
72

Luna Moth
Pedro Alfaiate
Instituto Superior Técnico /
INESC-ID

Inês Caetano
Instituto Superior Técnico /
INESC-ID

António Leitão
Instituto Superior Técnico /
INESC-ID

Supporting Creativity in the Cloud

ABSTRACT
Algorithmic design allows architects to design using a programming-based approach. Current algo-
rithmic design environments are based on existing computer-aided design applications or building
information modeling applications, such as AutoCAD, Rhinoceros 3D, or Revit, which, due to their
complexity, fail to give architects the immediate feedback they need to explore algorithmic design.
In addition, they do not address the current trend of moving applications to the cloud to improve
their availability.

To address these problems, we propose a software architecture for an algorithmic design inte-
grated development environment (IDE), based on web technologies, that is more interactive than
competing algorithmic design IDEs. Besides providing an intuitive editing interface which facilitates
programming tasks for architects, its performance can be an order of magnitude faster than current
aalgorithmic design IDEs, thus supporting real-time feedback with more complex algorithmic design
programs. Moreover, our solution also allows architects to export the generated model to their
preferred computer-aided design applications. This results in an algorithmic design environment
that is accessible from any computer, while offering an interactive editing environment that inte-
grates into the architect’s workflow.

1

1 Migration from desktop application
to the cloud.

73ACADIA 2017 | DISCIPLINES + DISRUPTION

INTRODUCTION
Throughout the years, computers have been gaining more ground
in the field of architecture. In the beginning, they were only used
for creating technical drawings using computer-aided design
(CAD) software, but later, they began to integrate 3D modeling
capabilities. However, modeling a complex building is still a
time-consuming activity that requires several repetitive tasks
that are not trivial to accomplish using just the functionalities
provided by 3D modeling software.

This has led to the emergence of new design approaches, such
as algorithmic design (Terzidis 2004). Algorithmic design is based
on the use of programming, enabling architects to create their
own program by describing their modeling intentions and letting
the computer do the modeling task for them. Also, compared to
the manual approach, it promotes a quicker and simpler handling
of changes coming from uncertain design intents and emergent
requirements (Leitão, Fernandes, and Santos 2013), allowing the
designer to explore a broader design space.

To create their scripts, architects need to use a programming
language, its runtime environment (including CAD and building
information modeling [BIM] applications to visualize the obtained
models), and an integrated development environment (IDE).
Unfortunately, programming is not a trivial activity, particularly
for those who are not specifically trained for it. With the aim of
integrating programming in architects' workflow, some tools and
programming languages have been carefully designed to facilitate
this task.

PROGRAMMING IN ARCHITECTURE:
PERFORMANCE, TRACEABILITY, AND
SCALABILITY
Programmers need IDEs for general purpose development, but
architects and designers need IDEs suitable to the algorithmic
design domain. We claim that such IDEs need to provide two
important features: traceability and real-time feedback. By trace-
ability, we mean creating a relationship between parts of the
program and those of the generated model. This is particularly
important for the comprehension, maintenance, and debugging
of algorithmic design programs (Leitão, Lopes, and Santos 2014).
Real-time feedback is relevant for immediately understanding the
effects of changes in the algorithmic design programs, helping
architects to develop and change those programs.

Some IDEs have been developed to support visual programming
languages, which are considered to be more intuitive than textual
programming languages and, therefore, more attractive for
those who do not have any programming experience (Zboinska
2015). Grasshopper and Dynamo are two examples of visual

programming languages that also support traceability between
the program and the model: when the user selects a component
in the program, the corresponding 3D model components are
highlighted. Another advantage of these visual programming
languages is that they support real-time feedback of parametric
changes when using sliders to represent the parameters.

Unfortunately, visual programming languages do not scale well
when applied to more complex projects (Leitão, Santos, and
Lopes 2012). Visual programming scripts not only become
unreadable and thus very difficult to change, but the real-time
feedback of the sliders also begins to vanish as the overall
performance decreases. Moreover, the traceability between
the program and the model only exists in one direction, from
program to generated model.

On the other hand, textual programming languages have
mechanisms that make complexity more manageable, allowing
algorithmic design programs to be smaller. Still, typical textual
programming language IDEs lack ways to show the connection
between program and results. Some research on this topic has
been done (e.g., the Illustrated Programming approach, imple-
mented in the Rosetta IDE [Leitão, Lopes, and Santos 2014]), to
improv the comprehension of algorithmic design programs by
integrating both sketch program and program model correlations.
As it uses textual programming languages, it does not suffer
as much from scalability problems. Additionally, the existing
traceability is supported in both directions, i.e., from program to
model and from model to program. Unfortunately, the current
performance of the Rosetta IDE is not sufficient to support
efficient traceability and much less to allow real-time feedback of
non-trivial algorithmic design programs.

CLOUD-BASED	PROGRAMMING	
ENVIRONMENTS
There are several IDEs that already explore web technologies:
Light Table, a code editor implemented using web technologies
that explores ways to improve programming in TPLs (Granger
2015); IPython, a programming environment for scientific
computing that is used through a web page (Pérez and Granger
2007); and Processing, a programming language for the visual
arts that can run on the web (Reas and Fry 2007; McCarthy et al.
2015; Reas et al. 2008).

These, however, do not target the algorithmic design field, which
is better served with OpenJSCAD, a web application for 3D
modeling using a textual programming language (Muller 2015),
and Möbius, an algorithmic design environment implemented
as a web application that combines block-based programming
with associative programming (Janssen, Li, and Mohanty 2016).

74

Apart from this, as web applications, OpenJSCAD and Möbius
can always be kept up to date without requiring architects to do
anything.

Even so, these two lack remote storage as provided by Onshape,
a cloud-based CAD application (Hirschtick and McEleney 2012),
and Clara.io, a cloud-based 3D modeling application (Houston
et al. 2013). Work done in Onshape and Clara.io is kept on
a remote server, thus facilitating their use regardless of the
computer used by the designer. In addition, they also support
collaboration, meaning that their users can work on the same
model simultaneously. Nevertheless, Onshape and Clara.io do
not support algorithmic design.

On the other hand, the cloud-based IDEs that do support
algorithmic design, namely OpenJSCAD and Möbius, both lack
editing features found in desktop algorithmic design applications,
such as Grasshopper and Rosetta’s traceability, and the latter’s
interoperability.

To sum up, most IDEs used for algorithmic design are desktop

applications, providing limited support for remote work and
collaboration, and requiring constant updates by their users. On
the other hand, cloud-based IDEs are always up to date, but
unfortunately, there is no cloud-based IDE capable of supporting
an algorithmic design approach for architectural modeling that
also integrates well with the typical architectural workflow.

Our aim is to increase architects’ productivity when using an
algorithmic approach by giving them an appropriate cloud-based
programming environment. As such, we present a software
architecture for a design tool that advances the state of the art in
IDEs for algorithmic design in four different areas (Figure 2):

1. It has the required performance for real-time feedback of complex

scripts;

2. It enables the user to see the bidirectional traceability relationship

between the program and the resulting model;

3. It is available as a web application, not requiring installation or

updates, and available for remote use;

4. It smoothly integrates into architects’ workflow by generating the

obtained results in other CAD tools they use.

Luna	Moth:	Supporting	Creativity	in	the	Cloud	Alfaiate, Caetano, Leitão

3

3 A print screen of the Luna Moth
IDE: A) Text editor; B) 3D visualizer;
C) Controls for running programs;
D) Interface for exporting to
external applications.

2 The software architecture is composed of a web application that provides the development environment for architects, and the Rosetta Remote Service that connects the
environment to their other design tools.

75ACADIA 2017 | DISCIPLINES + DISRUPTION

LUNA MOTH
To evaluate our proposal, we implemented Luna Moth, a
web-based IDE for algorithmic design that supports traceability
and real-time feedback. It runs user-written programs and
immediately displays the obtained models, while maintaining the
relationship between the different parts of the program and the
corresponding parts of the model. Additionally, Luna Moth is able
to interact with Rosetta (Lopes and Leitão 2011), which is used
here as a remote service, allowing portability with different CAD,
BIM, and analysis applications.

Figure 3 presents the user-interface of the Luna Moth IDE. The
controls for running programs (Figure 3c) are above both the text
editor (Figure 3a) and the 3D model visualizer (Figure 3b). The
option for running programs targeting external applications, as
well as a list of available programs, is on the left (Figure 3d).

Handling Traceability
Traceability can be achieved by giving feedback to the
programmer when interacting with the program or its results.
Luna Moth embraces this in several ways. First, it lets the user
adjust parameters more intuitively, while automatically rerunning
the program and showing the new results in real time. Second, it

reruns the program whenever its structure is changed, e.g., when
a new statement is added to a function, an expression is changed,
or a new function is added. Finally, it points out which part of
the code corresponds to a certain 3D element or the other way
around. In practical terms, when the user points at a function
application, Luna Moth immediately highlights the shapes that it
produced in the 3D view (Figure 4).

Note that Luna Moth does not track the execution of all program
fragments, but only those related to function applications. This
is a compromise to balance performance, since keeping track of
traceability is a computationally intensive task that needs to be
performed while the program runs.

Adjusting Literals
When a parameter, such as a number, is typed directly into a
program’s source code, it is called a literal value, or simply a
literal. When using algorithmic design, architects find themselves
repeatedly adjusting these literals to tweak the generated model.
This is usually done by rewriting parts of the literal’s text with
higher or lower digits.

4 Two examples of the traceability
mechanism: A) From program to
3D model; B) From 3D model to
program.

4

76

Adjusting literals this way often leads to errors, since it is easy
to mistype characters. First, it is easy to increase the order of
magnitude of the literal by adding one more digit by mistake.
Second, it is also easy to make mistakes when increasing the
literal in small increments. In most increments, users only replace
the rightmost digit. They erase the digit and type the next one.
They only need to move their hands to the key where the next
digit is, i.e. to the right. However, when they reache the digit
nine, they also need to increment the next and then type a zero.
This requires a different hand movement. It takes more time to
do and it is easier to accidentally hit the wrong keys.

These mistakes get amplified when the programming environ-
ment provides real-time feedback and begins rerunning the
program before the error is corrected, thus leading to reduced
responsiveness. The adjustment can be friendlier if done in a
clearer way, as exemplified in Figure 5—instead of retyping the
literal, Luna Moth enables the adjustment by simply “clicking and
dragging,” a movement that is similar to a slider.

Running Programs
One of the fundamental parts of a programming environment is
that it runs the programs written by its users. However, in the
case of Luna Moth, running a program entails more than the
typical process implemented in other IDEs, as it is necessary to
ensure traceability between program and model. To this end,
the program is syntactically analyzed, recovering its underlying
structure, also known as its abstract syntax tree (AST). This AST
is then transformed so that each function application also saves
the produced results in a database. Finally, the modified AST is
used to generate the actual program that runs in the browser.
After execution and generation of a 3D model, every time the

architect clicks on a function application or on an element in the
model, the database is consulted, and the corresponding associ-
ation is retrieved and then used to highlight both the expression
and the model’s element.

Workflow Integration
In order to integrate with the architect’s workflow, cloud-based
IDEs for algorithmic design should allow the generation of
models in the traditional design tools that are typically used by
architects. Some of the existing cloud-based tools have this crit-
ical limitation: even though architects can explore their models
more easily and rapidly in the IDE, they turn out to be useless
when it comes time to further develop them. This is one of the
major factors that contributes to the unpopularity of some of
these cloud-based IDEs in the architectural field, since they do
not integrate well the design process of architects.

To address this need, we planned to connect Luna Moth to
Rosetta (Lopes and Leitão 2011), which would open up the
possibility of exploring all of its features, including 3D-modeling
extensions, automatic visualization and rendering functionalities,
and also the connection to other essential tools, like BIM tools
and analysis tools. Unfortunately, due to security reasons, web
applications are not allowed to communicate with applications
running on the same computer. To overcome this limitation, we
implemented an application to be installed on the architect’s
computer—the Rosetta Remote Service—that serves as a bridge
between Rosetta and Luna Moth: when architects decide to
further develop their designs using other tools, Luna Moth uses
the bridging application to produce an identical model directly
into the selected tool; the model is automatically generated from
scratch using the same algorithms, thus avoiding any errors and

Luna	Moth:	Supporting	Creativity	in	the	Cloud	Alfaiate, Caetano, Leitão

5 A sequence of examples adjusting literals, while automatically affecting the 3D model generated.

77ACADIA 2017 | DISCIPLINES + DISRUPTION

7 Renders of the results explored using the Luna Moth IDE: A) Dom-Ino House; B) Wavy Façade; C) Nolan Façade; D) Arched Truss; E) Mobius Truss.

6 Workflow integration. The results of the program (on the right) have been passed to both AutoCAD and SketchUp (on the left).

78

loss of information that are typical of an export process.

Figure 6 shows an example of this functionality, where architects
have created an algorithmic design program using the Luna Moth
IDE, and when satisfied with the results, they select AutoCAD
and SketchUp as modeling targets. Luna Moth then re-executes
the algorithmic design program, generating identical models in
both CAD applications.

RESULTS AND REFLECTIONS
Our goal was to propose a software architecture for bringing
algorithmic design to the web browser, making it more easily
used anywhere and, simultaneously, providing features to
support architects in their programming tasks. To evaluate our
work, we started by implementing the Luna Moth IDE. In a
second stage, we developed several algorithmic design programs
using this IDE, which reproduced some architectural examples
that were previously explored using other algorithmic design
environments. As shown in Figure 7, Luna Moth can produce
interesting results with varying degrees of complexity, limited
only by the number of modeling operations that are currently
implemented. Actually, none of the selected examples used
constructive solid geometry (CSG) operations, like intersection
and difference, as these are not yet implemented. On the other
hand, Luna Moth takes advantage of certain techniques, like
higher-order functions (Leitão 2014), that have the ability to
easily create complex designs.

Performance
Performance plays an important role when using an algorithmic
design environment. Therefore, we evaluated our solution’s
performance from three different perspectives by comparing:

1. The running performance of Luna Moth with other algorithmic design

environments;

2. Its performance when connected to other design tools using the

bridging application;

3. Its performance with and without traceability data collection.

For this, we timed several situations. First, we analyzed how
long the process took while running in Luna Moth bridged
to AutoCAD, and running in Rosetta connected to AutoCAD.
Then, we measured the running times in OpenJSCAD and
Grasshopper—the latter with and without baking geometry to
Rhinoceros. Finally, we timed the running performance in Luna
Moth with traceability both enabled and disabled. Note that this
measurement of running times was done by generating identical
models in each IDE.

We started by implementing versions of programs using the
programming language of each environment, and then we
measured the time each IDE took to generate the models (Figure
8).

The results in Figure 8 show that, first, Luna Moth is consistently
faster than the other IDEs analyzed, sometimes with a difference

8

8 Running times for completing the
generation of the test models.
Note that the vertical axis uses a
logarithmic scale.

Luna	Moth:	Supporting	Creativity	in	the	Cloud	Alfaiate, Caetano, Leitão

79ACADIA 2017 | DISCIPLINES + DISRUPTION

of at least one order of magnitude. Therefore, we can say that it
provides faster feedback.

Second, running programs in Luna Moth alone is much faster
than using it with the bridge process—e.g., “Luna Moth +
AutoCAD”—whose times are 12–1800 times slower. Similarly,
the bridging process is also slower than similar processes in other
IDEs—“Rosetta + AutoCAD” and “Grasshopper + Rhino (Bake)”—
which are up to 24 and 104 times faster, respectively. However,
despite the considerable impact of the bridging process, it is only
intended for a single use at the final stage of the design explora-
tion process, i.e., when the architect is already satisfied with the
resulting model, aiming to further develop it in their preferred
CAD or BIM tool and thus its performance is not critical.

Lastly, we also measured the impact of traceability on perfor-
mance. Our analysis shows that it increases running time by
10–50%, which is dramatically better than what is possible
in Rosetta (Leitão, Lopes, and Santos 2014), and is within the
limits expected from tools that can run programs with increased
debugging information. Traceability data collection can be
disabled by users to increase feedback speed, but the perfor-
mance impact is worth taking when they want to get a better
understanding of the program.

Workflow Integration
When exploring algorithmic design, architects benefit from
a cloud-based IDE that is more intuitive, has better perfor-
mance, and is available on every computer without installation
or updates. Nevertheless, it is essential that the generated
models can then be used in subsequent design stages, using the

traditional tools that are typical of the design process.

Figure 9 represents the way Luna Moth integrates into the work-
flow of architects. From left to right, it shows the resulting model
of a program developed using our cloud-based IDE, two identical
models resulting from the bridged process of Luna Moth (one
was generated in Rhinoceros and the other in AutoCAD), and
finally, a render of the final model using Rhino’s Renderer.

On the other hand, Figure 10 shows the bottom-left truss
structure of Figure 7 being structurally analyzed using Robot.
This demonstrates that a purely geometric model initially
explored in Luna Moth can then be further developed, improved,
and enriched with information until it reaches its final stage.
Therefore, in regards to the continuous design process that is
characteristic of architecture, we may state that Luna Moth
adequately supports the initial phases and it does not limit
subsequent ones.

CONCLUSION
One emerging trend in architectural practice revolves around the
use of programming to explore new design possibilities, often
called algorithmic design. However, not only are algorithmic
design tools limited to desktop applications, but they also do
not simplify the task of programming for architects. To overcome
these limitations, we proposed a software architecture for a
cloud-based IDE suitable for algorithmic design, which we then
implemented as the Luna Moth IDE. Besides being available
online, hence not requiring any installation or updates, Luna
Moth integrates features intended to facilitate programming for
architects. Such features include embracing traceability between

9 Architect’s workflow process integration: A) Development of an Algorithmic Design program using Luna Moth; B) Usage of the bridge process to generate models in a CAD
tool (above, in Rhinoceros 3D and, below, in AutoCAD); C) Render of the final model.

80

program-model and model-program and supporting real-time
feedback when changing both parts of the script as well as the
input parameters.

In this paper, we explained the components of Luna Moth,
namely, a web application to explore algorithmic design
programs, and a desktop application to enable a bridging process
to generate the models produced in the web application in the
traditional tools used by architects, including CAD, BIM, and
analysis tools. The latter requires installation, but only when
architects decides to further develop their design using desktop
tools.

We evaluated our solution by first presenting some examples
explored using the Luna Moth IDE. Then we tested the perfor-
mance of Luna Moth by measuring the programs’ running
times, and finally, we compared them to running times on other
algorithmic design tools, such as Grasshopper, Rosetta, and
OpenJSCAD. Based on the results, we concluded that Luna Moth
can run programs faster than the other measured IDEs. The
effects of keeping track of traceability on the program running
times were also analyzed: although traceability makes programs
around 10–50% slower, this is a huge improvement over the
performance of Rosetta’s traceability, which makes it usable on
large programs as opposed to toy examples. Finally, we explored
the way Luna Moth fits into architects’ workflow and, to this end,
we developed a bridging process. Despite not being as efficient
as other approaches, it is intended to be used very infrequently,
and only in the final phases of the algorithmic design process.

We plan to address the limitations of Luna Moth in the near
future, namely by (1) improving the programming experience by
performing static analysis and code completion; (2) supporting
the addition of illustrations to programs as seen in Rosetta
(Leitão, Lopes, and Santos 2014) and IPython; (3) supporting
multiple programming languages; (4) improving the debugging
experience; (5) improving the environment’s traceability; (6)
supporting common modeling primitives; and (7) improving the
bridging process’s performance. These improvements will not
change the fundamental design ideas of Luna Moth but will
make it even more competitive. The next result of this research
is thus an algorithmic design tool that adequately serves the
initial design stages, while enabling the project’s continuity in the
subsequent phases.

ACKNOWLEDGEMENTS
This work was supported by national funds through Fundação para a

Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013, and

by the PhD grant under contract of University of Lisbon (UL), Instituto

Superior Técnico (IST) and the research unit Investigação e Inovação em

Engenharia Civil para a Sustentabilidade (CERIS).

REFERENCES
Granger, Chris. "Lighttable." 2015. http://lighttable.com/ (accessed May

15, 2017).

Hirschtick, Jon, and John McEleney. Onshape. 2012. https://www.

onshape.org (accessed May 15, 2017).

Houston, Ben, Wayne Larsen, Bryan Larsen, Jack Caron, Nima Niketrat,

Catherine Leung, Jesse Silver, Hasan Kamal-Al-Deen, Peter Callaghan,

Luna	Moth:	Supporting	Creativity	in	the	Cloud	Alfaiate, Caetano, Leitão

10 Structural analysis of the truss in Figure 7D. Left: the truss structure being structurally analyzed using Robot. Right: the corresponding truss model in Rhinoceros with the
resulting (amplified) structure deformation in red.

81ACADIA 2017 | DISCIPLINES + DISRUPTION

Roy Chen, and Tim McKenna. 2013. "Clara.io: Full-Featured 3D Content

Creation for the Web and Cloud Era." Presented as Studio Talk at ACM

SIGGRAPH, article 8. Anaheim, CA: SIGGRAPH.

Janssen, Patrick, Ruize Li, and Akshata Mohanty. 2016. "Möbius: A

Parametric Modeller for the Web." In Living Systems and Micro-Utopias:

Towards Continuous Designing, Proceedings fo the 21st Annual Conference

of the Association for Computer-Aided Architectural Design Research in Asia,

157–166. Melbourne, Australia: CAADRIA.

Leitão, António, R. Fernandes, and L. Santos. 2013. "Pushing the

Envelope: Stretching the Limits of Generative Design." In Proceedings

of the 17th Conference of the Iberoamerican Society of Digital Graphics,

235–238. Valparaíso, Chile: SIGRADI.

Leitão, António, J. Lopes, and L. Santos. 2014. "Illustrated Programming."

In ACADIA 14: Design Agency, Proceedings of the 34th Annual Conference of

the Association for Computer Aided Design in Architecture, edited by David

Gerber, Alvin Huang, and Jose Sanchez, 291–300. Los Angeles: ACADIA.

Leitão, António., L. Santos, and J. Lopes. 2013. “Programming Languages

for Generative Design: A Comparative Study.” International Journal of

Architectural Computing 10 (1): 139–162.

Leitão, António. 2014. “Improving Generative Design by Combining

Abstract Geometry and Higher-Order Programming.” In Rethinking

Comprehensive Design: Speculative Counterculture, Proceedings of the 19th

International Conference on Computer-Aided Architectural Design Research

in Asia, edited by Ning Gu, Shun Watanabe, Halil Erhan, Matthias Hank

Haeusler, Weixin Huang and Ricardo Sosa, 575–584. Kyoto: CAADRIA.

Lopes, Jose, and António Leitão. 2011. "Portable Generative Design for

CAD Applications." In Integration Through Computation: Proceedings of the

31st Annual Conference of the Association for Computer Aided Design in

Architecture, edited by by Joshua Taron, Vera Parlac, Branko Kolarevic and

Jason Johnson, 196–203. Banff/Calgary, Canada: ACADIA.

McCarthy, L., Eastmond, E., Shiffman, D., Johnson, J., & Lavigne, S. 2015.

"p5. js". https://p5js.org/ (accessed May 15, 2017).

Muller, R. K. 2015. "Openjscad.org." https://openjscad.org/ (accessed May

15, 2017).

Pérez, Fernando, and Brian E. Granger. 2007. "IPython: a system for

interactive scientific computing." Computing in Science and Engineering 9:

21–29.

Reas, Casey, and Ben Fry. 2007. Processing: A Programming Handbook for

Visual Designers and Artists. MIT Press.

Resig, John, Ben Fry, and Casey Reas. 2008. "Processing.js.". http://

processingjs.org/ (accessed May 15, 2017).

Terzidis, Kostas. 2004. “algorithmic design: A Paradigm Shift in

Architecture?” In Architecture in the Network Society: Proceedings of the

22nd Conference on Education in Computer Aided Architectural Design in

Europe, 201–207. Copenhagen: eCAADe.

Zboinska, Malgorzata A. “Hybrid CAD/E platform supporting exploratory

architectural design.” Computer Aided Design 59 (2015): 64–84.

IMAGE CREDITS
All drawings and images by the authors.

Pedro Alfaiate holds an MSc in Information Systems and Computer

Engineering, specialized in Software Engineering and Interaction and

Visualization. He is passionate about programming, user-interfaces, web

technologies, and everything 3D.

Inês Caetano is a Portuguese architect graduated at Instituto Superior

Tecnico (University of Lisbon), a researcher at INESC-ID, and a PhD

student at the same university, exploring the integration of algorithmic

design methods in the design, analysis and optimization of façade

designs.

António Leitão has a BSc in Mechanical Engineering, an MSc in

Electronics Engineering, and a PhD in Computer Science and Engineering,

all from Instituto Superior Técnico (IST) of the University of Lisbon.

Currently he is Assistant Professor at the same university, Scientific

Coordinator of the Software Engineering Group at INESC-ID, and

Coordinator of the Architecture and Computation Group, teaching,

lecturing, and researching on bringing together the fields of Computer

Science and Architecture.

