Luna Moth

A Web-based Programming Environment for Generative Design

Pedro Alfaiatel , Anténio Leitdo?

L2INESC-ID/Instituto Superior Técnico
L2 tpedro.alfaiate|antonio.menezes. leitao ) @tecnico.ulisboa.pt

Current Generative Design (GD) tools require installation and regular updates.
On top of that, programs that are created using them are stoved as files, which
have to be moved and shared manually with others. On the other hand, web
applications are accessible using just a web browser and they can also store
information remotely, meaning that it does not need to be moved and is easily
shared with others. Consequently, GD tools should also be available as web
applications to get the same functionality. We present Luna Moth, an IDE for GD
available from the web that shows the relationship between a program and its
results and integrates into the architect's workflow. Then, we give examples
where Luna Moth's features help the architect during the programming process.
Finally, we compare Luna Moth's performance with other IDEs, namely,
Grasshopper, OpenJSCAD, and Rosetta.

Keywords: Generative Design, Web application, Design tool integration,

INTRODUCTION
Generative Design (GD) is a design process that
comes partially from the automation of modeling
tasks in Computer-Aided Design (CAD) applications
using programming. GD uses computers as a new
medium for artistic expression (Maeda 2001) that can
be used by architects, as shown by Terzidis in Expres-
sive Form (Terzidis 2003). Having a faster and more
flexible process for building 3D models allows the ar-
chitect to explore more variations of a design.
Furthermore, using GD as a new design pro-
cess promotes a simpler handling of changes coming
from uncertain design intents and emergent require-
ments, which evolve as the understanding of the
problem improves or as the project’s needs change
(Fernandes et al. 2014). In fact, programs are unam-

SIMULATION AND WEB-BASED DESIGN - Volume 2 - eCAADe 35 | 511

biguous parameterized representations of designs,
which only need small changes to parameters or
functions to express changes.

Interactivity in GD IDEs

In order to improve the programming process, Inte-
grated Development Environments (IDEs) and Pro-
gramming Languages (PL) were developed, some of
them directly addressing the needs of GD. For exam-
ple, in Rhinoceros we have PLs like RhinoScript and
RhinoPython, and in AutoCAD we have VisuallLisp.
They allow the architect to access the host CAD ap-
plication’s functionalities, such as operations to cre-
ate or transform geometry. These PLs are textual pro-
gramming languages (TPLs) meaning that their pro-
grams are represented as text.



However, the mode of interaction with these PLs and
their IDEs leaves much to be desired in the context
of GD. The usual interaction with them follows a se-
quence that begins with the architect writing a por-
tion of code, running the program, waiting for the
program to finish running, looking at the generated
model, and repeating the sequence until he is satis-
fied with the result. In this mode of interaction, the
architect has no feedback regarding the changes he
makes to the program while he is making it. It is not
until he finally runs the program again that he gets
the outcome. Given enough time between runs, he
may start to miss the details that changed, which will
make it harder to make sure the program does what
is intended.

IDEs like Grasshopper for Rhinoceros and Dy-
namo for Revit tackle this problem by running pro-
grams continuously while changes are made. This al-
lows the architect to immediately see their effects,
which, in turn, allows him to make corrections as
soon as he finds that the results are not what he in-
tended. Moreover, while testing his programs, the ar-
chitect can use tools like sliders to control input pa-
rameters and see the effects of changes almost im-
mediately. Apart from this, these IDEs use visual pro-
gramming languages (VPLs) where programs are rep-
resented graphically by connecting functions, repre-
sented by boxes, with wires that represent the flow of
data from one function to another. As such, they can
be seen as more intuitive for beginners.

Unfortunately, these IDEs quickly lose interactivity as
programs grow. For bigger programs, sliders lose
immediate feedback since the program takes too
much time to run, which makes architects give up
using sliders and, instead, change parameters tex-
tually. This performance problem comes both from
the complexity of the GD program, which can make
running times grow beyond the limit for immediate
feedback, and from the way CAD applications are im-
plemented, since they were designed to handle hu-
man interaction and not the volume of operations
generated by GD programs. Solving the first cause
might require the use of more efficient programming
models and techniques to keep program complexity
down, while the second can be alleviated by imple-
menting dedicated visualizers to avoid using a CAD
application entirely, e.g., an OpenGL viewer (Leitdo et
al. 2014).

Apart from improving performance to allow for
better feedback, IDEs can make it easier for architects
to understand programs. A program is a rather ab-
stract representation of the design and it can be hard
to understand what each part of it is intended to rep-
resent, even more so when it grows in complexity.
One way to make programs easier to understand is
to include documentation with them. As pointed out
in lllustrated Programming (Leitéo et al. 2014), archi-
tects already make sketches to help them formalize
their design into a program which can serve as docu-
mentation. Therefore, the IDE should allow sketches
to be part of programs. The work in (Ferreira 2016)
went a little further by improving the perception of
the relationship between sketch and program. In ad-
dition to documentation, it is also easier to under-
stand programs with traceability as also pointed out
in (Leitdo et al. 2014), that is, being able to trace an
element of the 3D model back to the parts of the pro-
gram that created it. The opposite direction, from
a part of the program to the parts of the 3D model,
is also helpful. Unfortunately, GD IDEs that support
traceability have limitations. Dynamo and Grasshop-
per only support it in one direction, from program to
model, while Rosetta (Lopes and Leitdo 2011) sup-

512 | eCAADe 35 - SIMULATION AND WEB-BASED DESIGN - Volume 2

Figure 1
Luna Moth’s editing
interface



Figure 2

An example of
numeric parameter
adjustment.
Clicking and
dragging changes
the value of the
parameter.

ports both directions but is too slow even for small
programs.

Web applications
The web has seen a big increase in popularity, which
has become even stronger by the standardization of
web technologies, such as HTML5 (Hickson and Hy-
att 2011) and WebGL (Marrin 2011), which allowed
web applications to achieve user experiences on par
with desktop applications. In addition, as web ap-
plications run on remote computers, they are always
accessible without installation or updates. This has
led to the creation of many web application coun-
terparts of common desktop applications. For ex-
ample, office productivity tools, like Microsoft Word,
Excel and PowerPoint, have seen the appearance of
their web application counterparts such as Microsoft
Office 365. Furthermore, 3D modeling web applica-
tions and CAD web applications have also appeared.
One example of the first is Clara.io (Houston et al.
2013), for 3D modeling and animation, and one re-
garding the second is OnShape [1], for Product De-
sign/Engineering. Moreover, these web applications
can save information remotely, which removes the
need to transfer files between computers, and they
can also support collaboration over great distances.
Closer to GD, experimental web applications
have also appeared. One example is OpenJSCAD [2],
for 3D modeling with Boolean operations usinga TPL,
and another is Mobius (Janssen et al. 2016), for 3D
modeling using node- and block-based VPL. How-
ever, they do not have functionality for remote stor-

SIMULATION AND WEB-BASED DESIGN - Volume 2 - eCAADe 35 | 513

age nor for collaboration found in the previous web
applications. In addition, they also lack features that
help understanding programs found in the GD IDEs
from the previous section.

Goals

As mentioned in the previous section, web IDEs for
GD are still lacking features that make them suitable
for practical use. A modern GD IDE that addresses
the previous problems needs to: (1) have good ac-
cessibility, being available on any computer with in-
ternet access and without requiring installation and
updates; (2) be interactive, letting architects explore
GD easily, giving them feedback and showing the re-
lationship between program and results; (3) integrate
easily with the CAD applications already used by ar-
chitects, so that they can combine their GD experi-
ments into their normal workflow.

In this paper, we present an experimental IDE,
Luna Moth, a HTML5/JavaScript-based web appli-
cation that harnesses the performance and graph-
ical capabilities of modern web browsers and that
can connect to the other CAD applications used by
architects. Using Luna Moth, architects can write
their GD programs, visualize the results without be-
ing chained to a particular computer, and can easily
integrate results into their normal workflow.

We can summarize the structure of the paper as
follows:

+ Wedescribe Luna Moth's interface for creating
GD programs, which makes use of immediate
feedback and traceability mechanisms.

+ We describe the way Luna Moth integrates
with other design tools used by the architect.

+ We show how Luna Moth's features can help
the architect during the programming pro-
cess.

+ We compare Luna Moth with OpenJSCAD,
Grasshopper, and Rosetta by measuring the
times for running programs and displaying
their results.



function col(p¥, h) {
[eyl(pt, 2.5, h-1),
cyl(add(pt, z(h-1)),

n supportCols(us, vs

spatialTrussInsertApex(pts);

Web Rosetta
Application _— Remote ——— > | Design Tool
pplicati Uses Service Calls
Bridge API operations

LUNA MOTH OVERVIEW

User interface
Luna Moth's editing interface consists of a source
code editor (A) and a 3D view (B), as can be seen in
figure 1. Apart from the main editing area, the in-
terface also includes panels for managing programs
(creating, opening, and deleting)(C) and for connect-
ing Luna Moth to CAD applications (D).

The 3D model displayed in the 3D view is kept
in sync with the results of the program in the source
code editor, providing immediate feedback to the ar-

iy~ ey
2 »
AP AP
\ﬁ,)\'f@\#q\ 4\\!

~

chitect. Whenever program changes, Luna Moth re-
runs it and regenerates the 3D model. Moreover,
Luna Moth also includes something akin to sliders
to change numeric parameters. As such, instead of
having to change the individual digits of the param-
eters, the architect can click and drag on parameters
to change them. Figure 2 shows an example of use of
this functionality.

The interface also makes it possible to under-
stand which parts of the 3D model were created by
an expression of the program by pointing at it. Like-

514 | eCAADe 35 - SIMULATION AND WEB-BASED DESIGN - Volume 2

Figure 3

An example of Luna
Moth’s traceability.
On the left, clicking
on a part of the
model shows the
part of the program
that created it. On
the right, clicking
on a part of the
program shows the
parts of the model
that it created.

Figure 4
Luna Moth’s
software
architecture

Figure 5

A truss created in
Luna Moth,
generated in
AutoCAD, and then
rendered using
AutoCAD’s
renderer.



Figure 6
Correction of
protrusion from
depending on the
column to
depending on the
row.

Figure 7

Increasing the wall’s
length by clicking
and dragging.

Figure 8

Clicking on an
apparently wrong
3D element shows
the function that
created it.

wise, it is also possible to go the other way, pointing
at any part of the 3D model to know which expres-
sion created it. By letting the architect go both ways,
the interface facilitates the understanding of the re-
lationship between program and results - see figure

rows(30, #», wavyBrick); l rows(30, LHaavyBrick);

Programming Language

Regarding the programming language used to write
programs, Luna Moth supports the JavaScript TPL.
We chose a TPL since, as described in (Leitdo et al.
2012), although VPLs are more intuitive, they do not
scale well for big programs. When visual programs
grow in complexity, they become big nets of inter-

SIMULATION AND WEB-BASED DESIGN - Volume 2 - eCAADe 35 | 515

connected nodes that are hard to understand and
modify. On the other hand, textual programming
languages have mechanisms, like functions, that al-
low architects to create abstractions that hide how
a certain task is performed from the rest of the pro-
gram. As such, architects can create the rest of the
program without worrying about all the details of
each part, thus, focusing their attention on higher-
level concepts. For example, creating a roof in a 3D
model does not depend entirely on how the support
below is created; both tasks share parameters, like
the shape of the building, but they are otherwise in-
dependent from a 3D modeling perspective. Conse-
quently, these can be packed in different functions.
Afterward, they can be used in another part of the
program without knowing their details.

We assume that someone using Luna Moth is
at least comfortable with using TPLs, which can re-
quire more study upfront when compared to VPLs.
Nonetheless, the initial investment quickly pays off
since it is easier to adapt programs to accommodate
more changes, given the increased flexibility of TPLs.

Workflow Integration

A GD IDE can only have a significant impact in the
design process if it can integrate into the architect’s
workflow. This is typically supported in GD IDEs by
exporting to a common file format which is recog-
nized and/or required by other tools. Instead of ex-
porting, Luna Moth connects to the CAD application
and, then, generates the model from scratch there.
To achieve the connection with other design tools,
Luna Moth uses the software architecture shown in
figure 4.

To use this functionality, architects have to run
the Rosetta Remote Service on their computer, which
lets Luna Moth know which design tools exist on that
computer. Afterward, they select the desired design
tool in Luna Moth and start the connection. Then,
Luna Moth uses Rosetta Remote Service to gener-
ate the results of their program directly in the design
tool. As such, when they reach the desired solution,
they can then connect to a design tool, such as Au-



toCAD, to generate drawings or render the solution
with higher detail - see figure 5.

This intermediary step is necessary since there
are no other means for web applications to know
which applications exist in a computer. However, it
does require the architect to run something on his
computer in addition to the web browser, which goes
against the principle that the web browser is the only
software needed to use Luna Moth. Still, this is only
true when the architect wants to connect Luna Moth
to his design tools. The rest of the time, he can
use Luna Moth without a problem with just a web
browser.

As the Rosetta Remote Service uses Rosetta
(Lopes and Leitdo 2011) to connect to design tools,
Luna Moth can connect to design tools other than
AutoCAD. Due to recent extensions to Rosetta (Feist
et al. 2016)(Leitdo et al. 2017), Luna Moth can also
connect to BIM and analysis tools, such as Revit and
Radiance.

RESULTS AND REFLECTIONS

Programming Experience

As mentioned earlier, Luna Moth supports a TPL and
keeps the view of results in sync with the current ver-
sion of the program. In this section, we give examples
of how Luna Moth can help with the development of
a program.

Suppose an architect wants to create a facade
composed of bricks. He created functions to make
a straight grid of bricks and wants to control how
much each brick is protruded. He decides that the
protrusion should depend on the brick’s position in
the fagade, i.e. its row and column. As Luna Moth
has immediate feedback, he sees how each change
affects the resulting facade. As such, if he wants the
protrusion to increase as the row increases and starts
changing the program to make it happen but, in-
stead, makes it depend on the column, he will see
that the result is wrong immediately. In this case, he
can just as quickly correct the bug, as seen in figure
6.

516 | eCAADe 35 - SIMULATION AND WEB-BASED DESIGN - Volume 2

Figure 9

Other examples
created with Luna
Moth



Figure 10
Running times of
four examples in
Luna Moth, Rosetta,
OpenJSCAD, and
Grasshopper. The
vertical axis
represents time in
milliseconds and
uses a logarithmic
scale.

After correcting this bug, he may want to tweak the
code’s numerical parameters to make the wall more
or less steep. He can adjust those parameters by click-
ing and dragging them. The same goes for the num-
ber of bricks horizontally and vertically, in which case,
the architect may want to see the effect on a bigger
or lengthier wall (Figure 7).

In another situation, consider that an architect is
developing a program that creates a model in sep-
arate parts, for example, a building skeleton with
columns, slabs, and stairs. In this situation, he may
notice that some columns are not appearing in the
right locations, therefore, he can use Luna Moth's
traceability, pointing at one of them to be directed to
the function that creates it (Figure 8). From there, he
can start to examine the function to understand why
itis creating columns in the wrong location. Further-
more, the architect can also use traceability to find
the remaining columns created by that function and
check whether they are also incorrect. This time, he
uses traceability in the reverse direction, from pro-
gram to results.

In the same way the architect clicks on the model
to get to a function that is not producing the right
results, he can also do this to find a function that he
wants to experiment on.

Examples
In addition to the previous examples, we also imple-
mented other examples that can be seen in figure 9.

Performance

As part of the evaluation of Luna Moth, we also
compared the running times of programs in Luna
Moth with the running times in other IDEs, namely
Grasshopper, OpenJSCAD, and Rosetta.

For each program, we measured the running
times in Luna Moth not connected to design tools,
in Luna Moth connected to AutoCAD, in Rosetta con-
nected to AutoCAD, in OpenJSCAD, and in Grasshop-
per connected to Rhinoceros. Each IDE has a dif-
ferent programming language. Like so, we imple-
mented each program using each IDE’s programming
language. These times can be seen in the chart from
figure 10.

SIMULATION AND WEB-BASED DESIGN - Volume 2 - eCAADe 35 | 517

100000
10000 = Luna Moth
1 = Luna Moth +
000 AutoCAD
= Rosetta +
100 AutoCAD
10 = OpenJSCAD
= Grasshopper +
1 Rhino
& & @ o
S S & R Grasshopper +
& 0@5“ ) \Qg\‘ Rhino (Bake)
& &
N

These measurements show that, when disconnected
from other design tools, Luna Moth can run programs
faster than Rosetta, OpenJSCAD, and Grasshopper,
sometimes by one or more orders of magnitude. This
tells us that Luna Moth can provide faster feedback to
changes to programs compared to the other IDEs.

On the other hand, the measurements also show
that, when connected to AutoCAD, Luna Moth is
slower than the other IDEs. Nonetheless, this is ex-
plained by taking into account the communication
time between Luna Moth, Rosetta Remote Service,
and the connected design tool, and the time that the
design tool takes to execute the desired commands.
Nevertheless, this functionality is aimed to be used
when the architect has already developed a program,
in which case, it is used only once, therefore, fast
feedback is not as important. This also means that
Luna Moth is not connected to other design tools
most of the time spent during the development of
programs, consequently, it can be considered faster
than the other IDEs.

CONCLUSION

As collaboration in architecture projects occurs be-
tween further and further apart teams, they have
to use better ways of collaborating remotely. Web
applications provide a possible path for supporting
that collaboration. As such, design tools also have
to make such collaboration possible. However, cur-
rent GD IDEs were not designed with this collabora-
tion in mind. Apart from that, a GD IDE also needs to



be adapted to architects so that they can understand
and modify programs quickly. Moreover, the GD IDE
must integrate into the architectural workflow, em-
bracing the tools that are typically used in it.

With this in mind, we created Luna Moth - a web
application that supports the programming task by
providing immediate feedback to changes, a way to
change parameters intuitively, traceability between
a program and its results, and that also integrates
into the workflow of the architect. In the paper, we
showed an example of use of Luna Moth where we
explained how the included features included help
in the programming process. Lastly, we compared
Luna Moth with other GD IDEs in terms of running
times. Luna Moth performed better than the oth-
ers when running programs by itself. On the other
hand, when connected to other design tools, Luna
Moth got slower than the others. In spite of this, Luna
Moth is only expected to be connected to other de-
sign tools when the architect has already developed a
program, meaning that it is faster than the other IDEs
throughout most of the programming process.

Future work will focus on improving editing ex-
perience with features such as illustrated program-
ming, code completion (and help in knowing the li-
brary of available functions), better code navigation,
and further exploration of traceability. In addition,
we plan to improve the performance of running pro-
grams when connected to other design tools and to
add support for remote collaboration.

ACKNOWLEDGEMENTS

This work was supported by national funds through
Fundacéo para a Ciéncia e a Tecnologia (FCT) with
reference UID/CEC/50021/2013, and by the Rosetta
project under contract PTDC/ATP-AQI/5224/2012.

REFERENCES

Feist, S, Barreto, G, Ferreira, B and Leitdo, A 2016
'Portable Generative Design for Building Informa-
tion Modelling, Living Systems and Micro-Utopias:
Towards Continuous Designing, Proceedings of the
21st International Conference of the Association for
Computer-Aided Architectural Design Research in Asia

(CAADRIA), Hong Kong, pp. 147-156

Ferreira, G 2016, An Enhanced Programming Environment
for Generative Design, Master’s Thesis, Instituto Su-
perior Técnico

Hickson, | and Hyatt, D 2011, '"HTML5: A vocabulary
and associated APIs for HTML and XHTML, in ., .
(eds) 2011,., Web Hypertext Application Technology
Working Group

Houston, B, Larsen, W, Larsen, B, Caron, J, Nikfetrat, N, Le-
ung, C, Silver, J, Kamal-Al-Deen, H, Callaghan, P and
Chen, R 2013 'Clara. io: full-featured 3D content cre-
ation for the web and cloud era, ACM SIGGRAPH 2013
Studio Talks, p. 8

Janssen, P, Li, R and Mohanty, A 2016 'M6BIUS: A
parametric modeller for the web) Living Systems
and Micro-Utopias: Towards Continuous Designing,
Proceedings of the 21st International Conference on
Computer-Aided Architectural Design Research in Asia
(CAADRIA 2016), pp. 157-166

Leitao, A, Lopes, J and Santos, L 2014 ‘lllustrated Pro-
gramming;, ACADIA 14: Design Agency, Proceedings
of the 34th Annual Conference of the Association for
Computer Aided Design in Architecture (ACADIA), Los
Angeles, pp. 291-300

Leitdo, A, Castelo Branco, R and Cardoso, C 2017
‘Algorithmic-Based Analysis - Design and Analysis in
a Multi Back-end Generative Tool,, Protocols, Flows,
and Glitches - Proceedings of the 22nd CAADRIA Con-
ference, Xi'an Jiaotong-Liverpool University, Suzhou,
China., pp. 137-146

Leitdo, A, Fernandes, R and Santos, L 2014 'Pushing the
Envelope: Stretching the Limits of Generative De-
sign;, Blucher Design Proceedings, pp. 235-238

Leitdo, A, Santos, L and Lopes, J 2012 'Programming lan-
guages for generative design: A comparative study;,
International Journal of Architectural Computing, pp.
139-162

Lopes, J and Leitdo, A 2011 'Portable generative design
for CAD applications, Integration Through Computa-
tion - Proceedings of the 31st Annual Conference of
the Association for Computer Aided Design in Architec-
ture, ACADIA 2011, pp. 196-203

Maeda, J 2001, Design by Numbers, MIT Press, Cam-
bridge, MA, USA

Marrin, C 2011, 'WebGL specification;, Khronos WebGL
Working Group, ., p. .

Terzidis, K 2003, Expressive Form: A Conceptual Approach
to Computational Design, Taylor & Francis

[1] https://www.onshape.com

[2] http://www.openjscad.org

518 | eCAADe 35 - SIMULATION AND WEB-BASED DESIGN - Volume 2



