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Abstract

Algorithmic Design (AD) uses computer programs to describe architectural models. These models are visual by nature

and, thus, greatly benefit from immersive visualization. To allow architects to benefit from the advantages of Virtual

Reality (VR) within an AD workflow, we propose a new design approach: Live Coding in Virtual Reality (LCVR). LCVR

means that the architect programs the design while immersed in it, receiving immediate feedback on the changes

applied to the program. In this paper, we discuss the benefits and impacts of such an approach, as well as the

most pressing implementation issues, namely the projection of the programming environment onto VR, and the input

mechanisms to change the program or parts of it. For each, we offer a critical analysis and comparison of the various

solutions available in the context of two different programming paradigms: visual and textual.
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Algorithmic Design

Nowadays, Algorithmic Design (AD) is becoming increas-
ingly important in the architectural practice, having been
adopted by well-known architecture studios such as Foster
+ Partners, Gehry Partners, and Zaha Hadid Architects. This
research follows the definition of AD provided by Caetano
et al.1, which states that an algorithmically-designed project
can benefit from parametric flexibility if the entities in the
design are logically connected. In that case, changes applied
to the parameters are automatically propagated to the rest of
the model2, allowing the user to explore design variations
with ease.

Beyond model flexibility, AD also assists the designer
in the creative process by automating repetitive tasks
and allowing a finer control over the modelling of
complex geometries, which are frequently difficult to
produce manually3. Finally, AD facilitates and enhances
model visualization (e.g., enabling the automatic generation
of renders and animations), analysis (e.g., structural,
lighting, and energy-efficiency analysis), optimization, and
fabrication.

Considering the advantages AD brings to the Architecture,
Engineering, and Construction (AEC) industry4, many AD
tools have been developed5 and two main paradigms stand
out: Visual Programming Languages (VPLs), which simplify

the learning process but lack scalability and abstraction6,7,
meaning that as programs grow in complexity, they become
hard to understand and navigate; and Textual Programming
Languages (TPLs), which scale better, allowing for
larger programming projects, however, usually requiring
more extensive programming knowledge and presenting
inadequate representation mechanisms for the innate visual
nature of architectural projects8.

The two paradigms present a common flaw: the difficulty
architects face in understanding AD programs and relating
them to the building’s concept. This difficulty unfortunately
means that AD largely remains a demanding and time-
consuming endeavour.

Model Visualization

The typical interaction with architectural 3D models entails
a mouse-based manipulation of 3D geometry, where users
manipulate their designs through a collection of windows
showing the geometry from various perspectives. This
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Figure 1. Rendered 3D model of the Astana National Library
project in Rhinoceros 3D shown in the 4 default viewports.

system forces architects not only to combine the separate
views to form a mental model of the entire scenario9, but also
to scale it to real size in their imagination. Figure 1 illustrates
this scenario for the case of the Astana National Library
project. This building, originally designed by Bjarke Ingels
Group in 2008, has the shape of a 3D Moebius strip, a rather
complex form for one to understand through projections
only.

Given that most digital design tools fail to provide the
dimensionality required to assess the quality of a design
solution10,11, traditional architectural design processes tend
to rely on the production of physical models. However, this
is expensive and time-consuming.

As we previously established, despite all the advantages,
the nature of AD hampers designers’ ability to infer
a building’s concept just from looking at its program;
particularly so for the levels of design complexity
it promotes. Considering the scenario presented above,
better visualization mechanisms are required to bring this
representation method closer to the form-creation and
manipulation mechanisms architects have for centuries used
to design10.

Virtual Reality

Virtual Reality (VR) is a new interaction paradigm where
users experience computer-generated worlds in a deeply
immersed manner. In a Virtual Environment (VE), all the
elements in the world are artificially created and the user
is fully engaged in a virtual experience. Given its potential,
VR presents a viable solution to the unnatural visualization
problem of digital design tools. Three main strategies12 were
identified for the application of VR in the AEC industry:

(i) When designing in a VE, the 3D medium can shape
itself around the author in any scale, facilitating
essential perceptions of solid, void, navigation, and
function13, as well as motivating designers to engage
in more creative14 and exploratory design actions15.

(ii) Communicating with VR offers new possibilities
for customer showcasing, by allowing users to walk
inside the constructions as if they were already built.
VR technology has also been used for user-centred
design and analysis16,17, by having users interact with
the models in VR for occupancy or behaviors-related
studies and validation18,19.

(iii) Regarding new market opportunities, we highlight
the new remote collaboration methods allowed by
VR technologies20,21, e.g., multiple collaborators at
different location in the globe can now be inside a
virtual model of a building simultaneously interacting
with the building and with each other.

Typical use of VR in the design process covers design
assessment only, meaning the architect wears a Head-
Mounted Display (HMD) only to evaluate the design
solution, removing it afterwards to get back to the modelling
tool in order to change the design. By coupling algorithmic
approaches with VR, we can transform the design process
in the VE into a real-time and interactive one, with no need
for the architect to remove the HMD between design stages.
For designer-client interaction, this coupling represents
considerable time gains: if architects can make changes to
the model in real time, while inside it with the client, they
can accelerate the typical client-architect ideation process. In
the context of AD, real-time and interactive processes imply
the use Live Coding (LC).

Live Coding

LC is a creativity technique centred upon the writing of
interactive programs on the fly22. LC is based on a real-
time connection between program and result, thus requiring
immediate feedback on program changes. Although this
requirement was designed to address the timing needs of
live performances, such as musical ones23, it has the added
benefit of allowing the programmer to easily understand the
impact of program changes.

In the case of AD, immediate feedback requires the
model to be recomputed for each change applied to the
the algorithmic description. This is not an entirely trivial
problem to solve, since building designs quickly become
arbitrarily complex.
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From the panoply of AD tools available in the market,
we highlight two that offer LC capabilities22: Grasshopper,
a visual programming environment, and Luna Moth24, a
web-based textual programming tool. Both tools offer the
liveliness aspect that makes the programming task more
intuitive. These two tools deal with the immediate feedback
vs. complexity issue in very different ways. Luna Moth
scales to complex designs by taking advantage of the native
execution speed allowed by the compilation of textual
programs, while Grasshopper offers users the possibility to
deactivate the feedback at large scales.

The creation of a workflow for programming in VR has
been attempted by Elliott et al.25 with the RiftSketch project,
and by Robert Krahn with CodeChisel3D.∗ Both tools offer a
LC environment built for VR, with text editors floating in the
scene for users to code in. Nevertheless, both solutions were
only tested with simple graphical models and they were not
applied in an architectural context.

Using VPLs, tailored solutions for architecture have also
been developed. For instance, Coppens et al.26 and Hawton
et al.27 both implemented visual-based AD solutions for VR.
However, they only allow users to calibrate parameters in VR
using sliders, meaning it is not possible to apply changes
to the algorithm itself (the nodes and wires, in this case).
This limitation excludes the named solutions from the LC
classification.

Immersive Algorithmic Design

Despite being applicable in many different contexts, Live
Coding in Virtual Reality (LCVR) becomes particularly
useful for architecture, allowing practitioners to live code
their models in an immersive AD process. Considering
this, we have previously proposed a design workflow
that entails the integration of LCVR with AD28. The
work here presented extends our previous proposal, firstly,
by elaborating on the workflow’s building blocks and
implementation details and, secondly, by adding additional
features to the implementation that make LCVR applicable
in a broader range of scenarios.

In the LCVR workflow, the architect uses a HMD to
become immersed in the VE, where both the algorithmic
description and the generated model are presented. From
the VE, the architect can then apply modifications to the
AD description, while the resulting model is concurrently
updated in accordance to the changes made.

Figure 2 presents one of the possible implementations of
LCVR being used in the Astana National Library model.
Three design variations, namely in what regards the torsion

of the facade, are presented from different points of view,
representing places in the model where the architects can be
immersed, evaluating the impact of the changes applied.

For this workflow to take place, a sufficiently performant
connection is required between an AD and a VR tool. Game
Engines (GEs) provide a solution to this problem.

Integrated Approach

In the past, an integrated approach to AD3 was proposed,
which entailed the creation of a single algorithmic
description capable of generating equivalent models in
various tools. These tools are referred to as backends of the
AD tool and they are chosen depending on which paradigm
the architect may find most beneficial for the task at hand at
any given stage of the design process.

For instance, we could use Computer-Aided Design
(CAD) tools for concept and form experimentation; Building
Information Modelling (BIM) tools for more detailed stages
where construction information is required; analysis tools
to evaluate the design’s performance; optimization tools to
optimize designs based on the performance analysis; and,
finally, GEs for fast visualization and interaction with the
models in near real-time render quality.

As we saw before, the advantages VR brings to the design
process seem to be widespread throughout the various design
stages12. Hence, we believe architects should be free to
determine at which stage the LCVR workflow best fits their
own design process, and if it should or should not entirely
replace programming in (actual) reality.

Figure 3 presents a scheme of the integrated approach
extended to accommodate the LCVR workflow. On the
top left corner, we notice the typical AD workflow, where
the architect interacts directly with the AD tool from the
computer’s desktop, coding in the Interactive Development
Environment (IDE), i.e., the code editor to which the tool is
coupled.

Live Coding Workflow

On the bottom left corner of Figure 3, we can see a
different mode of interaction with the AD tool, from the
VE: LCVR. The LCVR workflow is anchored primarily on
GE backends. GEs are optimized visualization tools that
allow for faster generation of models and low latency in live
model manipulation and navigation. This makes them good

∗http://robert.kra.hn/past-projects/live-programming-with-three-and-
webvr.html
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Figure 2. Astana National Library being live coded in VR: 3 variations (left to right) seen from 3 different angles (top to bottom).

Figure 3. Integrated AD and LCVR workflows.
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candidates for a solution that relies on real-time code-model
interactiveness.

This workflow allows the architect to continue developing
the algorithmic description of the design, with all the
advantages of typical AD processes. This means the
geometry can still be generated in alternative backends,
however, when using the GE backend, architects can also
control the process inside the VE. Furthermore, LCVR
implies that this process in done live, meaning the building
changes around architects as they code it on site.

There is, nonetheless, a setback to consider in this
scenario. Despite the fast response guaranteed by GEs, the
capacity for real-time feedback will always be conditioned
by the model’s complexity. Architectural 3D models tend
to rapidly escalate in complexity, which means large-
scale projects will always cause short time lapses between
generations of model iterations.

Programming Paradigm

As discussed previously, two competing programming
paradigms exist in the field. As both offer very different sets
of advantages to AD, we chose to test our proposal with
both visual and textual programming. VPLs are generally
more appealing to the architectural community, given their
user-friendliness and smooth learning curve. On the other
hand, TPLs offer more expressive power, flexibility, and
efficiency29, which makes them a more appealing option
when developing larger AD projects.

Regarding LCVR, it matters not only the expressiveness
and scalability of the paradigm, but also the code
manipulation mechanisms available in each case. Since users
will be coding in a VE, the interaction with the programming
environment, or IDE, will necessarily be rather different
from the one they have experienced in their computers.

In this regard, we argue that programming in VPLs is
likely to render better results when coding in VR, as they
require less textual input. While VPLs typically rely on
dragging mechanisms for manipulating components, TPLs
depend on textual input usually provided via keyboard.
LCVR with TPLs will thus require the use of extra
equipment for the typing task. We will delve deeper into this
topic in the following sections.

Implementation

For the implementation of an integrated solution, we require
an AD tool capable of translating the algorithmic description
into operations recognized by different backends. There are
several tools that allow for this sort of portability. For the

Figure 4. LCVR workflow: the architect in VR interacts with the
IDE in order to change the model’s algorithmic description. As
the changes are being applied to the code, the AD tool
regenerates the model in the VE where the architect is.

evaluation of our proposal we will focus on two of them:
Grasshopper, representing visual programming, and Khepri,
for textual programming. The Khepri AD tool, currently
available for use within the Atom IDE and with the Julia
programming language, offers a direct connection to a GE
backend: Unity30. In order to compare both paradigms in the
context of LCVR, we developed a Khepri-based Grasshopper
plug-in capable of communicating with Khepri’s backends.

This means the Khepri AD tool is, in both cases,
responsible for generating the coded geometry. Figure 4
presents the proposed LCVR workflow. While immersed in
VR, architects modify their AD programs through the chosen
IDE, which is being projected onto the VE. The IDE gives
them access to their programs (in this case, visual programs
written in Grasshopper or textual programs written in Julia).
The Khepri AD tool, in turn, converts the given instructions
to operations recognized by the backend, Unity, updating the
VR model around the architects in real-time.

In order to implement this workflow, three main features
must be considered: (1) the projection of the IDE onto
the VE for the architect to access the program; the input
mechanisms for the architect to change the program, which
can be (2) code manipulation mechanisms, or (3) parameter
manipulation mechanisms only, as an alternative for faster
and more direct changes to the code. This section contains
an overview of currently available solutions for the presented
issues, grounded on the experiments we made for each of
them.

In order to provide a critical analysis and comparison
of the various options, we developed a simpler case study:
a random pagoda city exercise, whose limited complexity
allowed us, at this stage, to experiment with the various
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Figure 5. IDE options table for both the explored ideas and
implemented solutions.

implementation possibilities as well as test different input
mechanisms. An equivalent representation of the pagoda city
was programmed in both a VPL - Grasshopper - and a TPL
- Julia. However, and since this work is clearly exploratory,
some of the solutions we discuss regarding IDE projection
onto the VE are presented as mockups only, all of which are
properly identified as such.

Integrated Development Environment

In order to live code in VR, the architect requires a platform
in which to program from the VE. For this problem,
we considered four possible solutions: (1) having textual
programs available for manipulation in a tailored textbox, (2)
having visual components projected onto the VE, (3) having
selected parts of textual programs projected onto the VE as
3D entities, and (4) mirroring the user’s desktop in the VE.
Figure 5 organizes these option in terms of their applicability
to the two programming paradigms, and it identifies the
option we chose to implement in the end.

Tailored textboxes is a solution most fit for TPLs and
implies having the code showcased in a textbox on screen
for the user to edit. In this case, the text moves along with
the user’s gaze, as it belongs not to the scene but to the user’s
own viewport. This means users do not need to (re)place the
workstation each time they move in the VE (Figure 6-A).

However, there are several disadvantages. Primarily, the
code is likely to become visual clutter as it blocks part of
the scene. Secondly, IDEs offer debugging, syntax highlight,
and other features, which represent great gains in coding
efficiency. With a textbox approach, users lose the aid
provided by their IDEs of choice during the coding task.

Having VPL components projected onto the VE has two
possible development paths: the first option would be, much
like the previous solution, to showcase the visual program in
front of the scene, moving along with the user’s viewport

(Figure 6-B1); the second option would be to have the
visual components generated as 3D elements, which could
be manipulated like any other object in the scene (Figure 6-
B2).

The first option would likely be more intrusive, although
the user might choose to turn the programming layer on
and off to eliminate the partial scene clutter from time to
time. On the other hand, in the second case, the code does
not accompany the user’s movement automatically, which
may limit navigation while coding. Furthermore, having 3D
components floating in the scene might lead to confusing
situations where code and resulting geometry interfere with
each other, thus becoming even harder to understand and
manipulate.

Having selected TPL programs projected onto the VE as
3D entities is another option. In this case, users are expected
to select an object they wish to modify. The program
recognizes the parcel of code that generated this object, or
set of objects, and projects it onto the VE, next to the referred
objects. Within the VE, the user can then change that parcel
of code. Figure 6-C presents the corresponding mockup for
this solution.

This approach, as opposed to having the entire program
showcased at once, makes better use of the 3D space, since
we can distribute the selected parts of the program on the
scene along with the corresponding geometry. It is also more
succinct, which might help less experienced programmers
orient themselves in the code.

Nevertheless, we can also foresee obstruction issues. In
this scenario, code would be popping up arbitrarily next
to the selected part of the model, unless we devised an
algorithm capable of calculating the ideal code position
according to both user’s sight cone and neighbouring
geometry. Even then, readability would not be assured on
account of the background.

Mirroring the user’s desktop in the VE could work for
either programming paradigm. Since we are viewing, inside
the VE, what we would view outside it, we can essentially
rely on the same IDE we would use in a traditional coding
workflow. Besides being the easiest to implement, this
solution also offers users entire control over their programs
in the VE, meaning they can see and access anything they
would if they were coding on their desktops, plus the added
advantages of using the complete IDE.

Like its counterparts, this one also presents some level
of intrusiveness, in the sense that the mirrored screen
constitutes a partial visual blocker to the scene. Nevertheless,
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Figure 6. IDE option mockups: A - tailored textboxes; B - visual components as (1) 2D or (2) 3D entities in the VE; C - selected text
parts projected onto the VE.

Figure 7. Mirroring the user’s desktop IDE option. Grasshopper
environment on top and the Atom IDE showcasing a program in
the Julia language on the bottom.

the desktop can be moved around or removed entirely with a
click of a button.

Considering the discussed advantages, as well as the small
amount of obstacles to overcome in its implementation,
we have settled on this solution. Figure 7 presents the
LCVR scenario for this option in both a visual and textual
programming context.

Code Manipulation

In order to program in VR, one must be able to type. This is a
more notorious necessity when coding in TPLs, since VPLs
mostly rely on dragging and dropping components and wires
- a workflow assured by the gripping mechanisms provided
by VR technology. However, even using VPLs, we have to
input numbers for parameters, variables, etc.

To deal with textual input, we considered four currently
available solutions: handwriting, voice input, typing on a
virtual keyboard, and typing on a physical keyboard.

Hand-written code recognition presumes the existence of
large enough databases of hand-written code and the
corresponding typed code for any given tool to be trained
with accuracy. For this solution to be implemented, the scale
of the written characters in VR must also be considered.
Humans are considerably faster when writing symbols in
smaller scales (e.g., when writing on paper, as opposed to
writing on a whiteboard). Handwriting code in VR, however,
as hardware stands today, would have to rely on larger
displacements of the writing instruments for the sensors
to detect the motion, which might ultimately defeat the
performance purpose.

Voice input would probably be the most comfortable option
for the user. In the context of VR, vocal programming would
allow users to code hands-free, thus requiring no additional
equipment other than a microphone, which, in most cases, is
already present in VR headsets. Nevertheless, we can foresee
a series of obstacles as well. Primarily, current technology
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Figure 8. Tested typing options with corresponding visual feedback in VR below: virtual keyboard - wearing the control handles
using (1a) laser tags, (1b) index fingers only, or (1f) leap motion technology; and (2) occluded physical keyboard, with a
corresponding virtual keyboard with highlighted keys.

has low voice recognition accuracy in loud environments,
which means expensive equipment might be required when
working collaboratively in VR or showcasing projects to
clients. Secondly, and more specific to the problem at hand,
dictating coding commands is nothing like dictating text in
natural language and, thus, requires training.

Virtual keyboards, along with physical ones, represent the
more conservative solution, as they try to mimic the coding
workflow in (actual) reality. Currently available solutions
for the use of virtual keyboards include using regular VR
controllers to (a) point at keys with laser tags, (b) touch the
virtual keyboard with the index fingers only, or (c) drum the
keys. Our own experimentation (visible in Figure 8) included
the use of solutions (a) and (b), which proved to be very slow.
Solution (c) is considered a more efficient technique, yet it
entails a steeper learning curve.

Still on virtual keyboards, it is also possible to type
via (d) gaze input, which is also slow, (e) using wearable
finger tracking hardware, and (f) leap motion technology to
track the movement of multiple fingers. Option (e) is rather
intrusive, on account of the wearables required, which not
only take time to mount and dismount, but may also be a
burden. From this group we only tested solution (f), leap
motion technology, which proved to have good precision
levels for gesture recognition, but largely failed in tracking
the motion of each finger over a keyboard, since they tend to
occlude each other within the range of the sensor. Because
of this, we rejected this option prior to implementation in
the LCVR workflow. Image (1f) in Figure 8 corresponds to

Figure 9. LCVR use case: visual paradigm on top and textual
paradigm on the bottom.

a prototype of the ideal solution to be implemented if/when
this technology achieves higher levels of accuracy.

The use-case of option (1a) for the pagoda exercise can be
found in Figure 9. The top image shows an architect using
controllers to point at keys with laser tags in order to modify
the version of the pagoda program developed in Grasshopper.

Physical keyboards have already proven to beat the typing
performance of virtual keyboards31. However, it has been
shown that occluded keyboards cause significantly more
typing errors32. Our findings concur with the literature
review: the occluded physical keyboard yielded good results
with experienced typists, but not as good with less trained
ones, who consistently mistyped commands and frequently
lost their track on the keyboard. We also tried showcasing a
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responsive virtual keyboard in the scene, which highlighted
the pressed keys to provide the user with key-striking
feedback. This slightly improved the performance of the
second test group. Surprisingly, though, we found most of
them simply preferred to peek the real keyboard through
the nose hole of the glasses (a workflow made possible due
to the characteristics of one of the headsets used in the
experiments).

Finally, it is also possible to provide users with hand-
position feedback using suggestions (e) and (f) described
above, or using an inlay webcam recording the user’s hands
on the physical keyboard and projecting the image in VR.
The inlay webcam approach has proven to guarantee the least
error rates33, although the time delay on the projected image
is substantial in most cases and cannot be overlooked.

In conclusion, either of the presented solutions is far from
ideal. Typing on a normal keyboard outside the VE beats
the performance of any of these methods by a large margin.
This does not mean they are hopeless; we can always count
on technological evolution to provide innovative solutions
and to improve existing ones. Naturally, this topic is more
concerning in the context of TPLs, which require much more
typing than VPLs. This leads us to conclude that for LCVR
in VPLs there is barely any need for extra equipment, as the
typing solutions allowed by the control handles suffice for
the task at hand.

Figure 9 shows, on the bottom, the use case of the
occluded physical keyboard option for the pagoda exercise.
The image shows the architect typing in changes to the
textual version of the pagoda program developed in the Julia
programming language.

Parameter Manipulation

The mechanisms described above allow architects to inspect
and modify, from the VE, the entirety of their AD program.
However, for simple and/or localized changes, such as
modifying object placement, or object families’ dimensions
or materials, more elementary interaction mechanisms may
suffice. As stated previously, even the most performative
typing solution is still no match for the equivalent
mechanisms outside VR, hence, an intermediate interface
that casts VPL’s ever so typical parameter manipulation
mechanisms might be useful, specially for the textual case.

The use of parameter manipulation mechanisms like
sliders and toggles in the textual paradigm is not new. Luna
Moth24, for instance, allows users to manipulate numerical
values in the program using mouse dragging actions. Within
the visual programming paradigm, there are also solutions
with this outline for VR as we have seen previously: Coppens

et al.26 and Hawton et al.27 present intermediate interfaces
for parameter manipulation.

For the LCVR workflow we developed a 2D interface that
pops up in the VE with sliders and buttons for the user to
change the model within the boundaries of the parameters
presented. These changes are automatically translated into
the corresponding code in the program that generated the
model. Figure 10 presents an example of such an interaction:
by selecting an object in the scene, the user is presented with
a menu containing sliders that control the parameters of the
function that generated that object. In this case, the pagoda
function was called, and the user changed the number of
stories. In this scenario, only controllers are required, since
there is no typing involved.

The choices presented in the menu can also be defined by
the architects themselves when elaborating the algorithmic
description. Choosing what options to present to users may
prove helpful in showcasing sessions. Clients or co-workers
may, hence, get deeply involved in the modification of
the design as well, with no need of prior programming
knowledge and without incurring in the risk of introducing
bugs in the program or deviating from the architect’s original
design intention.

For architects themselves working with LCVR, this
middle-ground interface allows them to play in a more
user-friendly manner with common changes to function
parameters or object families, which are subjects of frequent
modifications in an AD workflow. The user may desire to
maintain the projected IDE in the VE and use this as a
complement, or temporarily substitute one for the other.

Conclusion

In this paper we proposed Live Coding in Virtual Reality
(LCVR), a design approach that allows architects to benefit
from the advantages of Virtual Reality (VR) within an
Algorithmic Design (AD) workflow. LCVR offers a different
mode of interaction with the AD tool: by having the program
displayed alongside the generated model in the Virtual
Environment (VE), architects can change the program and,
therefore, the model, without leaving the VE.

The work here presented extends our preliminary research
on the topic28 by detailing the implementation issues and
by addressing one important limitation: the ability to make
simple localized changes to the program in VR in a more
user-friendly way that does not require typing. Section
Parameter Manipulation described this feature in detail.

We presented and discussed the implementation chal-
lenges of the LCVR approach, as well as the solutions we
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Figure 10. Intermediate interface example: changing the
number of stories parameter.

chose to pursuit. We explored this approach with both Visual
Programming Languages (VPLs) and Textual Programming
Languages (TPLs), comparing different ways of projecting
a programming environment onto the VE for either case.
We settled on the mirrored desktop solution, however, in the
future we intend to develop other approaches.

Two different sets of mechanisms for architects to change
their programs were discussed: code manipulation and
parameter manipulation. The former allows full control over
the program while immersed in the resulting model. The
requirements of this task in the case of TPLs have proven
to be more troublesome. The latter provides a better solution
for the case of faster and more direct changes to the program,
as is the case of number, size or material choices.

We verified that LCVR tends to render more user-friendly
interactions with the use of VPLs. However, this paradigm
does not scale well with complexity, which hinders the use
of AD for more complex designs problems. The use of an
intermediate graphical user-interface helps bring TPLs closer
to this interaction paradigm as well, in the case of simpler
code modifications.

A simple case study was used to explore the proposed
implementation. However, and as suggested in section
Immersive Algorithmic Design, the workflow is meant to be
applied precisely to the large-scale or complex architectural
projects allowed by AD.

As future work we plan on taking advantage of the
multiple backends allowed by the integrated approach. For
instance, we can have analysis results, such as radiation
colour maps and deformation graphs, being presented to the
user in VR as well. This workflow can also occur live, with
the analysis tools running simulations in the background,
while the user is immersed in VR.
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