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ABSTRACT
Algorithmic design allows architects to design using a programming-based approach. Current algo-
rithmic design environments are based on existing computer-aided design applications or building 
information modeling applications, such as AutoCAD, Rhinoceros 3D, or Revit, which, due to their 
complexity, fail to give architects the immediate feedback they need to explore algorithmic design. 
In addition, they do not address the current trend of moving applications to the cloud to improve 
their availability.

To address these problems, we propose a software architecture for an algorithmic design inte-
grated development environment (IDE), based on web technologies, that is more interactive than 
competing algorithmic design IDEs. Besides providing an intuitive editing interface which facilitates 
programming tasks for architects, its performance can be an order of magnitude faster than current 
aalgorithmic design IDEs, thus supporting real-time feedback with more complex algorithmic design 
programs. Moreover, our solution also allows architects to export the generated model to their 
preferred computer-aided design applications. This results in an algorithmic design environment 
that is accessible from any computer, while offering an interactive editing environment that inte-
grates into the architect’s workflow.

1

1 Migration from desktop application 
to the cloud.
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INTRODUCTION
Throughout the years, computers have been gaining more ground 
in the field of architecture. In the beginning, they were only used 
for creating technical drawings using computer-aided design 
(CAD) software, but later, they began to integrate 3D modeling 
capabilities. However, modeling a complex building is still a 
time-consuming activity that requires several repetitive tasks 
that are not trivial to accomplish using just the functionalities 
provided by 3D modeling software.

This has led to the emergence of new design approaches, such 
as algorithmic design (Terzidis 2004). Algorithmic design is based 
on the use of programming, enabling architects to create their 
own program by describing their modeling intentions and letting 
the computer do the modeling task for them. Also, compared to 
the manual approach, it promotes a quicker and simpler handling 
of changes coming from uncertain design intents and emergent 
requirements (Leitão, Fernandes, and Santos 2013), allowing the 
designer to explore a broader design space.

To create their scripts, architects need to use a programming 
language, its runtime environment (including CAD and building 
information modeling [BIM] applications to visualize the obtained 
models), and an integrated development environment (IDE). 
Unfortunately, programming is not a trivial activity, particularly 
for those who are not specifically trained for it. With the aim of 
integrating programming in architects' workflow, some tools and 
programming languages have been carefully designed to facilitate 
this task.

PROGRAMMING IN ARCHITECTURE: 
PERFORMANCE, TRACEABILITY, AND 
SCALABILITY
Programmers need IDEs for general purpose development, but 
architects and designers need IDEs suitable to the algorithmic 
design domain. We claim that such IDEs need to provide two 
important features: traceability and real-time feedback. By trace-
ability, we mean creating a relationship between parts of the 
program and those of the generated model. This is particularly 
important for the comprehension, maintenance, and debugging 
of algorithmic design programs (Leitão, Lopes, and Santos 2014). 
Real-time feedback is relevant for immediately understanding the 
effects of changes in the algorithmic design programs, helping 
architects to develop and change those programs.

Some IDEs have been developed to support visual programming 
languages, which are considered to be more intuitive than textual 
programming languages and, therefore, more attractive for 
those who do not have any programming experience (Zboinska 
2015). Grasshopper and Dynamo are two examples of visual 

programming languages that also support traceability between 
the program and the model: when the user selects a component 
in the program, the corresponding 3D model components are 
highlighted. Another advantage of these visual programming 
languages is that they support real-time feedback of parametric 
changes when using sliders to represent the parameters.

Unfortunately, visual programming languages do not scale well 
when applied to more complex projects (Leitão, Santos, and 
Lopes 2012). Visual programming scripts not only become 
unreadable and thus very difficult to change, but the real-time 
feedback of the sliders also begins to vanish as the overall 
performance decreases. Moreover, the traceability between 
the program and the model only exists in one direction, from 
program to generated model.

On the other hand, textual programming languages have 
mechanisms that make complexity more manageable, allowing 
algorithmic design programs to be smaller. Still, typical textual 
programming language IDEs lack ways to show the connection 
between program and results. Some research on this topic has 
been done (e.g., the Illustrated Programming approach, imple-
mented in the Rosetta IDE [Leitão, Lopes, and Santos 2014]), to 
improv the comprehension of algorithmic design programs by 
integrating both sketch program and program model correlations. 
As it uses textual programming languages, it does not suffer 
as much from scalability problems. Additionally, the existing 
traceability is supported in both directions, i.e., from program to 
model and from model to program. Unfortunately, the current 
performance of the Rosetta IDE is not sufficient to support 
efficient traceability and much less to allow real-time feedback of 
non-trivial algorithmic design programs.

CLOUD-BASED	PROGRAMMING	
ENVIRONMENTS
There are several IDEs that already explore web technologies: 
Light Table, a code editor implemented using web technologies 
that explores ways to improve programming in TPLs (Granger 
2015); IPython, a programming environment for scientific 
computing that is used through a web page (Pérez and Granger 
2007); and Processing, a programming language for the visual 
arts that can run on the web (Reas and Fry 2007; McCarthy et al. 
2015; Reas et al. 2008). 

These, however, do not target the algorithmic design field, which 
is better served with OpenJSCAD, a web application for 3D 
modeling using a textual programming language (Muller 2015), 
and Möbius, an algorithmic design environment implemented 
as a web application that combines block-based programming 
with associative programming (Janssen, Li, and Mohanty 2016). 
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Apart from this, as web applications, OpenJSCAD and Möbius 
can always be kept up to date without requiring architects to do 
anything.

Even so, these two lack remote storage as provided by Onshape, 
a cloud-based CAD application (Hirschtick and McEleney 2012), 
and Clara.io, a cloud-based 3D modeling application (Houston 
et al. 2013). Work done in Onshape and Clara.io is kept on 
a remote server, thus facilitating their use regardless of the 
computer used by the designer. In addition, they also support 
collaboration, meaning that their users can work on the same 
model simultaneously. Nevertheless, Onshape and Clara.io do 
not support algorithmic design.

On the other hand, the cloud-based IDEs that do support 
algorithmic design, namely OpenJSCAD and Möbius, both lack 
editing features found in desktop algorithmic design applications, 
such as Grasshopper and Rosetta’s traceability, and the latter’s 
interoperability.

To sum up, most IDEs used for algorithmic design are desktop 

applications, providing limited support for remote work and 
collaboration, and requiring constant updates by their users. On 
the other hand, cloud-based IDEs are always up to date, but 
unfortunately, there is no cloud-based IDE capable of supporting 
an algorithmic design approach for architectural modeling that 
also integrates well with the typical architectural workflow.

Our aim is to increase architects’ productivity when using an 
algorithmic approach by giving them an appropriate cloud-based 
programming environment. As such, we present a software 
architecture for a design tool that advances the state of the art in 
IDEs for algorithmic design in four different areas (Figure 2): 

1. It has the required performance for real-time feedback of complex 

scripts;

2. It enables the user to see the bidirectional traceability relationship 

between the program and the resulting model;

3. It is available as a web application, not requiring installation or 

updates, and available for remote use;

4. It smoothly integrates into architects’ workflow by generating the 

obtained results in other CAD tools they use.
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3

3 A print screen of the Luna Moth 
IDE: A) Text editor; B) 3D visualizer; 
C) Controls for running programs; 
D) Interface for exporting to 
external applications.

2  The software architecture is composed of a web application that provides the development environment for architects, and the Rosetta Remote Service that connects the 
environment to their other design tools.
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LUNA MOTH
To evaluate our proposal, we implemented Luna Moth, a 
web-based IDE for algorithmic design that supports traceability 
and real-time feedback. It runs user-written programs and 
immediately displays the obtained models, while maintaining the 
relationship between the different parts of the program and the 
corresponding parts of the model. Additionally, Luna Moth is able 
to interact with Rosetta (Lopes and Leitão 2011), which is used 
here as a remote service, allowing portability with different CAD, 
BIM, and analysis applications.

Figure 3 presents the user-interface of the Luna Moth IDE. The 
controls for running programs (Figure 3c) are above both the text 
editor (Figure 3a) and the 3D model visualizer (Figure 3b). The 
option for running programs targeting external applications, as 
well as a list of available programs, is on the left (Figure 3d).

Handling Traceability
Traceability can be achieved by giving feedback to the 
programmer when interacting with the program or its results. 
Luna Moth embraces this in several ways. First, it lets the user 
adjust parameters more intuitively, while automatically rerunning 
the program and showing the new results in real time. Second, it 

reruns the program whenever its structure is changed, e.g., when 
a new statement is added to a function, an expression is changed, 
or a new function is added. Finally, it points out which part of 
the code corresponds to a certain 3D element or the other way 
around. In practical terms, when the user points at a function 
application, Luna Moth immediately highlights the shapes that it 
produced in the 3D view (Figure 4).

Note that Luna Moth does not track the execution of all program 
fragments, but only those related to function applications. This 
is a compromise to balance performance, since keeping track of 
traceability is a computationally intensive task that needs to be 
performed while the program runs.

Adjusting Literals
When a parameter, such as a number, is typed directly into a 
program’s source code, it is called a literal value, or simply a 
literal. When using algorithmic design, architects find themselves 
repeatedly adjusting these literals to tweak the generated model. 
This is usually done by rewriting parts of the literal’s text with 
higher or lower digits.

4  Two examples of the traceability 
mechanism: A) From program to 
3D model; B) From 3D model to 
program.

4
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Adjusting literals this way often leads to errors, since it is easy 
to mistype characters. First, it is easy to increase the order of 
magnitude of the literal by adding one more digit by mistake. 
Second, it is also easy to make mistakes when increasing the 
literal in small increments. In most increments, users only replace 
the rightmost digit. They erase the digit and type the next one. 
They only need to move their hands to the key where the next 
digit is, i.e. to the right. However, when they reache the digit 
nine, they also need to increment the next and then type a zero. 
This requires a different hand movement. It takes more time to 
do and it is easier to accidentally hit the wrong keys. 

These mistakes get amplified when the programming environ-
ment provides real-time feedback and begins rerunning the 
program before the error is corrected, thus leading to reduced 
responsiveness. The adjustment can be friendlier if done in a 
clearer way, as exemplified in Figure 5—instead of retyping the 
literal, Luna Moth enables the adjustment by simply “clicking and 
dragging,” a movement that is similar to a slider.

Running Programs
One of the fundamental parts of a programming environment is 
that it runs the programs written by its users. However, in the 
case of Luna Moth, running a program entails more than the 
typical process implemented in other IDEs, as it is necessary to 
ensure traceability between program and model. To this end, 
the program is syntactically analyzed, recovering its underlying 
structure, also known as its abstract syntax tree (AST). This AST 
is then transformed so that each function application also saves 
the produced results in a database. Finally, the modified AST is 
used to generate the actual program that runs in the browser. 
After execution and generation of a 3D model, every time the 

architect clicks on a function application or on an element in the 
model, the database is consulted, and the corresponding associ-
ation is retrieved and then used to highlight both the expression 
and the model’s element.

Workflow Integration
In order to integrate with the architect’s workflow, cloud-based 
IDEs for algorithmic design should allow the generation of 
models in the traditional design tools that are typically used by 
architects. Some of the existing cloud-based tools have this crit-
ical limitation: even though architects can explore their models 
more easily and rapidly in the IDE, they turn out to be useless 
when it comes time to further develop them. This is one of the 
major factors that contributes to the unpopularity of some of 
these cloud-based IDEs in the architectural field, since they do 
not integrate well the design process of architects.

To address this need, we planned to connect Luna Moth to 
Rosetta (Lopes and Leitão 2011), which would open up the 
possibility of exploring all of its features, including 3D-modeling 
extensions, automatic visualization and rendering functionalities, 
and also the connection to other essential tools, like BIM tools 
and analysis tools. Unfortunately, due to security reasons, web 
applications are not allowed to communicate with applications 
running on the same computer. To overcome this limitation, we 
implemented an application to be installed on the architect’s 
computer—the Rosetta Remote Service—that serves as a bridge 
between Rosetta and Luna Moth: when architects decide to 
further develop their designs using other tools, Luna Moth uses 
the bridging application to produce an identical model directly 
into the selected tool; the model is automatically generated from 
scratch using the same algorithms, thus avoiding any errors and 
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5 A sequence of examples adjusting literals, while automatically affecting the 3D model generated.
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7 Renders of the results explored using the Luna Moth IDE: A) Dom-Ino House; B) Wavy Façade; C) Nolan Façade; D) Arched Truss; E) Mobius Truss.

6 Workflow integration. The results of the program (on the right) have been passed to both AutoCAD and SketchUp (on the left).
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loss of information that are typical of an export process.

Figure 6 shows an example of this functionality, where architects 
have created an algorithmic design program using the Luna Moth 
IDE, and when satisfied with the results, they select AutoCAD 
and SketchUp as modeling targets. Luna Moth then re-executes 
the algorithmic design program, generating identical models in 
both CAD applications.

RESULTS AND REFLECTIONS
Our goal was to propose a software architecture for bringing 
algorithmic design to the web browser, making it more easily 
used anywhere and, simultaneously, providing features to 
support architects in their programming tasks. To evaluate our 
work, we started by implementing the Luna Moth IDE. In a 
second stage, we developed several algorithmic design programs 
using this IDE, which reproduced some architectural examples 
that were previously explored using other algorithmic design 
environments. As shown in Figure 7, Luna Moth can produce 
interesting results with varying degrees of complexity, limited 
only by the number of modeling operations that are currently 
implemented. Actually, none of the selected examples used 
constructive solid geometry (CSG) operations, like intersection 
and difference, as these are not yet implemented. On the other 
hand, Luna Moth takes advantage of certain techniques, like 
higher-order functions (Leitão 2014), that have the ability to 
easily create complex designs.

Performance
Performance plays an important role when using an algorithmic 
design environment. Therefore, we evaluated our solution’s 
performance from three different perspectives by comparing: 

1. The running performance of Luna Moth with other algorithmic design 

environments;

2. Its performance when connected to other design tools using the 

bridging application;

3. Its performance with and without traceability data collection.

For this, we timed several situations. First, we analyzed how 
long the process took while running in Luna Moth bridged 
to AutoCAD, and running in Rosetta connected to AutoCAD. 
Then, we measured the running times in OpenJSCAD and 
Grasshopper—the latter with and without baking geometry to 
Rhinoceros. Finally, we timed the running performance in Luna 
Moth with traceability both enabled and disabled. Note that this 
measurement of running times was done by generating identical 
models in each IDE.

We started by implementing versions of programs using the 
programming language of each environment, and then we 
measured the time each IDE took to generate the models (Figure 
8).

The results in Figure 8 show that, first, Luna Moth is consistently 
faster than the other IDEs analyzed, sometimes with a difference 

8

8 Running times for completing the 
generation of the test models. 
Note that the vertical axis uses a 
logarithmic scale.
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of at least one order of magnitude. Therefore, we can say that it 
provides faster feedback.

Second, running programs in Luna Moth alone is much faster 
than using it with the bridge process—e.g., “Luna Moth + 
AutoCAD”—whose times are 12–1800 times slower. Similarly, 
the bridging process is also slower than similar processes in other 
IDEs—“Rosetta + AutoCAD” and “Grasshopper + Rhino (Bake)”—
which are up to 24 and 104 times faster, respectively. However, 
despite the considerable impact of the bridging process, it is only 
intended for a single use at the final stage of the design explora-
tion process, i.e., when the architect is already satisfied with the 
resulting model, aiming to further develop it in their preferred 
CAD or BIM tool and thus its performance is not critical.

Lastly, we also measured the impact of traceability on perfor-
mance. Our analysis shows that it increases running time by 
10–50%, which is dramatically better than what is possible 
in Rosetta (Leitão, Lopes, and Santos 2014), and is within the 
limits expected from tools that can run programs with increased 
debugging information. Traceability data collection can be 
disabled by users to increase feedback speed, but the perfor-
mance impact is worth taking when they want to get a better 
understanding of the program.

Workflow Integration
When exploring algorithmic design, architects benefit from 
a cloud-based IDE that is more intuitive, has better perfor-
mance, and is available on every computer without installation 
or updates. Nevertheless, it is essential that the generated 
models can then be used in subsequent design stages, using the 

traditional tools that are typical of the design process.

Figure 9 represents the way Luna Moth integrates into the work-
flow of architects. From left to right, it shows the resulting model 
of a program developed using our cloud-based IDE, two identical 
models resulting from the bridged process of Luna Moth (one 
was generated in Rhinoceros and the other in AutoCAD), and 
finally, a render of the final model using Rhino’s Renderer.

On the other hand, Figure 10 shows the bottom-left truss 
structure of Figure 7 being structurally analyzed using Robot. 
This demonstrates that a purely geometric model initially 
explored in Luna Moth can then be further developed, improved, 
and enriched with information until it reaches its final stage. 
Therefore, in regards to the continuous design process that is 
characteristic of architecture, we may state that Luna Moth 
adequately supports the initial phases and it does not limit 
subsequent ones.

CONCLUSION
One emerging trend in architectural practice revolves around the 
use of programming to explore new design possibilities, often 
called algorithmic design. However, not only are algorithmic 
design tools limited to desktop applications, but they also do 
not simplify the task of programming for architects. To overcome 
these limitations, we proposed a software architecture for a 
cloud-based IDE suitable for algorithmic design, which we then 
implemented as the Luna Moth IDE. Besides being available 
online, hence not requiring any installation or updates, Luna 
Moth integrates features intended to facilitate programming for 
architects. Such features include embracing traceability between 

9  Architect’s workflow process integration: A) Development of an Algorithmic Design program using Luna Moth; B) Usage of the bridge process to generate models in a CAD 
tool (above, in Rhinoceros 3D and, below, in AutoCAD); C) Render of the final model.
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program-model and model-program and supporting real-time 
feedback when changing both parts of the script as well as the 
input parameters. 

In this paper, we explained the components of Luna Moth, 
namely, a web application to explore algorithmic design 
programs, and a desktop application to enable a bridging process 
to generate the models produced in the web application in the 
traditional tools used by architects, including CAD, BIM, and 
analysis tools. The latter requires installation, but only when 
architects decides to further develop their design using desktop 
tools.

We evaluated our solution by first presenting some examples 
explored using the Luna Moth IDE. Then we tested the perfor-
mance of Luna Moth by measuring the programs’ running 
times, and finally, we compared them to running times on other 
algorithmic design tools, such as Grasshopper, Rosetta, and 
OpenJSCAD. Based on the results, we concluded that Luna Moth 
can run programs faster than the other measured IDEs. The 
effects of keeping track of traceability on the program running 
times were also analyzed: although traceability makes programs 
around 10–50% slower, this is a huge improvement over the 
performance of Rosetta’s traceability, which makes it usable on 
large programs as opposed to toy examples. Finally, we explored 
the way Luna Moth fits into architects’ workflow and, to this end, 
we developed a bridging process. Despite not being as efficient 
as other approaches, it is intended to be used very infrequently, 
and only in the final phases of the algorithmic design process.

We plan to address the limitations of Luna Moth in the near 
future, namely by (1) improving the programming experience by 
performing static analysis and code completion; (2) supporting 
the addition of illustrations to programs as seen in Rosetta 
(Leitão, Lopes, and Santos 2014) and IPython; (3) supporting 
multiple programming languages; (4) improving the debugging 
experience; (5) improving the environment’s traceability; (6) 
supporting common modeling primitives; and (7) improving the 
bridging process’s performance. These improvements will not 
change the fundamental design ideas of Luna Moth but will 
make it even more competitive. The next result of this research 
is thus an algorithmic design tool that adequately serves the 
initial design stages, while enabling the project’s continuity in the 
subsequent phases.
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