
P2R

Implementation of Processing in Racket

Hugo Correia
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

hugo.f.correia@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID, Instituto Superior Técnico

Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

antonio.menezes.leitao@ulisboa.tecnico.pt

ABSTRACT
Processing is a programming language and development en-
vironment created to teach programming in a visual context.
In spite of its enormous success, Processing remains a niche
language with limited applicability outside the visual realm.
Moreover, architects that have learnt Processing are unable
to use the language with traditional Computer-Aided Design
(CAD) and Building Information Modelling (BIM) applica-
tions, as none support Processing.

In the last few years, the Rosetta project has implemented
languages and APIs which enable programmers to work with
multiple CAD applications. Rosetta is implemented on top
of Racket and allows programs written in JavaScript, Au-
toLISP, Racket, and Python, to generate designs in differ-
ent CAD applications, such as AutoCAD, Rhinoceros 3D,
or Sketchup. Unfortunately, Rosetta does not support Pro-
cessing and, thus, is not available to the large Processing
community.

In this paper, we present an implementation of Processing
for the Racket platform. Our implementation allows Pro-
cessing to use Rosetta’s APIs and, as a result, architects and
designers can use Processing with their favourite CAD ap-
plication. Our implementation involves compiling Process-
ing code into semantically equivalent Racket source code,
using a compiler pipeline composed of parsing, code anal-
ysis, and code generation phases. Processing’s runtime is
implemented purely in Racket, allowing for greater interop-
erability with Racket code.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

General Terms
Languages

Keywords
Processing; Racket; Compilers; Language implementation

1. INTRODUCTION
Many programming languages have been created to solve
specific needs across a wide range of areas of expertise. Pro-
cessing [1] is a programming language and development en-
vironment created to teach programming in a visual context.
The language has grown over the years, creating a commu-
nity where users are encouraged to share their artistic works.

As a result, a wide range of Processing examples are freely
available, making it easier for anyone with little, or even
no programming knowledge, to experiment with Processing.
Among the many benefits that Processing offers, are a wide
range of 2D and 3D drawing primitives, and a simple In-
tegrated development environment (IDE), that provides a
basic development environment to create new designs.

Despite its enormous success, Processing is a niche pro-
gramming language with limited applicability outside the
visual realm. Architects, for instance, depend on traditional
heavyweight CAD and BIM applications (i.g. AutoCAD,
Rhinoceros 3D, Revit, etc), which provide APIs that are
tailored for that specific CAD. Unfortunately, no CAD ap-
plication allows users to write scripts in Processing. There-
fore, architects that have learnt Processing cannot use their
programming knowledge or any of the publicly available ex-
amples to program for their favourite CAD tool.

On the other hand, Racket is a descendent of Scheme, that
has a wide range of applications, such as teaching newcom-
ers how to program, developing web applications, or creating
new languages. Racket encourages developers to tailor their
environment to project-specific needs, by offering an ecosys-
tem that allows for the creation of new languages, having
direct interoperability with DrRacket and existing Racket’s
libraries. For instance, Rosetta [2], is Generative Design
tool built on top of Racket, that encompasses Racket’s phi-
losophy of using different languages to solve specific issues.
Rosetta allows programmers to generate 2D and 3D geom-
etry in a variety of CAD applications, namely AutoCAD,
Rhinoceros3D, Sketchup, and Revit, using several program-
ming languages, such as JavaScript, AutoLISP, Racket, and
Python.

Our implementation enables Processing to use Rosetta, there-
fore allowing architects to prototype designs in their favourite
CAD application, using Processing. Our implementation in-
volves compiling Processing code to semantically equivalent
Racket source code, using Rosetta’s modelling primitives
and abstractions. Furthermore, Racket allows us to take ad-
vantage of language creation mechanisms [3], that simplify
the language development process and its integration with
DrRacket. Also, as Racket is our target language, Process-
ing developers gain access to Racket libraries and vice versa.
Lastly, as Racket encourages developers to use different lan-
guages within the Racket ecosystem, Processing developers

23



could potentially combine their scripts with other languages,
such as Python [4].

The following sections describe in greater detail the Process-
ing language and other language implementations that are
relevant to our work. Additionally, we describe the main de-
sign decisions that were taken for our implementation and a
sample of the results obtained so far.

2. PROCESSING
Processing was developed at MIT media labs and was heav-
ily inspired by the Design by Numbers [5] project, with
the goal to teach computer science to artists and designers
with no previous programming experience. The language
has grown over the years with the support of an academic
community, which has written several educational materials,
demonstrating how programming can be used in the visual
arts. Also, an online community1 has been created around
the language, allowing users to share and discuss their works.
The existence of an online community, good documentation,
and a wide range of publicly available examples, has been a
positive factor for the language’s growth over the years.

The Processing language is built on Java. It is statically
typed sharing Java’s C-style syntax and implements a wide
range of Java’s features. The decision of developing Pro-
cessing as a Java ”preprocessor”, was due to Java being a
mainstream language, used by a large community of pro-
grammers. Moreover, Java has a more forgiving develop-
ment environment for beginners when comparing with other
languages used in computer graphics such as C++.

As Processing is meant for beginners, several features were
introduced to simplify Java, and consequently, allow users
to quickly test their design ideas. In Java, developers have
to implement a set of language constructs to develop a sim-
ple example, namely a public class that implements pub-
lic methods and a static main method. These constructs
only bring verbosity and complexity to the program. As
a result, Processing simplifies this by removing the these
requirements, allowing users to write scripts (i.e. simple se-
quences of statements) that produce designs.

Processing also introduces the notion of a sketch, a com-
mon metaphor in the visual arts, acting as a sort of project
that artists can use to organize their source code. Within a
sketch, artists can develop their designs in several Process-
ing source files, but that are viewed as a single compilation
unit. A sketch can operate in one of two distinct modes:
Static or Active mode. Static mode supports simple Pro-
cessing scripts, such as simple statements and expressions.
However, the majority of Processing programs are in Ac-
tive mode, which allow users to implement their sketches
using more advanced features of the language. Essentially,
if a function or method definition is present, the sketch is
considered to be in Active mode. Within each sketch, Pro-
cessing users can define two functions to aid their design
process: the setup() and draw() functions. On one hand,
the setup() function is called once when the program starts.
Here the user can define the initial environment properties
and execute initialization routines that are required to cre-

1http://openprocessing.org/

Figure 1: Processing Development Environment

ate the design. On the other hand, the draw() function runs
after the setup() and executes the code that draws the de-
sign. The control flow is simple, first setup() is executed,
setting-up the environment; followed by draw() called in
loop, continually rendering the sketch until stopped by the
user.

Furthermore, Processing offers users a set of design and
drawing tools that are specially tailored for visual artists,
providing 2D and 3D drawing primitives along with differ-
ent 2D and 3D rendering environments. Also, a set of built-
in classes are provided, specifically tailored to help artists
create their designs. For instance, the PShape class serves
as a data type that enables users to easily create, manipu-
late, and reuse custom created design shapes throughout his
sketches.

On top of being a programming language, Processing offers
its users a development environment (presented in Fig 1)
called PDE (Processing Development Environment). Users
can develop their programs using this simple and straightfor-
ward environment, which is equipped with a tabbed editor
and IDE services such as syntax highlighting and code for-
matting. Moreover, Processing users can create custom li-
braries and tools that extend the PDE with additional func-
tionality, such as, Networking, PDF rendering support, color
pickers, sketch archivers, etc.

3. RELATED WORK
Several different language implementations were analysed to
guide our development. Our focus was on different imple-
mentations for the Processing environment, namely Process-
ing.js, Ruby-processing, and Processing.py. Additionally, we
analysed ProfessorJ due to the similarities that Java shares
with Processing, and that Scheme shares with Racket.

3.1 Processing.js
Processing.js [6] is a JavaScript implementation of Process-
ing for the web that enables developers to create scripts in
Processing or JavaScript. Using Processing.js, developers

H. Correia & A. Leitão Implementation of Processing in Racket

24



can use Processing’s approach to design 2D and 3D geom-
etry in a HTML5 compatible browser. Processing.js uses
a custom-purpose JavaScript parser, that parses both Pro-
cessing and JavaScript code, translating Processing code to
JavaScript while leaving JavaScript code unmodified.

Moreover, Processing.js implements Processing drawing prim-
itives and built-in classes directly in JavaScript. Therefore,
greater interoperability is allowed between both languages,
as Processing code is seamlessly integrated with JavaScript
and Processing’s data types are directly implemented in
JavaScript. To render Processing scripts in a browser, Pro-
cessing.js uses the HTML canvas element to provide 2D ge-
ometry, and WebGL to implement 3D geometry. Process-
ing.js encourages users to develop their scripts in Process-
ing’s development environment, and then render them in a
web browser. Additionally, Sketchpad2 is an alternative on-
line IDE for Processing.js, that allows users to create and
test their design ideas online and share them with the com-
munity.

3.2 Ruby-processing & Processing.Py
Ruby-processing3 and Processing.py4 produce Processing as
target code. Both Ruby and Python have language imple-
mentations for the JVM, allowing them to directly use Pro-
cessing’s drawing primitives. Processing.py takes advantage
of Jython to translate Python code to Java, while Ruby-
processing uses JRuby to provide a Ruby wrapper for Pro-
cessing. Processing.py is fully integrated within Processing’s
development environment as a language mode, and therefore
provides an identical development experience to users. On
the other hand, Ruby-processing is lacking in this aspect,
by not having a custom IDE. However, Ruby-processing of-
fers sketch watching (code is automatically run when new
changes are saved) and live coding, which are functionalities
that are not present in any other implementation.

3.3 ProfessorJ
ProfessorJ [7, 8] was developed to be a language extension
for DrScheme [9], providing a smoother learning curve for
students that are learning Java and offering a set of language
levels that progressively cover more complex notions of the
language.

ProfessorJ implements a traditional compiler pipeline, that
starts with a lex and yacc parsing phase, that produces
an intermediate representation in Scheme. Subsequently,
the translated code is analysed, generating target Scheme
code by using custom defined functions and macro transfor-
mations. ProfessorJ implements several strategies to map
Java code to Scheme. For instance, Java classes are trans-
lated into Scheme classes with certain caveats, such as imple-
menting static methods as Scheme procedures or by chang-
ing Scheme’s object creation to appropriately handle Java
constructors. Also, Java has multiple namespaces while
scheme has a single namespace, therefore name mangling
techniques were implemented to correctly support Java’s
multiple namespaces in Scheme.

2http://sketchpad.cc/
3https://github.com/jashkenas/ruby-processing
4http://py.processing.org/

Moreover, Java’s built-in primitive types and some classes
are directly implemented in Scheme, while remaining classes
are implemented in Java. Classes such as Strings, Arrays,
and Exceptions are mapped directly to Scheme forms. Im-
plementing these classes in Scheme is possible (with some
constraints) due to similarities in both languages which, in
turn, allow for a high level of interoperability between both
languages.

Finally, ProfessorJ is fully integrated with DrScheme, pro-
viding a development environment that offers syntax high-
lighting, syntax checking, and error-highlighting for Java
code. This is possible due to preserved source location in-
formation throughout the compilation pipeline.

4. SOLUTION
Although previously presented implementations are relevant
for our solution, they do not fit entirely in our work’s scope.
Analysing Processing.js and Processing.py, we observe that
having an IDE is a fundamental feature for Processing users.
Also, both Processing.js and ProfessorJ implement their APIs
directly in their target language, permitting greater interop-
erability between the source and target language. However,
Processing.js, Processing.py, and Ruby-processing, do not
allow designs to be visualized in a CAD, and, in spite of
Java and Processing sharing many features, the differences
require a custom tailored solution. Finally, Ruby-processing
presents some relevant features that are useful for designs,
namely live coding. Yet, as both Processing.py and Ruby-
processing translate to the JVM, they are not relevant to
our work.

Our proposed solution was to develop Processing as a new
Racket language module, using Rosetta for Processing’s vi-
sual needs, and integrating Processing with DrRacket’s IDE
services. The following sections explain how our compiler
was developed and structured, presenting the main design
decisions taken.

4.1 Module Decomposition
To better understand the main modules of our compiler,
Fig 2 illustrates the main Racket modules that are used,
as well as the dependencies between them. We divided the
modules in two major groups: the Compiler and Runtime
modules. In the following paragraphs, we provide a detailed
description of the most important modules.

Figure 2: Main module decomposition and depen-
dencies. The arrows indicate a uses relationship be-
tween modules - module A uses (−→) module B

H. Correia & A. Leitão Implementation of Processing in Racket

25



4.1.1 Compiler Modules

Reader Module. To add Processing as a new language
module [10], a new specifically tailored reader is needed
for Processing. This enables Racket to parse Processing
source code and transform it to target Racket code. The
reader must provide two important functions: read and
read-syntax, and receive an input-port as input, differ-
ing in their return value. The former produces a list of
S-expressions, while the latter generates syntax-objects

(S-expressions with lexical-context and source-location in-
formation). The reader uses functions provided from the
Compile module, to create and analyse an intermediate rep-
resentation of the source Processing code, and to generate
target Racket code.

Compile Module. The Compile module defines an inter-
facing layer of functions that connects the Reader module
with the Parse and AST modules. The main advantage is
to have a set of abstractions that manipulate certain phases
of the compilation process. For instance, the Compile mod-
ule provides functions that parse the source code, create an
AST, check types, and generate Racket code.

Parser & Lexer Modules. The Parse and Lexer modules
contain all the functions that analyse the syntactic and se-
mantic structure of Processing code. To implement the
lexer and parser specifications, we used Racket’s parser-

tools [11], adapting parts of ProfessorJ’s lexer and grammar
according to Processing’s needs. The Lexer uses parser-

tools/lex to split Processing code into tokens. To abstract
generated tokens by the Lexer module, Racket’s position-

tokens are used, as they provide a simple way to save the
code’s original source locations. Processing’s parser defi-
nition is implemented using Racket’s parser-tools/yacc,
which produces a LALR parser.

AST Module. Parsing the code produces a tree of ast-

node%, that abstracts each language construct such as, state-
ments, expressions, etc. These nodes are implemented as a
Racket class, containing the original source locations and a
common interface which allows the analysis and generation
of equivalent Racket code. Each ast-node% provides the
following methods:

• ->check-bindings: traverses the AST populating the
current scope with defined bindings and their type in-
formation;
• ->type-check: checks each AST node for type errors,

promoting types, if necessary;
• ->racket: generates Racket code using custom de-

fined functions and macros, wrapping them within a
syntax-object along with the original source infor-
mation.

Types and Bindings Module. The bindings module pro-
vides auxiliary data structures needed to store and manage
different Processing bindings. We created a binding% class

to abstract binding information (e.g. modifiers, argument
and return types, etc), and a custom scope% class to handle
Processing’s scoping rules. Each scope% has a reference to
its parent scope% and has a hash table that associates iden-
tifiers to binding% representation. The types module has all
the necessary functions to check if two types are compatible
or if they need to be promoted. As many of Processing’s
typing rules are similar to Java’s, we adapted ProfessorJ’s
type-checking functions to work with our compiler.

4.1.2 Runtime Modules
The runtime module provides all the necessary macros, func-
tions, and data types, that are required by generated Racket
code. These functions are provided by the Processing mod-
ule using the Macros and Processing libraries modules. The
former contains necessary source transformations required
to generate equivalent Racket code. The latter provides an
interface that implements Processing’s built-in classes and
drawing primitives, using Rosetta to generate designs in sev-
eral CAD backends.

4.2 Compilation Process
Our Processing implementation follows the traditional com-
piler pipeline approach (illustrated in Fig 3), composed by
three separated phases, namely parsing, code analysis, and
code generation.

Figure 3: Overall compilation process

Parsing. The initial compilation process starts by the pars-
ing phase, which is divided in two main steps. First, Pro-
cessing source code is read from the input-port and trans-
formed into tokens. Secondly, tokens are given to LALR
parser, building an AST of Racket objects, that will be anal-
ysed in subsequent phases.

Code Analysis. Following the parsing phase, a series of
checks must be made to the generated AST. This is due
to some differences between Processing’s and Racket’s lan-
guage definitions. For instance, Processing has static type-
checking and has different namespaces for methods, fields,
and classes, while Racket is dynamically typed and has a
single namespace. As a result, custom tailored mechanisms
were needed to solve compatibility issues, in order to gener-
ate semantically equivalent Racket code.

Initially, the AST is traversed by repeatedly calling ->check-

bindings on child nodes, passing the current scope%. When
a new definition is created, be it a function, variable, or
class, the newly defined binding is added to the current
scope along with its type information. Each time a new
scope is created in Processing code, a new scope% object
is created to represent it, referring to the current scope%

as its parent. These mechanisms are needed to implement

H. Correia & A. Leitão Implementation of Processing in Racket

26



Processing scoping rules and type-checking rules. For ex-
ample, to type-check a function call, the information of the
return type, arity, and argument types is needed to correctly
type-check the expression.

Secondly, the type-checking procedure runs over the AST by
calling ->type-check on the topmost AST node. As before,
it repeatedly calls ->type-check on child nodes until the
full AST is traversed, using previously saved bindings in
the current scope% to find out the types of each binding.
During the type-checking procedures, each node is tested
for type correctness and in some cases promoting types, if
necessary. In the event that types do not match, a type error
is produced, signalling where the error occurred.

Code Generation. After the AST is fully analysed and
type-checked, semantically equivalent Racket code can be
generated. To achieve this, every AST node implements
->racket, which uses custom defined macros and functions
to produce Racket code. This code is then wrapped in
a syntax-object along with source information saved by
the AST. Subsequently, these syntax-objects will be con-
sumed by read-syntax at the reader level. Afterwards,
Racket will expand the define macros and load the gen-
erated code into Racket’s VM. By using macros, we can
create human-readable boilerplate Racket code that can be
constantly modified and tested.

Racket and Processing follow the same evaluation order on
their programs, thus most of Processing’s statements and ex-
pressions are directly mapped into Racket forms. However,
other statements such as return, break, or continue need a
different handling as they use control flow jumps. To imple-
ment this behaviour we used Racket’s escape continuations,
in the form of let/ec. Furthermore, Processing has multiple
namespaces, which required an additional effort to translate
bindings to Racket’s single namespace. To support multiple
namespaces in Racket, binding names were mangled with
custom tags. For instance, func tag is appended to func-
tions, so function foo() internally would be foo-fn(). The
use of ’-’ as a separator allows us to solve the problem of
name clashing with user defined bindings, as Processing does
not allow ’-’ in names. Also, as we have function overload-
ing in Processing, we append specific tags that represent the
argument’s types to the function’s name. For instance, the
following function definition: float foo(gloat x, float y){

... } would be translated to (define (foo-FF-fn x y)...).

An initial implementation of classes has been developed,
by mapping Processing classes into Racket classes, reusing
some of ProfessorJ’s ideas. Instance methods are translated
directly into Racket methods, therefore instance method
public void foo() is translated to Racket’s public methods,
(define/public (foo-fn)...). On the other hand, static meth-
ods are implemented as a Racket function, by appending
the class name to the function’s name. For example, a
method static void foo() of class Foo will be translated
to (define (Foo.foo-fn)...). Also, there is an issue with
constructors, as Processing can have multiple constructors.
This problem is solved by adapting new to find the appro-
priate constructor to initialize the object.

To correctly support Processing’s distinctions between Ac-
tive and Static mode we used the following strategy. We
added a custom check in the parser that signals if the code
is in Active mode, i.e. if a function or method is defined.
While in active mode, global statements are restricted, thus
when generating code for global statements we check if the
code is in Active mode, signalling an error if true.

4.3 Runtime
Our runtime is implemented directly in Racket, due to the
necessity of integrating our implementation with Rosetta.
Processing offers a set of built-in classes that provide com-
mon design abstractions that aid users during their devel-
opment process. For instance, PVector, abstracts 2 or 3
dimensional vectors, useful to describe positions or veloci-
ties. These will be implemented directly in Racket, allowing
for greater performance and interoperability.

However, this presents some important issues. First, as
Racket is a dynamically typed language, the type-checker,
at compile time, cannot know what are the types of Racket
bindings. To solve this issue we introduced a new type in
the type hierarchy, acting as an opaque super type that the
type-checker ignores when type checking these bindings. On
the other hand, as Processing primitives and built-in classes
are implemented in Racket, we also have the problem of as-
sociating type information for these bindings. To solve this
issue, we created a simple macro (Fig 4), that allows us to
associate type information to Racket definitions, by adding
them to the global environment, thus the type-checker can
correctly verify if types are compatible. Alternatively, in-
stead of using a custom macro, we could of written Pro-
cessing’s APIs in typed/racket, as types can be associated
to Racket definitions. Yet, this alternative was not used
due to possible type incompatibilities with Processing’s and
Racket’s type hierarchy. Secondly, because the gain of using
typed/racket [12] would not be significant due to Rosetta
and the compiler being written in untyped racket.

(define-syntax-rule
(define-types (id [type arg] ... -> rtype)

body ...)
(begin

(add-binding! rtype ’id (type ...))
(define (id arg ...) body ...)))

Figure 4: Macro that associates Processing types to
a definition

Processing’s drawing paradigm closely resembles OpenGL’s
traditional push/pop-matrix style. To provide rendering
capabilities in our system, we use Rosetta, as it provides
design abstractions that not only lets us generate designs
in an OpenGL render, but also gives us access to several
CAD back-ends. Custom interface adjustments are needed
to implement Processing’s drawing primitives in Racket, as
not every Processing primitive maps directly into Rosetta’s.
Furthermore, Rosetta also enables us to supply Processing
developers with different drawing primitives unavailable in
Processing’s core environment. Therefore we are able to aug-
ment Processing’s core capabilities with additional drawing
primitives and design approaches, that empower users to
explore different designs.

H. Correia & A. Leitão Implementation of Processing in Racket

27



4.4 Interoperability
Mapping Processing constructs directly into Racket’s allows
for greater interoperability between both languages. At the
moment, each Processing module is translated to a Racket
module. As a result, to use Racket code within a Process-
ing module, a custom import mechanism was created. A
require statement was introduced that maps into Racket’s
require, allowing Racket modules (or any other language of
the Racket ecosystem) to be referenced within a Processing
module. Nonetheless, this decision has a major issue in re-
gard to Processing’s identifiers, as they are not compatible
with Racket’s. Racket allows for identifiers to be composed
of characters such as ’?’, ’-’, or ’+’, yet Processing does
not. As result, we are unable to use these bindings in our
Processing scripts. This issue can be solved by using two
different approaches.

The first approach is to automatically rename all of provided
bindings of the required module, by using a custom set of
name renaming rules. For instance, Racket bindings sepa-
rated with ’-’ characters are translated to camel case, i.e.
foo-bar is converted to fooBar. The second approach is to
force the developer to create his custom name mappings by
creating a Racket module that does the name conversion.
Clearly, the first approach provides a clearer and quicker
way of using a Racket module. However, as renaming rules
applied are debatable, the developer is free to create his cus-
tom mapping from our initial transformation.

On the other hand, we want to be able to use a Processing
module in other languages of the Racket ecosystem. To cor-
rectly implement these mechanisms, Processing’s modifiers
(i.e. public, private, etc.) are used to provide bindings to
other modules, mapping them into Racket’s provide.

4.5 Integration with DrRacket
Processing developers are familiar with an IDE (the PDE)
that offers them a set of common IDE tools, such as syntax
highlighting or code formatting. DrRacket as a pedagogical
IDE, shares some of the PDE’s features, providing a similar
development environment to Processing developers and al-
lowing them to easily make the transition to our system. Dr-
Racket’s IDE services use source locations to operate, there-
fore by saving this information and passing it along through
the compilation process, we can easily integrate our Process-
ing implementation with DrRacket’s features (ilustrated in
Fig 5).

A relevant feature that Racket offers is a REPL, which is
common in many Lisp descendants. However, currently no
Processing implementation provides a REPL to its users.
Therefore, having a REPL would be a major advantage to
the PDE environment, as it would provide users a mecha-
nism to test specific parts of their code, being a good mech-
anism for beginners to learn and immediately experiment
new ideas.

Due to Racket’s language development capabilities, this fea-
ture was easily implemented by creating a custom function
to compile REPL interactions for Processing. However, as
Processing is a statement based language, REPL interac-
tions will not produce expressions. So we created a new
parser rule to implement REPL interactions, adding it to the

Figure 5: Processing in DrRacket

parser generator’s start symbols. This way Racket’s parser-
tools produces different parsing procedures for each start
symbol, which we can use according to the type of interac-
tion we are manipulating. The interactions shown in Fig 5
shows how we can use the REPL for Processing. For exam-
ple, note that println(factorial(5)); returns the result
of factorial of 5 by producing a print side-effect, while in
factorial(5) + 100 the returned result is the actual ex-
pression that is produced by the add operator.

5. EXAMPLE
In this section, we illustrate an example of code that gener-
ates a double helix (Fig 6) using our system. Our current
implementation is still a work in progress, hence the compi-
lation results are subject to change. The code illustrated in
Fig 7 shows a Processing example that generates the helix
illustrated in Fig 6.

The double helix is drawn by using a recursive function that
repeatedly renders a pair of spheres connected by a cylinder,
along a rotating axis. This example is a case of an Active
mode sketch, as function definitions are present. Also, Pro-
cessing’s design flow is demonstrated by the use of setup()
and draw(). In setup(), we use the backend function (pro-
vided by Rosetta) to define the rendering backend to use,
which in this case is AutoCAD. On the other hand, draw()
executes helix() to produce the design in AutoCAD. Fig 8
presents the Racket code that is produced by our compiler.

The first point worth mentioning is that function identifiers
are renamed to support multiple namespaces. We can see
that helix identifier is translated to helix-FF-fn. The F
is to indicate that the function has 2 arguments that are of
type float. Also, we can see that setup() and draw() are
mangled as well, by appending fn to their name. Functions
and macros such as p-mul, p-sub, or p-call, are defined in
the runtime modules, implementing Processing’s semantics.
Variable definitions are translated by using p-declaration,
which is a macro that generates a Racket define-values

form, using a sequence of identifier and value pairs. To

H. Correia & A. Leitão Implementation of Processing in Racket

28



Figure 6: Double helix generated from Processing
code using AutoCAD

declare variables (i.e. float x,y;), the value is stored us-
ing Racket’s undefined. Mathematical operators (p-mul,
p-add) are implemented as Racket functions, yet, do not
overflow as Processing. On the other hand, the sphere and
cylinder drawing primitives, are specially tailored to map
into Rosetta’s operators. For instance, cylinder is a good
example of an operator that Rosetta provides, but that is
not available in the current Processing environment.

At the moment, we observe that all function definitions have
their body wrapped in a let/ec form. This is injected to
support return statements within functions. Although per-
formance will be limited by the chosen connection interface
and rendering backend, the usage of let/ec is a clear ex-
ample that brings additional performance overhead with no
possible gains, as the return type is void. Thus an opti-
mization is required to remove let/ec, for cases that jump
statements are not present or when the last statement is a
return.

float r = 15, height = 2;

void helix(float z, float ang) {
float x1 = r*cos(ang), y1 = r*sin(ang);
float x2 = r*cos(PI+ang), y2 = r*sin(PI+ang);

sphere(x1, y1, z, 2);
cylinder(x1, y1, z, 0.5, x2, y2, z);
sphere(x2, y2, z, 2);

if(ang > 0) helix(z + height , ang - PI/8);
}
void setup() { backend(autocad); }
void draw() { helix(0, 4 * PI); }

Figure 7: Processing code example of the Double
Helix

(p-declaration (r 15.0) (height 2.0))

(define (helix-FF-fn z ang)
(let/ec return
(p-block
(p-declaration

(x1 (p-mul r (p-call cos-F-fn ang)))
(y1 (p-mul r (p-call sin-F-fn ang))))

(p-declaration
(x2 (p-mul r (p-call cos-F-fn

(p-add PI ang))))
(y2 (p-mul r (p-call sin-F-fn

(p-add PI ang)))))
(p-call sphere-FFFI-fn x1 y1 z 2)
(p-call cylinder-FFFFFFF-fn

x1 y1 z 0.5 x2 y2 z)
(p-call sphere-FFFI-fn x2 y2 z 2)
(when (p-gt ang 0)
(p-call helix-FF-fn

(p-add z height)
(p-sub ang (p-div PI 8.0)))))))

(define (setup-fn)
(let/ec return
(p-block (p-call backend-O-fn autocad))))

(define (draw-fn)
(let/ec return
(p-block (p-call helix-FF-fn 0 (p-mul 4.0 PI)

))))

(p-initialize))

Figure 8: Generated Racket code

Finally, a p-initialize macro is added to implement Pro-
cessing’s workflow semantics. This macro is responsible of
ensuring that the setup() and draw() functions are called,
if defined by the user. p-initialize is implemented by us-
ing Racket’s identifier-binding to check if the setup-fn

and draw-fn are bound in the current environment.

6. CONCLUSION
Implementing Processing for Racket benefits architects and
designers, by allowing them to develop with Processing in
a CAD environment. Also, the ability to provide new de-
sign paradigms offered by Rosetta is a strong reason for the
architecture community to use our solution. The implemen-
tation follows the common compiler pipeline architecture,
generating semantically equivalent Racket code and loading
it into Racket’s VM. Our strategy was to implement Process-
ing’s primitives directly in Racket to easily access Rosetta’s
features and allow a greater interoperability with Racket.
Also, we have developed mechanisms to access Processing
code from Racket and vice versa.

Currently, our development approach was to first fulfil the
most basic needs of Processing users (the ability to write
simple scripts) and present visual results in a CAD appli-
cation. Afterwards, our goal is to build-upon our existing
work, and progressively introduce more advanced mecha-
nisms, such as implementing inheritance and interfaces in
classes, support live coding, or adapt Processing’s exception
system to Racket. To provide a better environment for Pro-
cessing developers, we plan to further adapt DrRacket by

H. Correia & A. Leitão Implementation of Processing in Racket

29



creating an editor mode with better syntax highlighting for
Processing. Also, adding visual support to REPL interac-
tions would be a huge advantage to our implementation, as it
would allow users to immediately visualize geometric shapes
in the IDE without loading up the rendering backend. Fi-
nally, optimizations can be made to generated Racket code
to improve the quality and performance of the generated
Racket code.

7. ACKNOWLEDGEMENTS
This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with ref-
erence UID/CEC/50021/2013, and by the Rosetta project
under contract PTDC/ATP-AQI/5224/2012.

8. REFERENCES
[1] Casey Reas and Ben Fry. Processing: programming for

the media arts. AI & SOCIETY, 20(4):526–538, 2006.

[2] José Lopes and António Leitão. Portable generative
design for cad applications. In Proceedings of the 31st
annual conference of the Association for Computer
Aided Design in Architecture, pages 196–203, 2011.

[3] Matthew Flatt. Creating languages in racket.
Communications of the ACM, 55(1):48–56, 2012.

[4] Pedro Palma Ramos and António Menezes Leitão. An
implementation of python for racket. 7 th European
Lisp Symposium, page 72, 2014.

[5] John Maeda. Design by Numbers. MIT Press,
Cambridge, MA, USA, 1999.

[6] John Resig, Ben Fry, and Casey Reas. Processing. js,
2008.

[7] Kathryn E Gray and Matthew Flatt. Compiling java
to plt scheme. In Proc. 5th Workshop on Scheme and
Functional Programming, pages 53–61, 2004.

[8] Kathryn E Gray and Matthew Flatt. Professorj: a
gradual introduction to java through language levels.
In Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, pages 170–177. ACM,
2003.

[9] Robert Bruce Findler, John Clements, Cormac
Flanagan, Matthew Flatt, Shriram Krishnamurthi,
Paul Steckler, and Matthias Felleisen. Drscheme: A
programming environment for scheme. Journal of
functional programming, 12(02):159–182, 2002.

[10] M Flatt and RB Findler. Creating languages: The
racket guide.

[11] Scott Owens. Parser tools: lex and yacc-style parsing.

[12] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan
Culpepper, Matthew Flatt, and Matthias Felleisen.
Languages as libraries. In ACM SIGPLAN Notices,
volume 46, pages 132–141. ACM, 2011.

H. Correia & A. Leitão Implementation of Processing in Racket

30


