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Stringent requirements of efficiency and sustainability lead to the demand for
buildings that have good performance regarding different criteria, such as cost,
lighting, thermal, and structural, among others. Optimization can be used to
ensure that such requirements are met. In order to optimize a design, it is
necessary to generate different variations of the design, and to evaluate each
variation regarding the intended criteria. Currently available design and
evaluation tools often demand manual and time-consuming interventions, thus
limiting design variations, and causing architects to completely avoid
optimization or to postpone it to later stages of the design, when its benefits are
diminished. To address these limitations, we propose Algorithmic Optimization,
an algorithmic-based approach that combines an algorithmic description of
building designs with automated simulation processes and with optimization
processes. We test our approach on a daylighting optimization case study and we
benchmark different optimization methods. Our results show that the proposed
workflow allows to exclude manual interventions from the optimization process,
thus enabling its automation. Moreover, the proposed workflow is able to support
the architect in the choice of the optimization method, as it enables him to easily
switch between different optimization methods.

Keywords: Algorithmic Design, Algorithmic Analysis, Algorithmic Optimization,
Lighting optimization, Black-Box optimization

INTRODUCTION
Since the creation of the digital computer, architec-
ture adopted computer science tools and techniques
to change its own practices. This lead to the dissemi-
nationof digitalmodelling tools, which simplified the
design of highly complex buildings. However, these
days, it is not enough to have a well-designed build-
ing, it is also necessary to ensure that it has a good

performance at various levels, such as, thermal, light-
ing, structural, and environmental, among others. To
this end, several simulation-based analysis toolswere
developed,which take a specializedmodel of a build-
ing (designatedanalyticalmodel) and simulate its be-
havior regarding the intended metric. However, this
process has several problems: (1) despite the exis-
tence of tools that attempt to convert a 3D model
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into its corresponding analytical models, this conver-
sion is frequently fragile and can cause loss of infor-
mation or errors; (2) hand-made analytical models
might be a more faithful representation of the origi-
nal model but they require a considerable amount of
effort to create; (3) ideally, the analysis’ results would
afterwards be used to guide changes in the original
design, but this requires additional time and effort
to implement, as also does redoing the analysis to
confirm the improvements. This explains why per-
formance analysis is typically postponed to the later
stages of the design process, only to verify if the per-
formance meets the standard requirements. Unfor-
tunately, by following such process, it becomes very
difficult to optimize a design, which, nowadays, has
become an important requirement for ensuring the
design of efficient and sustainable buildings.

In order to fully support optimization processes,
several changes should be implemented in the de-
sign process. First, we need to be able to quickly
change a design and, almost simultaneously, pro-
duce its corresponding analytical model. Secondly,
we need to automate the analysis process and to use
it as an objective function for an optimization algo-
rithm.

In this paper, we discuss and evaluate these
changes in the context of a lighting optimization
problem, proposing a more efficient and flexible
workflow for optimization processes

Algorithmic Design
As mentioned, the implementation of changes to a
design should be simplified, and, in fact, one way
of speeding up design changes is to use parametric
models. Thesemodels haveparameters representing
degrees of freedom in the design, which the archi-
tect is willing to manipulate in the search for a bet-
ter performing design. A particularly good approach
to produce parametric models is through Algorith-
mic Design (AD) (Terzidis 2006). Here, instead of di-
rectly creatinga3Dmodel in aCADorBIM tool, thear-
chitect creates a program that can be executed with
different values of its parameters to produce the cor-

responding 3D models. This considerably improves
the implementation of design changes, allowing for
a broader exploration of the design space.

Algorithmic Analysis
Similarly to AD, in Algorithmic Analysis (AA), the ana-
lytical model is produced by an algorithm, instead of
being createdbyhandor by relyingon fragile conver-
sion tools (Leitão et al. 2017). The novelty is that this
algorithm is the same that is used for AD, but config-
ured differently, so as to match the requirements of
the analysis tools being used. For example, for light-
ing analysis tools, a truss might be represented by its
surfaces, while for structural analysis tools, it might
be represented by a graph of nodes and edges. In
either case, the same algorithm is capable of gener-
ating different models for different types of analysis.

Moreover, AA is also concernedwith the automa-
tion of the whole analysis process. In practice, this
means that not only is the generation of the analyti-
cal model automated, but so is the setup of the anal-
ysis tool and the collection of its results.

Algorithmic Optimization
With the ability to quickly update a design, to gener-
ate the corresponding analytical model, and, finally,
to automatically evaluate the design in an analytical
tool, it becomes possible to implement automated
optimization processes. We name these processes
Algorithmic Optimization (AO) and they are themain
focus of this paper.

AO treats the analyses’ results for different vari-
ations of the design as the functions to optimize.
These functions, also known as objective functions,
have a domainwhich corresponds to the range of ac-
ceptable designs as specified by the architect. More-
over, since we do not know their mathematical form,
these objective functions are often treated as black-
boxes, and, as a result, information about the their
derivatives cannot be extracted. For this reason,
methods depending on function derivatives cannot
be used to address this problem. Instead, we use
black-box (or derivative-free) methods, which can be
divided into three distinct subclasses: direct search

550 | eCAADe 36 - SIMULATION, PREDICTION & EVALUATION | Explorations - Volume 2



methods,model-basedmethods, andmetaheuristics
(Koziel and Leisson 2011; Wortmann and Nannicini
2016; Wortmann et al. 2017).

Direct SearchMethods.Although there seems to be
noprecisedefinition fordirect searchmethods (Kolda
et al. 2003), they are often identified as methods
that iteratively: (1) evaluate a finite sequence of can-
didate solutions, proposed by a simple determinis-
tic strategy; and (2) select the best solution obtained
up to that time. They are regarded as valuable tools
to address complex optimization problems, not only
because most of them were proved to rely on solid
mathematical principles (Kolda et al. 2003), but also
due to their good performance at initial stages of the
search process (Rios and Sahinidis 2013; Wortmann
and Nannicini 2016).

The main limitations of these methods are, on
the one hand, the performance deterioration with
the increase on thenumber of input variables and, on
the other, the slow asymptotic convergence rates as
thesemethods approach the optimal solution (Kolda
et al. 2003).

Metaheuristics Methods. Metaheuristics (Glover
and Kochenberger 2003) are methods that employ
simple mechanisms, called heuristics, to locate good
solutions in complex design spaces, while consider-
ing the trade-off among precision, quality, and com-
putational effort of the solutions. These methods of-
ten rely on randomization, and biological or physical
analogies to perform robust searches and to escape
local optima. Additionally, through these heuristics,
the designer is able to increase the overall perfor-
mance by adding domain-specific knowledge. More-
over, their non-deterministic and inexact nature con-
fer them the ability to effortlessly handle complex
and irregular objective functions (Wortmann et al.
2017).

Nevertheless, metaheuristics are only effective
when provided with large numbers of function eval-
uations (Conn et al. 2009). However, in the architec-
tural practice, it is often the case that a small evalua-
tion budget is available, hence lessening the conver-
gence and performance guarantees (Hasançebi et al.

2009).

Model-based Methods. Model-based methods are
known to be very efficient methods to approach
time-consuming processes, allowing to reduce the
computation time. These methods are able to pro-
vide instant estimates of the design’s performance,
by supplementing or replacing the original objective
function by its approximation (Wortmann and Nan-
nicini 2016). This approximation (or surrogate)model
is generated from a set of known objective function
values, and is then used to determine the promising
candidate solution to evaluate next. The result of this
candidate solution is then used to improve the sur-
rogate and this process is repeated until a stopping
condition is satisfied (Koziel and Leisson 2011).

Additionally, black-box methods might be clas-
sified as local or global (Nocedal and Wright 2011).
Local algorithms seek a point in a feasible region for
which the corresponding objective value is higher
than the value of any other point in its vicinities. This
point, known as local optimum, is not guaranteed to
be the the globally optimal, i.e., the best of all locally
optimal solutions in the whole design space. Since
these methods look for optima within neighbouring
regions, the initial point of the search may be cru-
cial to find the global optimum, i.e., if the initial point
is closer to a region containing a global optimum,
then the algorithm is likely to converge to that global
point, otherwise it might be trapped in a region with
a local optimum. Global methods avoid this entrap-
ment by exploring a broader area of the search space
before yielding a solution, to ensure they are not
caught in locally optimal solutions.

In this paper, we propose to complement AD
with the algorithmic evaluation and optimization of
the design’s performance. As a case study, we eval-
uated our proposal in the context of lighting perfor-
mance. To this end, we combined different optimiza-
tion methods available in existing software libraries,
which allowed us to effortlessly test different algo-
rithms. Moreover, we used the AO approach to com-
pare the performanceof tenblack-boxmethods, cov-
eringboth local andglobalmethodsof thepreviously
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mentioned subclasses. Additionally, we testedmulti-
ple variants of some of the methods to assess their
influence on the quality of the obtained solutions.
At the same time, we compared the impact of hot-
starting local methods in their performance.

METHODOLOGY
Direct SearchMethods.We tested the implementa-
tion of four direct search methods from the NLopt
library ([1]- Johnson 2009). Three of which are lo-
cal optimization method, namely, SUBPLEX (Rowan
1990), PRAXIS (Brent 1972), and Nelder-Mead Sim-
plex (NMS) (Nelder and Mead 1964), and one global
method, DIRECT (Jones et al. 1993).

SUBPLEX subdivides the design space into sub-
spaces to overcome the difficulties of NMS with re-
spect to high-dimensional problems. SUBPLEX iter-
atively selects a set of subspaces to move to and to
seek for a better solution. These subspaces are ex-
plored by NMS.

PRAXIS moves from one region to other by iter-
atively applying line search algorithms to each direc-
tion. The goal of these line search algorithms is to de-
termine a better solution along a certain dimension.

NMS constructs a geometric figure, known as
simplex, to envelope a region of the design space.
After creating it, the algorithm moves the geometric
figure across thedesign spaceby iteratively changing
its vertices.

DIRECT is an algorithm that recursively sub-
divides the design space into smaller multi-
dimensional hyper-rectangles, estimating the qual-
ity value of each rectangle. DIRECT uses these values
to focus the search on more promising regions of
the design space and to further subdivide those in
smaller hyper-rectangles. Besides DIRECT, we also
test a local variant -DIRECT-L- claimed to be more ef-
ficient for functionswith few local optima (Glabonsky
and Kelley 2001).

Metaheuristics Methods. We tested the imple-
mentation of three global metaheuristics methods,
namely, the CSR2, ESCH, and ISRES. All these meth-
ods are available in the NLopt library as well.

CRS2 (Price 1983) is a metaheuristic algorithm
that starts with a random set of designs and ran-
domly applies heuristic rules to the solutions in the
set.

ESCH (Santos 2010) creates an initial population
that is then iteratively recombined according to a
specific distribution function, instead of the uniform
distribution, and then mutated. The mutations are
the result of combining two different mutation op-
erators -the gaussian variation and the duplication
gene mutations.

ISRES (Runarsson and Yao 2005) is a global evolu-
tion strategy method, i.e., a method that maximizes
the suitability of the candidate designs given by a
fitness ranking function. The candidate designs are
evolved iteratively by combining the application of a
mutation rule and differential variation.

Model-basedMethods.We tested two implementa-
tions of globalmodel-basedmethods available in the
pySOT open-source library ([2]- Eriksson et al. 2015).
In both methods, the surrogate model is generated
from nine initially sampled design candidates, and
then explored by a perturbation strategy to deter-
mine which candidate to evaluate next. The selected
methods are based on Radial Basis Functions (RBF)
(Gutmann 2001) and the Gaussian Process Regres-
sion (GPR) (Rasmussen andWilliams 2006). Addition-
ally, we tested a linear interpolation for RBF (RBF-LL),
and cubic interpolations for RBF (RBF-CL, RBF-CC).

On the other hand, from theNLopt library, we se-
lected two local model-based implementations, i.e.,
methods that rely on the construction of simple, par-
tial models of the objective function (Koziel and Leis-
son 2011): COBYLA (Powell 1994) and BOBYQA (Pow-
ell 2009). COBYLAuses the concept of simplex to iter-
atively generate linear approximations of the objec-
tive function, whereas BOBYQA generates quadratic
approximations instead.

Lighting Optimization Problem
We combined the three previously referred ap-
proaches -AD, AA, and AO- to address the optimiza-
tionof lighting conditionsof a room inan isolatedpri-
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Figure 1
Representation of
the shading panels’
geometric pattern
and its design
variables.

vate house in Portugal, previously addressed by Cae-
tano et al. (2018).

The room was designed with a set of façade
shading panels that modulates the daylight condi-
tions on the interior. The panels were composed of
a set of horizontal wood bars of different sizes (see
Figure 1), which alternated between one full-length
bar and a set of smaller bars. For aesthetic reasons
we randomized the size and the position of the small
bars along the panel’s width. These bars were re-
stricted by their minimum and maximum lengths,
the length’s step, and the maximum distance sepa-
rating two consecutive bars.

To evaluate the quality of the lighting conditions
inside the room, we used Radiance, a ray tracing soft-
ware that enables accurate and physically valid light-
ing and daylighting simulations (Ward et al. 1998),
andwemeasured theperformance results in termsof
the spatial Useful Daylight Illumination (sUDI) (Nabil
and Mardaljevic 2006), which we then optimized.
Figure 2 represents some variations of our case study
with different sUDI values.

BENCHMARKING
For this particular problem we subdivided the tests
in two phases: (1) we compared both global and lo-
cal model methods’ performance; and (2) we ana-
lyzed the impact of the starting point’s choice in the
overall performance of local methods. The impact of
the starting point was tested by providing each algo-
rithmwith two initial guesses: both a good and a bad
solution, i.e., with values of sUDI of 78% and 7%, re-
spectively.

The performance was accessed according to the
time necessary to reach high-quality solutions, i.e.,
solution with sUDI values greater than 95%. Accord-
ing to the current practice (Cichocka et. al. 2017),
we have considered the methods within different
time frames, hence evidencing the strength of each
method.

To simulate the time constraints and the lack
of knowledge about the optimization methods, we
used the default parameters for all methods and we
considered the number of evaluations to be 60 and
15 for the first and second phases, respectively. For
the second phase of tests, we further constrained the
number of evaluations to simulate a real scenario,
where the designer runs a few evaluations to deter-
mine a reasonable solution, which he then uses to
hot-start the local method.

After running the first phase of tests, we chose
a design with a reasonable sUDI value and used it as
the starting point for the local optimizationmethods.
All tests were run on an Intel Xeon CPU ES-2670 with
2.60 GHzwhere each evaluation takes approximately
7 minutes.

RESULTS ANDDISCUSSION
This section presents and discusses the quantitative
results for the conducted tests.

Test phase 1 - Global and local methods
The obtained results for 60 function evaluations re-
veal that NMS, CRS2, and all global model-based
methods, except RBF-CL, are the most promising
methods, achieving sUDI values above 95%, while
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Figure 2
Representation of
shading panels’
geometric pattern
with different sUDI
values (from left to
right, 7%, 62%, 90%
and 100%).

the least promising methods are PRAXIS, COBYLA
and BOBYQA, achieving sUDI values inferior to 75%.

Figure 3 shows that, even though somemethods
have performed poorly throughout the entire pro-
cess, they still managed to improve the initial de-
sign. Also, it is possible to observe that, in general,
global model-based methods exhibit very good per-
formance in the early phases of the optimization pro-
cess, immediately converging to near optimal solu-
tions. However, after a few iterations, CRS2, a meta-
heuristic method, temporarily outperforms model-
based methods, achieving a sUDI value of 98%.

Additionally, the obtained results seem to evi-
dence the sensitivity of local methods to the pres-
ence of local optima, as both direct search and

model-based local methods converged to sUDI val-
ues inferior to 80% after approximately twenty eval-
uations. Curiously, SUBPLEX, an improved version of
the NMS method that is capable of handling higher-
dimensional problems more effectively, performed
poorly throughout the whole process, increasing the
initial value of sUDI by only 9%. In contrast, NMS
confirmed to be a very efficient option to address
problemswith few dimensions (Rowan 1990), having
found a design with a sUDI value of 99% after eigh-
teen iterations.

Figure 4 demonstrates the improvements of
each optimization method throughout the time of
execution. The performance of all methods seems
to stagnate after two hours. GPR clearly outperforms

Figure 3
Test phase 1-
Maximum spatial
Useful Daylight
Illuminance (sUDI)
as a function of the
time in evaluations.
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Figure 4
Test phase 1-
Maximum spatial
Useful Daylight
Illuminance (sUDI)
as a function of the
time in hours.

all other methods for the first two hours, after which
CRS2, NMS, andRBF-LL yieldbetter designs achieving
values of sUDI of 98%, 99%, and 98%, respectively.
For time frames of one hour, RBF-CL and RBF-CC are
approaches to consider, producing designs with val-
ues of sUDI of 82% and 87%, respectively.

After seven hours, DIRECT achieves its best de-
sign with a sUDI value of 98%, while its locally bi-
ased variant, DIRECT-L, achieves a mild value of 78%,
hence emphasizing the sensitivity of local searches in
optimization processes. The metaheuristic ESCH ex-
hibits a similar performance to DIRECT-L, whereas IS-
RES finds a reasonable design with a value of sUDI of
90% after four hours.

Test phase 2 - Hot-starting local methods
Figure 5 exhibits the results of running five local al-
gorithms for 15 function evaluations. On the one
hand, when provided with a mild initial design, both
COBYLA and NMS found the best designs achiev-
ing a sUDI value of 99%. On the contrary, PRAXIS
found the worse, and showed no relevant improve-
ment over the initial design in terms of daylight illu-
minance. Nevertheless, it initially managed to out-

perform other methods, achieving values of sUDI of
80%. After the eighth iteration, COBYLA and NMS
quickly converged to near optimal designs, with sUDI
values of 99% and 98% respectively. BOBYQA and
SUBPLEX struggled to improve from the initial de-
sign.

On theother hand,whenprovidedwith abad ini-
tial design, the best daylight illuminance result has a
sUDI value of 15% and was found by NMS after the
ninth iteration. NMS, COBYLA, and SUBPLEX exhibit
similar performances, stagnating in a design with a
sUDI value of 11%after three iterations, withNMSbe-
ing able to further improve the design after five itera-
tions. PRAXIS exhibits theworst performance among
all methods, showing no significant improvements
throughout the whole optimization process.

CONCLUSIONS
In the past, Caetano et al. (2018) optimized the
room’s lighting conditions by consecutively experi-
menting withmultiple designs. However, that mech-
anism lacks rigor and flexibility, as it provides no
guarantee that an optimal solution will be found in
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Figure 5
Test phase 2-
Maximum spatial
Useful Daylight
Illuminance (sUDI)
as a function of the
number of function
evaluations.
Hot-start (HS) -
methods that start
with a mild sUDI
value (78%).
Bad-start (BS) -
methods that start
with a bad sUDI
value (7%).

the least amount of time possible. Instead, an al-
gorithm capable of directing the search towards the
global optima should be used. In this paper we pro-
posed to improve the AD process by extending it to
include the algorithmic assessment andoptimization
of the design’s performance. This allows to quickly
generate different types of analytical models, which
are then inputted to different simulation engines,
thus enabling the application of optimization pro-
cesses regarding different aspects, such as structural
and lighting, among others.

As it has been previously stated by Wortmann
and Nannicini (2016), the selection of the most ef-
fective method is important to allow an efficient de-
sign explorationwhen complex and time-consuming
simulations are necessary. Consequently, the choice
of the optimization method should be based on the
results of several tests with different methods for a
fixednumberof evaluationsor a fixedamountof time
(Hamdy et al. 2016).

Considering the need to test multiple optimiza-
tion methods, this work applied AO, which allowed
us to easily combine optimization techniques avail-
able in existing software libraries, such as NLopt and

pySOT. We were, thus, able to effortlessly test differ-
ent methods, and assess their performance in terms
of the trade-off between performance and time. Ad-
ditionally, we concluded that it is possible to further
improve local methods’ performance by hot-starting
them with the knowledge we have about the prob-
lem (i.e., by providing them with an initial good de-
sign): in our particular case, if we initialize them with
a design that has higher values of sUDI, it is more
likely that these algorithms will show better perfor-
mance.

In this paper, two test phases were conducted.
The first phase considered both global and local
methods, for which a limit of 60 function evalua-
tions and default parameters were used. The GPR
and RBF-CC exhibited good performance through-
out all the optimization process, both achieving the
maximum sUDI values after forty evaluations. When
constrained by hourly time frames, CRS2 becomes
the best method to apply, converging to a value of
sUDI of 98% in less than an hour. In general, all lo-
cal methods struggled, except for NMS that quickly
converged to 99% after twenty iterations. The sec-
ondphase tested the impact of the starting points on
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local methods by running each local method twice,
providing them with two different starting points.
The impact of the starting point on themethods’ per-
formance is evident, with NMS and COBYLA achiev-
ing the best results. In both cases, BOBYQA and
PRAXIS struggled to improve the sUDI valueof the ini-
tial design. Surprisingly, and unlike previous bench-
marks (Wortmann et al. 2016), SUBPLEX did not excel
at any of the tests, nor did DIRECT.

In sum, this work emphasized the importance of
testing different methods in the initial stages of the
design, specially when facing tight time constraints.
Dependingon the characteristics of theproblem, cer-
tain methods exhibit better performance than oth-
ers, and itmight be advantageous to dedicate a small
amount of the evaluations to determine which algo-
rithm performs best. To this end, AO reveals itself as
a flexible and effective approach with several advan-
tages for architectural optimization problems.

FUTUREWORK
Future research should consider the application of
the proposed algorithmic approach to different tests
cases (e.g., different performance criteria, different
number of variables, different designs). Moreover, to
further support benchmark’s results, it is necessary
to perform more optimization runs per algorithm,
which requires a larger number of experiments. In
the case of lighting analysis, these experiments are
highly time-consuming, hence lessening the number
of experiments. Nevertheless, we plan to enlarge the
benchmarking by including more test cases, as well
as more optimization methods, and, ultimately, in-
corporate them in an AD tool. Finally, we also plan to
extend AO to address other optimization problems,
namely, Multi-Objective Optimization.
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