Derivative-free Methods for Structural Optimization

Guilherme Ilunga’, Antonio Leitdo’
L2INESC-ID/Instituto Superior Técnico, Universidade de Lisboa
1.2 teuilherme.ilunga|antonio.menezes.leitao}@tecnico.ulisboa.pt

The focus on efficiency has grown over recent years, and nowadays it is critical
that buildings have a good performance regarding different criteria. This need
prompts the usage of algorithmic approaches, analysis tools, and optimization
algorithms, to find the best performing variation of a design. There are many
optimization algorithms and not all of them are adequate for a specific problem.
However, Genetic Algorithms are frequently the first and only option, despite
being considered last resort algorithms in the mathematical field. This paper
discusses methods for structural optimization and applies them on a structural
problem. Our tests show that Genetic Algorithms perform poorly, while other
algorithms achieve better results. However, they also show that no algorithm is
consistently better than the others, which suggests that for structural optimization,
several algorithms should be used, instead of simply using Genetic Algorithms.
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INTRODUCTION

In the common workflow of an architectural project,
the architect is responsible for creating a design,
which is then given to the engineering team for anal-
ysis. The engineers perform their calculations to
ensure, for instance, the structural stability of the
project. If there is an issue with the design, they in-
form the architect and make suggestions to resolve it.
The architect is then responsible for adapting the de-
sign. This process is repeated until there are no more
issues to solve.

Usually, architects use Computer-Aided Design
(CAD) and Building Information Modelling (BIM) tools
to develop the building design, but these tools
are unable to properly handle repetitive complex
changes, such as those that may be suggested by
the engineers. For example, in a design of a space

APPLICATIONS IN CONSTRUCTION & OPTIMISATION - Volume 1 - eCAADe 36 | 179

frame which follows a sinusoidal shape, changing the
amplitude of the sinusoidal shape should be an easy
task. Unfortunately, both types of tools recognize the
geometrical aspects of the design, but lack informa-
tion about the overall concept of a sinusoidal shape.
Because of this, if the architect wishes to alter the si-
nusoidal function, he must change each individual
position and size of the bars in the space frame, which
is extremely time-consuming. To support these types
of changes, nowadays architects may follow the Para-
metric or Algorithmic Design paradigms.

In the Parametric Design (PD) paradigm, the
architect can introduce variability in the design
through the usage of different parameters that de-
fine it. In the Algorithmic Design (AD) paradigm, the
architect constructs an algorithm with the logic of
the design, i.e., an algorithm capable of generating



the design, enabling the construction of parametric
designs (Terzidis 2006). AD also introduces the abil-
ity to generate several variations of the same build-
ing with ease, giving the architect creative freedom
to explore the space of possible designs, and choose
the one he prefers.

Due to the complexity and costs usually associ-
ated with buildings, the role of the engineer is not
only to ensure that a building follows regulations, but
to also assess how well it does that. It is not a good
solution to have a building that is structurally sound
but that costs much more than what is needed. As a
result, one important aspect of the engineer’s job is
the evaluation of the building’s performance regard-
ing different criteria, e.g., structural, lighting, energy
consumption, and cost.

To evaluate a building’s performance, numeri-
cal analysis and simulation-based tools can be used.
These types of tools can simulate a building’s struc-
tural behavior given a specific load using finite ele-
ment analysis. Similarly, they can compute the use-
ful daylight illumination using raytracing techniques.
However, in both cases, these tools need an analyt-
ical model with all the required information to per-
form the analysis, which can be quite different from
a geometrical 3D model.

Analytical models can be generated in BIM tools
that have that capability, or they may be modeled di-
rectly in the analysis tool, or, when using an AD ap-
proach, by accessing the Application Programming
Interface (API) of the analysis tool. Using the latter
method together with a generative process for creat-
ing the models makes it possible to guide the gener-
ation of the design based on the results of the anal-
ysis, following the Performance-based Design (PBD)
paradigm (Oxman 2006). Recent approaches give
the AD tool the ability to generate different analyt-
ical and 3D models from the algorithm provided by
the architect, enabling the automatic analyses of dif-
ferent variations of the design (Aguiar et al. 2017),
making it possible to find a cheaper design, a de-
sign with better lighting or heating conditions, or a
design with less structural risks, early in the project’s

development. Also, this approach enables the usage
of mathematical optimization in architecture, i.e., an
optimization process can guide the generation of dif-
ferent designs, returning the best design in regard to
a set of metrics.

To use the knowledge and ideas from the field
of mathematical optimization for the benefit of ar-
chitectural projects, it is necessary to translate an ar-
chitectural optimization problem into a mathemati-
cal optimization problem, where the metric to opti-
mize is treated as a function to minimize. The pa-
rameters of the optimization can be the same that
were defined in an AD approach, and the constraints
can be defined by imposing bounds on the parame-
ters. As for the function to minimize, unfortunately,
in most cases, it does not have a known mathemat-
ical expression. To overcome this problem, analysis
tools need to resort to simulation techniques, such as
raytracing or finite element analysis, to approximate
results. Additionally, to minimize such an unknown
function, one needs to treat it as a black-box and, for
this case, there is a particular optimization technique,
called black-box optimization.

With this approach, existing optimization algo-
rithms can be used directly in architectural design,
to obtain the best performing design according to
specific criteria. Unfortunately, replacing unknown
functions with simulation processes entails a perfor-
mance penalty. This means that black-box optimiza-
tion processes need to use a reduced budget of func-
tion evaluations.

OPTIMIZATION ALGORITHMS

In the field of mathematical optimization, several
strategies for optimization have been considered
over the years, which has resulted in the creation of
several optimization algorithms with different prop-
erties, advantages, and disadvantages. Despite the
variety, users often choose the simplest approaches
because they are the ones have that are more easily
available, or because they are easier to understand
and implement (Conn et al. 2009). However, for bet-
ter results, other algorithms should be used.
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Optimization algorithms may be classified according
to several different properties. One possible way of
classifying algorithms is according to their determin-
ism. Some algorithms may be given a starting point,
or initial guess, from which they will begin their path
towards a solution and, in this case, deterministic al-
gorithms are sequential algorithms that always re-
turn the same value, given the same starting point.
On the contrary, stochastic algorithms include some
form of randomness, i.e., the sequence of steps may
be random, therefore they may return different val-
ues for the same starting point.

Besides their deterministic or stochastic proper-
ties, another way of classifying algorithms is accord-
ing to their mobility, i.e., if they are global or local.
Global optimization algorithms try to find the best
solution across the entire solution space, while local
ones find the best solution only within a region of
that space.

Another classification considers the information
used, i.e, if the algorithm takes advantage of in-
formation regarding the derivates of the function.
Derivative-based algorithms use the partial deriva-
tives of a function, the gradient, to discover the di-
rection of the greatest increase of the function. In
the case of black-box functions, the derivatives of
the function are unavailable, therefore, for black-box
optimization, derivative-free algorithms are the only
feasible option.

In their derivative-free optimization textbook,
Conn etal. (2009) consider two types of deterministic
derivative-free algorithms: direct-search and model-
based algorithms. Metaheuristics are only briefly
mentioned, despite being derivative-free algorithms
and one of the most used and cited type of algo-
rithm (Koziel and Yang 2011; Hare et al. 2013; Rios
and Sahinidis 2013; Wortmann et al. 2017). The au-
thors label them “methods of last resort (...) appli-
cable to problems where the search space is neces-
sarily large, complex, or poorly understood (..)". In a
recent review of derivative-free algorithms, Rios and
Sahinidis (2013) also consider the existence of direct-
search and model-based algorithms, although they
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consider that these methods may be deterministic
or stochastic. This paper follows a third approach,
previously used in architectural design optimization,
which considers three classes of derivative-free op-
timization algorithms: direct-search, metaheuristics,
and model-based algorithms (Wortmann et al. 2017).
The following sections describe these classes and
provide examples of algorithms. The information
about each algorithm, its class, and properties is sum-
marized in Table 1.

Direct-search algorithms

Direct-search  algorithms  are  deterministic
derivative-free algorithms, which choose their next
action using a set of points that are sampled directly
from the function at each iteration. Examples in-
clude the Nelder-Mead Simplex, DIRECT, DIRECT-L,
PRAXIS, and Subplex algorithms. The Nelder-Mead
Simplex (NMS) algorithm (Nelder and Mead 1965)
uses a simplex - a generalized polyhedron - over the
search space, located around an initial guess, and
uses expansion, contraction, and shrinking opera-
tions to search for the best result, while sampling the
function at each time step. The Dividing Rectangles
(DIRECT) algorithm (Jones et al. 1993) is a global op-
timization algorithm which splits the search space
into hyper-rectangles, and samples points in each
hyper-rectangle to guide the search. The DIRECT-L
algorithm (Gablonsky and Kelly 2001) is similar to
DIRECT but it is more biased towards local search.
The Principal Axis (PRAXIS) algorithm (Brent 1973)
applies line search to each dimension and uses its
results to determine a better solution. The Subplex
(SBPLX) algorithm (Rowan 1990) selects sub-spaces
to explore using the NMS algorithm, in order to find
a better solution.

Metaheuristics

Metaheuristics are stochastic algorithms that also do
not require derivatives. These algorithms are inspired
by aspects of Nature, such as natural selection, evo-
lution, and swarm intelligence. Metaheuristics are
popular because they can be applied to almost any
problem and are the focus of active research, despite



the fact that they do not offer any convergence guar-
antees (Conn et al. 2009). Some examples of meta-
heuristics are Simulated Annealing (Kirkpatrick et al.
1983), Genetic Algorithms (Goldberg 1989), Particle
Swarm Optimization (Kennedy and Eberhart 1995),
Controlled Random Search (Price 1983), Improved
Stochastic Ranking Evolutionary Strategy (Runarsson
and Yao 2000), and the ESCH algorithm (Santos 2010).
The Simulated Annealing (SA) algorithm skips be-
tween neighboring states of a function, according
to a temperature parameter. With high tempera-
ture, the algorithm may move towards worse states,
but as temperature decreases, it becomes increas-
ingly greedy in his search for a local optimum. Ge-
netic Algorithms (GAs) apply the idea of survival of
the fittest to a population of candidate solutions.
Over time, weaker solutions will be replaced by bet-
ter solutions, as stochastic genetic operators, such
as crossover and mutation, are used to create new
offspring. Particle Swarm Optimization (PSO) also
contains a population, or swarm, of candidate so-
lutions, and their positions on the search space are
updated according to their current position and ve-
locity. Each particle’s velocity is updated according
to its best-known value and also the swarm’s best-
known value. The Controlled Random Search (CRS2)
algorithm combines random search with simplex ap-
proaches and heuristics, such as mutation. The Im-
proved Stochastic Ranking Evolution Strategy (ISRES)
algorithm evolves candidate solutions by stochasti-
cally ranking and selecting the best solutions. ESCH
also uses an evolutionary strategy, but applies differ-
ent genetic operators using non-uniform probability
distributions.

Model-based algorithms

Model-based methods approximate the unknown
black-box function and create a high-fidelity surro-
gate model (Rios and Sahinidis 2013). Over the years,
several different strategies for building these mod-
els have been identified. Trust-region methods are
a local model-based approach, where the model is
believed to be accurate within a neighborhood. Ex-

amples of trust-region methods are COBYLA (Pow-
ell 1994), which builds linear approximations, and
BOBYQA (Powell 2009), which creates a quadratic ap-
proximation. For global model-based optimization,
several approaches have been developed, such as
Radial Basis Function (RBF) interpolation (Regis and
Shoemaker 2007), RBF-Linear for linear interpolation
and RBF-Cubic for cubic interpolation, and Gaussian
Processes (GPs), which define a probability distribu-
tion over functions (Murphy 2012).

Class Algorithm Deterministic Global
DIRECT Yes Yes
DIRECT-L  Yes Yes
Direct-search NMS Yes No
PRAXIS Yes No
SBPLX Yes No
CRS2 No Yes
ESCH No Yes
... GA No Yes
Metaheuristics ISRES No Yes
PSO No Yes
SA No Yes
BOBYQA  Yes No
Model-based COBYLA Yes No
GP No Yes
RBF No Yes

OPTIMIZATION IN ARCHITECTURE
With the recent advancements in AD and analysis
tools, performing optimization on an architectural
design is an easier task from the architect’s view-
point. This has led to optimization being an increas-
ingly desired step in the typical design process, espe-
cially structural and daylight optimization (Cichocka
et al. 2017a). Due to the popularity of AD ap-
proaches and the Grasshopper3D tool, several op-
timization plugins have been developed for it. A
large portion of these tools are not new implementa-
tions of known optimization algorithms, instead they
connect Grasshopper with existing, well-known, and
tested optimization software packages.

Some examples of optimization plugins for

182 | eCAADe 36 - APPLICATIONS IN CONSTRUCTION & OPTIMISATION - Volume 1

Table 1
Summary of the
discussed
derivative-free
optimization
algorithms and
their properties.



Figure 1
Variations of a
space frame with
three attractor
points.

Grasshopper are Goat ([1] - FIory no date), Galapagos
([21 - Rutten 2010), Silvereye (Cichocka et al. 2017b),
and Opossum (Wortmann 2017). Goat offers several
types of algorithms, namely DIRECT, SBPLX, CRS2,
COBYLA, and BOBYQA. Silvereye is an implementa-
tion of the PSO algorithm. Galapagos is currently in-
cluded with Grasshopper and offers its users two im-
plementations of metaheuristics - a GA and the SA
algorithm. Finally, Opossum connects the RBFOpt li-
brary (Costa and Nannicini 2014) to Grasshopper, en-
abling the usage of RBFs for optimization.

Optimization has been applied more frequently
in architecture within recent years. Wortmann (Wort-
mann et al. 2015; Wortmann and Nannicini 2016;
Wortmann et al. 2017; Wortmann and Nannicini
2017) has conducted several studies on black-box
optimization methods for architectural design, in-
cluding daylighting optimization, and building en-
ergy optimization. Other studies have also been
made for structural optimization: Hare et al. (2013)
study derivative-free algorithms and their usage in
structural optimization, and Zavala et al. (2014) study
the effectiveness of multi-objective metaheuristics.

Regarding the different classes of algorithms, it
is usually preferable to use methods with proven
convergence properties, which is not the case of
metaheuristics. In architectural optimization, GAs are
the most used algorithms, but when tested against
other algorithms, e.g., in building energy optimiza-
tion problems, they tend to perform poorly (Wort-
mann et al. 2017).
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CASE STUDY EVALUATION

Our case study is an arc-shaped space frame de-
formed by three attractor points intended to give the
structure a non-uniform shape. Our workflow uses
the Rosetta AD tool (Lopes and Leitdo 2011) to gener-
ate 3D models of truss variations for visualization, as
well as the corresponding analytical models for anal-
ysis. The analysis is performed using the Autodesk
Robot Structural Analysis tool to evaluate the maxi-
mum vertical displacement, which the optimization
algorithms will attempt to minimize by changing the
locations of the attractor points. Figure 1 illustrates
three variations of the structure.

For optimization, our workflow enables the us-
age of existing software packages, namely DEAP,
NLopt, and PySOT. DEAP (Fortin et al. 2012) is an evo-
lutionary computation framework, which allows the
usage of several algorithms, such as GAs and Evolu-
tion Strategies. NLopt ([3]- Johnson 2009) is an open-
source package for nonlinear optimization contain-
ing several optimization algorithms, both gradient-
based as well as derivative-free ones. PySOT ([4] -
Eriksson et al. 2015) is an optimization framework for
global model-based black-box optimization, provid-
ing several different types of approximation models.

For the purposes of this paper, we selected five
direct-search methods (DIRECT, DIRECT-L, PRAXIS,
NMS, and SBPLX), four metaheuristics (CRS2, ISRES,
GA, and ESCH), and five model-based methods (RBF-
Linear, RBF-Cubic, GP, COBYLA, and BOBYQA). In total,
fourteen different algorithms were tested using their
default parameters, simulating a situation where the



architect has little knowledge about the algorithms
and their parameters.

For comparing the algorithms, we are interested
on answering the following questions:

+ How do the results found by the algorithms
evolve as the number of function evaluations
increases?

« Is there any algorithm or class of algorithms
that is consistently better or worse than the
others?

To answer these questions, the algorithms were exe-
cuted for a fixed number of evaluations, and the best
result at each iteration was stored. Most algorithms
rely on an initial guess to perform their optimization,
and the process of choosing this guess was random-
ized. This is consistent with the typical black-box op-
timization problem - since the function is unknown, it
is hard to propose a good first guess. Due to this ran-
domization, and because some algorithms are inher-
ently stochastic, the optimization results depend on

14

13

12

11

the random seed that is used. Therefore, to properly
compare them, the algorithms were executed three
times, to analyze the mean best value at each eval-
uation. By performing these tests, it is possible to
properly evaluate and compare the algorithms’ con-
vergence capabilities and compare the different cat-
egories.

Figure 2 illustrates the mean best result of each
algorithm, as a function of the number of evalua-
tions. Of the direct-search methods, DIRECT and
DIRECT-L almost achieved the best overall result and
converged quickly - DIRECT required thirty evalu-
ations and DIRECT-L thirty-five. The other direct-
search methods, PRAXIS, NMS, and SBPLX, performed
much worse, and are within the four worst algo-
rithms. For metaheuristics, the common GA was the
second worst algorithm, and barely improved after
the 10th iteration. ISRES was the best metaheuris-
tic, constantly improving its result until the 57th it-
eration, and achieving the 6th best result. CRS2 and
ESCH only achieved the 9th and 10th best result.
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Figure 2

The mean best
result of each
algorithm, as a
function of the
number of
evaluations, over
the course of 100
evaluations. Each
algorithm was
executed three
times, to calculate
the mean value.



Finally, the best performing algorithms were model-
based. COBYLA and BOBYQA, the local methods,
achieved the 7th and 8th best result. The global al-
gorithms, RBF-Linear, RBF-Cubic, and GP, were some
of the best algorithms, only matched by DIRECT and
DIRECT-L. RBF-Linear achieved the best overall result.
Both RBF variants appear to have not stagnated, i.e.,
if given a bigger evaluation budget, perhaps they
could have found even better results.

From the observation of the results at each eval-
uation, it seems that no algorithm is consistently bet-
ter than the others. The DIRECT and DIRECT-L algo-
rithms and the global model-based algorithms are
better than others after the 40th iteration. Several
factors could change this ranking, such as a differ-
ent set of parameters for the algorithms, i.e., a differ-
ent population size, a random step taken by a meta-
heuristic, or alucky random start for alocal algorithm.
Therefore, the conclusion is that it is preferable to try
different algorithms during the optimization process.
Also, running just one algorithm for a long time ap-
pears to be wasteful. Instead, allowing two or three
algorithms to run for a small amount of time seems
to have a higher chance of achieving a good result.

This research also shows that our hypothesis was
confirmed: compared to other methods, metaheuris-
tics do not appear to be the best choice for structural
optimization, and they are certainly not adequate as
the only choice. This was independently confirmed
by other studies, e.g., for building energy optimiza-
tion (Wortmann et al. 2017).

CONCLUSIONS

The increase in processing power of computers has
enabled the usage of optimization processes in ar-
chitecture. AD, along with analysis tools, allows the
direct integration of analysis and optimization in the
design process, leading to the PBD paradigm. Ac-
cording to recent studies, GAs are the most used al-
gorithms for optimization and, in the case of archi-
tectural optimization, they are most of the times the
only algorithm used. This happens because they are
simple to use, easy to understand, and already avail-
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able in popular modelling tools. However, similarly
to studies in building energy optimization, our re-
search shows that GAs are not the best algorithm
for structural optimization. Our results also show
that, despite the advantages of other optimization
algorithms compared to GAs, no algorithm consis-
tently outperforms the others. Therefore, we sug-
gest that, for structural optimization, several different
optimization algorithms should be used, particularly
global model-based optimization algorithms.

In the future, we plan to include, in an AD tool, a
framework for optimization containing the most rel-
evant optimization algorithms, making it as easy to
use a good optimization algorithm as it is, nowadays,
to use the GA implementations available in the most
used AD tools.
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