. Moreover, we parallelized it to run multiple 
optimization processes simultaneously, thus, speeding up the identification of the best-performing 
optimization algorithm. This allows architects to worry less about the details of the optimization and, 
instead, direct their attention towards the creative process of design development, while still ensuring a 
high-performing final design. 

One of the limitations of this research is that, differently from what the architectural field prefers, it 
uses a textual-programming language. Textual-programming languages have a higher learning curve when 
compared with visual ones. However, they scale better, meaning algorithmic descriptions of complex 
designs become easier to understand and, therefore, to optimize. Another limitation to consider is the 
hardware resources needed for an effective parallelization. Although the evaluation was performed on an 
off-the-shelf laptop, the results show that even in this case the speedup obtained justifies the adoption of 
parallelization approaches in optimization problems. Moreover, given that the current hardware 
evolution points in the direction of an increasingly larger number of processing units, it is expected that 
the parallelization speedups will improve in the future. 

As future work, we will explore additional parallelization approaches to further increase the speedup. 
In particular, we plan to also parallelize the evaluation of individuals in population-based optimization 
algorithms, as well as the evaluation of a single individual for embarrassingly parallel objective functions, 
such as those based on lighting analysis or acoustic analysis. 
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